THE STONE REPRESENTATION THEOREM FOR BOOLEAN
ALGEBRAS
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ABSTRACT. The Stone Representation Theorem for Boolean Algebras, first
proved by M. H. Stone in 1936 ([4]), states that every Boolean algebra is
isomorphic to a field of sets. This paper motivates and presents a proof.
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1. INTRODUCTION

The original motivation for developing topology was a desire to generalize ideas
in geometry such as shape and distance. The notion that topology could illuminate
algebra was resisted by such luminaries as Birkhoff, who once, when asked about
the use of topological methods in algebra, allegedly responded, “I don’t consider this
algebra, but this doesn’t mean that algebraists can’t do it” [3]. Nevertheless, in 1936
Marshall Stone published a paper [4] proving an unexpected equivalence between
Boolean algebras and certain topological spaces, now called Stone spaces in his
honor. This present paper proves the main result of [4], the Stone Representation
Theorem for Boolean Algebras. Section 2 introduces Boolean algebras and tools for
working with them, and Section 3 introduces Stone spaces and proves the theorem.
This paper assumes that the reader is comfortable with basic topology. Experience
with propositional calculus will be helpful, but not necessary.

Johnstone [3] proves the Stone Representation Theorem using tools of category
theory. That approach is cleaner than ours, but also requires greater abstraction.
This paper draws definitions and from Johnstone, but most of the proofs in this
paper are based on proofs from Halmos [1]. Exceptions are noted as they occur.

2. BOOLEAN ALGEBRAS

We begin by defining posets and distributive lattices; with that terminology in
place, we can define Boolean algebras as a specific type of distributive lattice.
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Definition 2.1. A partially-ordered set, often abbreviated poset, is a set A together
with a relation < that is

(1) reflexive: for all a € A, a < a;

(2) transitive: for all a,b,c € A, if a < b and b < ¢, then a < ¢; and

(3) antisymmetric: for all a,b,c € A, if a <b and b < a then a = b.

Suppose A is a poset. The reason we say A is partially ordered, not totally
ordered, is that two arbitrary elements in A are not necessarily comparable. We
may very well have elements a and b in A such that a £ b and b £ a. For example,
consider the set of sets X = {{0},{1},{0,1},{0,2}}. We can put a partial order on
X by saying a < bif a C b. For example, we can say {0} < {0,1} since {0} C {0,1},
and {0} < {0,2}. Furthermore, {1} < {0,1}. However, {1} £ {0,2}. Those two
sets simply cannot be compared under our partial order.

If S is a finite subset of a poset A, we define the join of S as the element \/ S
(unique if it exists) such that
(1) forall se€ S, s <\ S;and
(2) for any element x € A such that s < z for all s € S, we have that \/ S < z.
The join is also referred to as a least upper bound or supremum. Dual to the join
of S is its meet, written A S. The meet (or greatest lower bound, or infimum) is
defined identically to the join, but with inequalities reversed.

Notation 2.2. If we are considering a set with only two elements, say {a,b}, we
write its join as a V b and its meet as a A b. If we are considering the empy set &,
we use the symbol 0 to denote its join and 1 to denote its meet. It follows from the
definition that O is the smallest element of a poset and 1 is the greatest.

Definition 2.3. A lattice is a poset A such that every finite subset of A has a meet
and a join. We say a lattice is complete if it has meets and joins of arbitrary, not
just finite, sets. We say it is distributive if the meet and the join obey the following
distributive law.

(2.4) For all a,b,c€ A, aAN(bVe)=(aAb)V (aAc).

Examples 2.5. Some examples are in order.

(1) The symbols A and V suggest an analogy with the set operations N and U.
This suspicion is fruitful: take an arbitrary nonempty set X. Its power set
P(X) is the collection of all subsets of X. Take 0 = @ and 1 = X. Define
meets (A) to be set intersections (N), joins (V) to be set unions (U), and
complementation (—) to be set complementation (¢). For sets A, B € P(X),
say A < Bif A C B. Then P(X) is a complete distributive lattice.

