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Abstract. In this exposition, we will present the definition of martingales
using measure theory and an application of it to solve the ABRACADABRA

problem, which involves computing the expected time of the first appearance

of a pattern in a random sequence of letters.
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1. Introduction

I will present the theory of martingales based on measure theory. Martingales
are very useful tools that can be applied to a wide range of interesting mathematical
problems. To put it simply, martingales are based on the notion of a fair game,
where your expected winnings after a certain number of turns or bets is the same
as your expected winnings on the first bet.

The rest of the paper will be structured as follows. Section 2 will be an in-
troduction to measure theory. In section 3, we review concepts from probability
theory such as random variables and expectation that are used frequently in martin-
gale theory. Section 4 will focus on developing martingales and the crucial Doob’s
Optional-Stopping Theorem. I will conclude in section 5 with an application of
martingales by solving exercise 10.6 in Probability with Martingales. This problem
involves finding the expected time it takes for a monkey to type the letters ABRA-
CADABRA correctly, in that order. I have followed Probability with Martingales
by David Williams [1] closely and all the theorems and definitions presented here
can be found in his book.

2. Measure Theory

In order to present martingales rigorously, we must first introduce basic concepts
from measure theory such as a probability triple (Ω, F , P). Ω is known as the
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sample space, which is simply a set containing all of the possible outcomes of an
experiment, trial, or some other random process. F is known as a σ-algebra on Ω.

Definition 2.1. Let S be a set. Then, a collection Σ0 of subsets of S is called an
algebra on S (or algebra of subsets of S) if

(1) S ∈ Σ0

(2) F ∈ Σ0 ⇒ F c := S \ F ∈ Σ0

(3) F , G ∈ Σ0 ⇒ F ∪ G ∈ Σ0

Note that ∅ = Sc ∈ Σ0 and

F,G ∈ Σ0 ⇒ F ∩G = (F c ∪Gc)c ∈ Σ0.

Thus, an algebra on S is a family of subsets of S stable under finitely many set
operations.

Definition 2.2. A collection Σ of subsets of S is called a σ-algebra on S (or σ-
algebra of subsets of S) if Σ is an algebra on S such that whenever Fn ∈ Σ (n ∈
N), then ⋃

n

Fn ∈ Σ.

In addition, note that ⋂
n

Fn =

(⋃
n

F c
n

)c

∈ Σ.

Thus, a σ-algebra on S is a family of subsets of S stable under any countable
collection of set operations.

You can think of a σ-algebra as containing all of the information that we know
about a particular sample space. This concept will be important in our discussion of
martingales below. It is the collection of sets over which a measure is defined. This
is because not all sets are measurable and the σ-algebra contains only sets which
are measurable. Another way to think about σ-algebras is to imagine a σ-algebra
F corresponding to collections of yes or no questions that one can ask about the
outcome of an experiment. Each set in F can be thought of as those outcomes in
Ω for which there is an answer to the yes or no question. For example, let Ω be
all possible times it will rain today. Then, one set in F could be all the outcomes
where it rains after 3:30pm today. Of course, we could also ask the complement,
“Did it rain before or at 3:30pm today?” The structure imposed on σ-algebras now
becomes more transparent. Note that we can also string together multiple yes or no
questions by putting “or’s” between them, which is the equivalent of taking unions,
to get another yes or no question.

We will now introduce a special type of σ-algebra called a Borel σ-algebra.
But first, we need to understand what it means for a collection of sets to generate
a σ-algebra.

Let C be a class of subsets of S. Then σ(C), the σ-algebra generated by
C, is the smallest σ-algebra Σ on S such that C ⊆ Σ. In other words, it is the
intersection of all σ-algebras on S which have C as a subclass.

The Borel σ-algebra, denoted by B, is the σ-algebra generated by the family
of open subsets in R. Because the complement of any open set is closed, a Borel
set is thus any set that can be written with any countable combination of the set
operations union and intersection of closed and open sets.
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Let us define a measure. First we will need the definitions of countably additive
measures and measure spaces.

Definition 2.3. Let S be a set and let Σ0 be an algebra on S. Then a non-negative
set function µ0 : Σ0 → [0,∞] is called countably additive if µ0(∅) = 0 and
whenever (Fn : n ∈ N) is a sequence of disjoint sets in Σ0 with union F =

⋃
Fn ∈ Σ0

(note that this is an assumption since Σ0 need not be a σ-algebra), then

µ0(F ) =
∑
n

µ0(Fn).

Definition 2.4. A pair (S, Σ), where S is a set and Σ is a σ-algebra on S, is called
a measurable space. An element of Σ is called a Σ-measurable subset of S.

Definition 2.5. Let (S, Σ) be a measurable space, so that Σ is a σ-algebra on S.
A map

µ : Σ→ [0,∞]

is called a measure on (S, Σ) if µ is countably additive. The triple (S, Σ, µ) is
then called a measure space.

Intuitively, the measure simply assigns a real number to subsets of S. This can
be thought of as the “size” or “volume” of a set. While the measure can be chosen
arbitrarily, it must be countably additive. This ensures that when we combine two
sets, the combined measure is larger than either of the individual measures.