(2) Similarly, given a topological space X, the collection Q(X) of all its open
sets ordered by inclusion is a complete distributive lattice; the join of arbi-
trary sets is their union, and the meet is the interior of their intersection.

Definition 2.6. Suppose that A is a distributive lattice, and suppose that, for
a € A, there exists an element —a € A such that

(1) aA—a =0, and

(2) aV-a=1.
Then we call —a a complement of a. Any distributive lattice in which every element
has a complement is called a Boolean algebra.
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Proposition 2.7. Complements are unique in a Boolean algebra.

Proof. Suppose for some some element a we had two complements = and y. Then
r=xA(zVa)
=z A1
=z A(yVa)
= (x Ay) V (x A a) (since Boolean algebras are distributive)
=(xAy)Vo=zAy.

An almost identical argument proves that y = x V y, so z = y. [l

Since complements are unique, we may consider — as a function —: A — A that
takes each element of a Boolean algebra A to its complement.

Proposition 2.8. The following statements hold in Boolean algebras.

(1) Meets and joins are idempotent: a Aa = a, and a V a = a.

(2) Meets and joins are commutative: a Ab=bAa,and aVb=>bV a.

(3) Meets and joins are associative: a A (bA¢c) = (aAb)Ac,and aV (bVe) =
(aVb)Ve.

(4) Meets and joins are distributive: aA(bVce) = (aAb)V(aAc), and aV (bAc) =
(anb)V(aAc).

(5) an—-a=0and aV-a=1.

(6) anO=0and aV1=1.

(7) anl=aand aV0=a.

(8) Every element is its own double complement: ——a = a.

(9) =0 =1 and -1 = 0.

Proof. For each of these statments, we need prove only half; the other half follows
dually by exchanging V with A, 0 with 1, and < with >. (1) and (2) follow
immediately from the definitions of meet and join. For (3), note that (a V b) V¢
and a V (bV ¢) are both upper bounds for {a, b, c}, so they must be greater than or
equal to the least upper bound, \/{a,b,c}. On the other hand, they must be less
than or equal to it, since, for example, (aVb)Ve < (aVbVe)Ve= (aVbVe). (4) is
true because a Boolean algebra is distributive by definition. (5) is the definition of
a complement. (6) follows directly from the definitions of 0 and 1. (7) is immediate
from the definitions of meet, join, 0, and 1. (8) is true by uniqueness of complements:
—aA--a=0and 7aAa=0,s0a=-a. (9) follows from (6) and uniqueness of
complements. |

Examples 2.9. Here are a few examples of Boolean algebras.

(1) The set {0,1} (with 0 <1) is a Boolean algebra. We call this set 2.
(2) Any complete lattice is a Boolean algebra.

We introduce a few tools for working with Boolean algebras. The first is the
notion of an ideal.

Definition 2.10. Let A be a Boolean algebra. An ideal is a set I C A such that
(1) 0el,
(2) faeTandbe I, thenaVbel, and
(3) ifacTandbe A, thenaAbel.
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We say an ideal I C A is proper if I # A, and maximal if it is proper and contains
no proper ideals except for itself.

Example 2.11. Given a topological space X, 2(X) (the lattice of open sets ordered
by inclusion) is an ideal in P(X).

Theorem 2.12. In a Boolean algebra A, an ideal I C A is mazimal iff for every
a € A, either a € I or —a € I, but not both.

Proof. First, let ag be an element of A and let I be an ideal of A containing neither
ag nor —ag. We will show that I is not maximal. To do so, consider the set J of all
elements of the form a V b, where a < ag and b € I. Then it is easy to check that J
is an ideal that contains ag. Furthermore, every element in [ is contained in J, that
is, I C J. If we can show J # A, we will have proven that I is not maximal. But J
cannot be A because it cannot contain —ag. If it did, we could find @ and b (a < aq,
b € I) such that —ap = a vV b. But then —ag = —ag A ~ag = (a V b) A mag = b,
contradicting the assumption that —ag ¢ I. Hence, for all a € A, any maximal
ideal must contain either a or —a. Furthermore, no maximal ideal contains both: if
an ideal K contains both a and —a, then it contains a V -a = 1, so for any element
be A, K contains bA1 =b, so K = A. Therefore K is not a proper ideal, so it is
not a maximal ideal. Thus, every maximal ideal contains precisely one of a or —a.

Conversely, suppose I C A is an ideal such that, for all a € A, either a € I or
(—a) € I. We will show that I is maximal by showing that the only ideal properly
containing it is A. Let J be an ideal properly containing I. Then there is an
element a such that b € J but b ¢ I, so by the assumption —b € I, whence —b € J.
But we've already shown that if both b and —b are in an ideal, the ideal must be
the entire algebra. O

Lemma 2.13 (Maximal Ideal Theorem). Fuvery proper ideal in a Boolean algebra
is contained in some maximal ideal.

Proof. This proof follows Halmos and Givant [2], page 72.

Let B be a Boolean algebra with some proper ideal I. Further assume B is
countable. (The proof for uncountable Boolean algebras is similar, but requires the
axiom of choice.) We may then enumerate the elements in B: pg, p1, pa, et cetera.
We then inductively define a sequence of ideals. Define Jy = I. Now, suppose J,
has been defined. If —p,, € J,, then define J,; = J,,. Otherwise, define

Jnt1={pVqg:p<p,and g€ J,}.

We may verify that this set is in fact a proper ideal. It follows each J, is proper
and included in the proper ideal J,, 1. Therefore, the union M of all these ideals is
proper (since no proper ideal contains 1, the union of proper ideals is again proper),
and I C M.

It follows from Theorem 2.12 that M is maximal. For if -p,, € J,,, then =p,, € M.
On the other hand, if —p, ¢ J,,, then p,, € J,+1 C M. Hence, for each p,, either
Pn O =P, isin M. 0

It follows in particular that, for every a € A, there is some maximal ideal con-
taining a. To see this, consider the set

(2.14) l@=1{beA:b<a)
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This set, called the principal ideal generated by a, is a proper ideal that contains a
and, by the above lemma, is in turn contained in some maximal ideal.

Another useful notion is the idea of a homomorphism. In general, a homo-
morphism is a structure-preserving mapping. For Boolean algebras specifically, a
homomorphism preserves meets, joins, and complementation. Formally:

Definition 2.15. Let A and B be Boolean algebras. A (Boolean) homomorphism
is a mapping f : A — B such that, for all p,q € A:

(1) fleAg) = fp) A Fg),

(2) flpva)=f(p)V fg), and

(3) f(=a) =~f(a),
where the operations on the left side of each equation are operations in A, and the
operations on the right side of each equation are operations in B.

A surjective (onto) homomorphism is called an epimorphism. An injective (one-
to-one) homomorphism is called a monomorphism. A homomorphism that is both
surjective and injective is called an isomorphism. If there exists an isomorphism
between A and B, we say that they are isomorphic.

If f is a homomorphism from A to B, the kernel of f is the subset of A that f
maps to the zero element of B. In symbols, ker(f) = {z € A: f(x) = 0}. Kernels
are key to an unexpected connection between ideals and homomorphisms:

Lemma 2.16 (Homomorphism Theorem). Every proper ideal is the kernel of some
epimorphism between Boolean algebras.

Proof. This proof follows Johnstone [3], Lemma I 2.1.

Let A be a Boolean algebra, let I be any proper ideal of A, and define a relation
=7 by a =y b iff there exist ¢ and j in I such that a Vi = bV j. Then =; is an
equivalence relation. Given a € A, let [a] be the set {b: b =; a}. Then the collection
of all such sets is a Boolean algebra B, and every element a € A corresponds to
precisely one element of B, namely [a]. Let f: A — B be the function that maps
a to [a]; then f is an epimorphism, and its kernel is [0], which is simply I. O

3. STONE REPRESENTATION THEOREM FOR BOOLEAN ALGEBRAS

Our goal is to find a connection between the algebraic construct of Boolean
algebras and the topological construct of Stone spaces. Let us therefore turn away
from algebra and briefly discuss some topology. We recall some definitions.

e A topological space X is Hausdorff if, for any distinct z and y in X, there
exist disjoint open sets P, C X such that x € P and y € (). Succinctly,
distinct points have disjoint neighborhoods.

e A topological space X is compact if every open cover of X has a finite
subcover.

e A Hausdorff space X is totally disconnected if every open set is the union
of the clopen sets it contains.

Definition 3.1. A Stone space is a topological space that is Hausdorff, compact,
and totally disconnected.

We present a few examples of Stone spaces.

Proposition 3.2. Recall that 2 is the set {0,1}. Let A be an arbitrary nonempty
set. Consider the set 24 = {f : f is a function from A to 2}. Then 24 is a Stone
space.
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Proof. Endow 2 with the discrete topology. The set 24 is homomorphic to the
Cartesian product of 2 with itself, with one copy for each element of A; give it the
product topology. Tychonoff’s Theorem guarantees that this set is compact and
Hausdorff. To show that it is a Stone space, we need to show that it is totally
disconnected. It is sufficient to show that every open set in a subbase for the
topology on 2 is clopen.

Write z, for the value that a function z € 2 takes at a point @ € A. The
product topology is the coarsest topology for which all projections z, : 24 — 2 are
continuous. To form a subbase for this topology, take as open all sets of the form
{re2:2,=1}and {z € 24 : 2, = 0}. A set of the first form is the complement
of some set of the second form, and vice versa, so every open set in this subbase is
clopen. (I

For our second example, let A be a Boolean algebra, and consider the subset
S(A) C 2 that consists of homomorphisms from A to 2. TIs this a Stone space?
We can prove that it is, but first it would be reassuring to know that the set S(A)
is nonempty; could it ever be the case that there are no homomorphisms from
A to 27 The following lemma answers our queries with a resounding “no”: such
homomorphisms always exist.

Lemma 3.3 (Existence Theorem). If p is a nonzero element of a Boolean algebra
A, then there exists a homomorphism [ : A — 2 such that f(p) = 1.

Proof. Let I be the principal ideal generated by —p, as defined in Equation 2.14.
Then by the Maximal Ideal Theorem (Lemma 2.13), there is some maximal ideal
M containing —p. By Theorem 2.12, p ¢ M. By Lemma 2.16, there exists some
homomorphism f : A — 2 whose kernel is M. Since p is not in this kernel,

flp)=1 O

We can now present the second example of a Stone space:

Proposition 3.4. Let A be a Boolean algebra, and consider the set S(A) C 24 of
homomorphisms from A to 2. Then S(A) is a Stone space.

Proof. Fix a € A. For all z € 24, {z,} is open in 2, since 2 has the discrete
topology, and sets of the form {z € 2* : x, = 1} and {« € 2* : x, = 0} are open in
24 by definition. Hence the value of z, depends continuously on z.

Now, if f: X — Y and g : X — Y are continuous functions into a Hausdorff
space Y, then the set {z : f(x) = g(x)} is closed. (To prove this, consider the map
(f,g9): X =Y xY and the diagonal set A = {(y,y) : y € Y}. Then A€ is open iff
Y is Hausdorfl, so A is closed iff Y is Hausdorff.)

Therefore, for p € A, the set {z : z(-p) = —x(p)} is closed in 2. Hence the
intersection of all complement-preserving functions in 24 form a closed subset of
24,

Similarly the sets of all functions in 2“4 that preserve meets and joins are closed
subsets of 24,

Intersect these three sets to get the set of functions that preserve meets, joins, and
complements, that is, the set H of homomorphisms p : A — 2. The intersection of
closed subsets is closed, so H is closed and hence compact. Because 24 is Hausdorff
and totally disconnected, so is H, and we are done. [l

We now present a few definitions.
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Definition 3.5. Given a Boolean algebra A, we call S(A) the Stone space associated
with A.

Definition 3.6. If X is a Stone space, then the dual algebra of X is the class of
clopen sets in X.

Definition 3.7. A field of sets is a Boolean algebra of sets. More formally, take
an arbitrary nonempty set X and consider its power set P(X). A field of sets
is a subset F' C P(X) that is closed under finite set unions, interesections, and
complementation. We will usually abbreviate the term to “field,” but beware: the
reader should not expect to find any connection to the fields of field theory.

A field F C P(X) is separating if, given any distinct x,y € X, there exist disjoint
sets S,T € F' such that x € Sand y € T

Lemma 3.8. If X is a Stone space and F is a separating field of clopen subsets of
X, then F is the dual algebra of X ; that is, it is the field of all clopen subsets of
X.

Proof. We first show that every open set in X can be written as a union of finitely
many sets of F'. Since F' separates points, it also separates points and closed sets.
To prove this, first suppose C is a closed set and x ¢ C' is a point of X. Since X
is Hausdorff, for each point y € C we can find a set in F' that contains y but not
x. These sets form a cover of C'; use compactness to get a finite subcover. The
union of sets in this subcover is in F since fields are closed under finite intersections.
Furthermore, the union does not contain x. Hence, F' separates points from closed
sets.

Now, let D be a clopen subset of X. Then its complement D€ is closed, so from
the above argument we can separate each point in D from D€ by sets in F. Take
the union of these open sets to get a cover of D. By compactness, there is a finite
subcover. Since the cover is disjoint from D€, the union of sets in the subcover is
D itself. Hence D is the union of finitely many sets of F'. Since fields are closed
under finite unions, D € F. (I

Finally, we can state and prove the Stone Representation Theorem for Boolean
Algebras.

Theorem 3.9 (Stone Representation Theorem for Boolean Algebras). Every Boolean
algebra is isomorphic to the dual algebra of its associated Stone space.

Proof. Let A be a Boolean algebra, and let B be the dual algebra of its Stone
space. We need to find an isomorphism between A and B. Our culprit shall be
the function f, defined by f(p) = {z € S(A) : z(p) = 1}. To convict f of being
an isomorphism, we must show that is a homomorphism, that it is one-to-one, and
that it is onto. Straightfoward calculation proves that f is indeed a homomorphism.
First, we verify complements.
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f(=a) = {z : (-a) = 1} (by definition of f)
= {z: —x(a) = 1} (since x is a homomorphism)

={z:2(a) =0}

={z:2(a) # 1}
={z:z(a) =1}°¢
= [f(a)]".

Next, joins.

Finally, to show that f(a A b) = f(a) N f(b), follow the same steps as for joins,
but flip every V to A, U to N, and 1 to 0.

Next we must show f is one-to-one. If f(a) = @, (that is, if there are no
homomorphisms = such that xz(a) = 1), then by Lemma 3.3, a must be zero.
Hence, f is injective. Proof: let a — b = a A =b. Then f(a) — f(b) = f(a) N f(b)°.
If f(a) = f(b), then

@ = fla) = f(b) = f(a—b), so
a—b=0,so
a = b by uniqueness of complements.

Finally, we show that f is onto. Clearly the range of any Boolean homomorphism,
and in particular of f, is itself a Boolean algebra. Hence the clopen sets of the form
{z : z(p) = 1} counstitute a field, say H. We can verify that H is a separating
field: if g and h are distinct homomorphisms in S(A), then there must exist some
element ¢ € A such that g(q) # h(q). Hence there is some set in H that contains
g but not h, so the field is separating. By Lemma 3.8, H is the dual algebra of
S(A), which we already know as B. Hence, f maps A onto B, and is therefore an
isomorphism. ([
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