We now define some key vocabulary of the probability triple (Ω, F , P).

Definition 2.6. Ω is a set called the sample space.

Definition 2.7. A point ω of Ω is called a sample point.

Definition 2.8. The σ-algebra F on Ω is called the family of events, so that an
event is an element of F , that is, an F-measurable subset of Ω.

3. Random Variables, Independence, and Expectation

Random variables are a key concept that we will work with extensively. Often
when solving problems in probability, one will need to define one or more random
variables. In order to present the definition of a random variable, we first must
study Σ-measurable functions.

Definition 3.1. Let (S, Σ) be a measurable space, so that Σ is a σ-algebra on S.
Suppose that h : S → R. For A ⊆ R, define

h−1(A) := {s ∈ S : h(s) ∈ A}.
Then h is called Σ-measurable if h−1 : B → Σ, that is, h−1(A) ∈ Σ, ∀A ∈ B.

We write mΣ for the class of Σ-measurable functions on S, and (mΣ)+ for the
class of non-negative elements in mΣ. Now we can define what a random variable
is.

Definition 3.2. Let (Ω, F) be our (sample space, family of events). A random
variable is an element of mF . Thus,

X : Ω→ R, X−1 : B → F ,
where X is the random variable.
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As for the definition of independence, we will use the more familiar notion that
does not involve σ-algebras. This definition will be sufficient for our purposes.

Definition 3.3. Events E1, E2, ... are independent if and only if whenever n ∈ N
and i1,...,in are distinct, then

P(Ei1 ∩ ... ∩ Ein) =

n∏
k=1

P(Eik).

Lastly, we need to define expectation.

Definition 3.4. For a random variable X ∈ L1 = L1(Ω,F ,P), we define the
expectation E(X) of X by

E(X) :=

∫
Ω

X dP =

∫
Ω

X(ω)P(dω).

And here we will present the definition of conditional expectation.

Definition 3.5. Let (Ω,F ,P) be a triple, and X a random variable with E(|X|) <
∞. Let G be a sub-σ-algebra of F . Then there exists a random variable Y such
that

(1) Y is G measurable,
(2) E(|Y |) <∞
(3) for every set G in G, we have∫

G

Y dP =

∫
G

XdP,∀G ∈ G

A random variable Y with properties (1) - (3) is called a version of the con-
ditional expectation E(X|G) of X given G, and we write Y = E(X|G), almost
surely.

[1, Theorem 9.2]
We will now present two theorems that will be used later on in the proof of

the Doob’s Optional-Stopping Theorem. The first one is called the Dominated-
Convergence Theorem.

Theorem 3.6. If |Xn(ω)| ≤ Y (ω) for all n, ω and Xn → X pointwise almost
surely, where E(Y ) < ∞, then

E(|Xn −X|)→ 0,

so that
E(Xn)→ E(X).

[1, Theorem 5.9]
The second theorem is called the Bounded Convergence Theorem.

Theorem 3.7. [1, Theorem 6.2] If for some finite constant K, |Xn(ω)| ≤ K, for
all n, ω and Xn → X pointwise almost surely, then

E(|Xn −X|)→ 0.

[1, Theorem 6.2]
Note that the Bounded Convergence Theorem is a direct consequence of the

Dominated-Convergence Theorem and can be obtained by taking Y (ω) = K, for
all ω.
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4. Martingales

From now on, (Ω, F , P) will be the probability triple that we will be referring
to. In order to define what a martingale is, we first need to define filtrations and
adapted processes.

Definition 4.1. Instead of a probability triple, we now take a filtered space

(Ω,F , {Fn},P).

{Fn : n ≥ 0} is called a filtration. A filtration is an increasing family of sub-σ-
algebras of F such that

F0 ⊆ F1 ⊆ ... ⊆ F ,

where F∞ is defined as

F∞ := σ(
⋃
n

Fn) ⊆ F .

Intuitively, each filtration can be thought of as the information available about
the events in a sample space after time n (keep in mind that σ-algebras consist of
all the information that we know about events in a sample space).

Definition 4.2. A process X = (Xn : n ≥ 0) is called adapted to the filtration
{Fn} if for each n, Xn is Fn-measurable.

In other words, the value Xn(ω) is known to us at time n. Each of the Xn(ω)
depends only on the information we have previously up to and including time n,
but does not depend on information in the future, after time n.

Now we present the definition of a martingale.

Definition 4.3. A process X is called a martingale if

(1) X is adapted,
(2) E(|Xn|) < ∞, ∀ n,
(3) E[Xn|Fn−1] = Xn−1, almost surely (n ≥ 1).

A supermartingale is defined similarly, except that the last condition is replaced
by

E[Xn|Fn−1] ≤ Xn−1, almost surely (n ≥ 1),

and a submartingale is defined with the last condition replaced by

E[Xn|Fn−1] ≥ Xn−1, almost surely (n ≥ 1).

One important thing to notice is that a supermartingale decreases on average, as
the expected value of Xn given all previous information is lower than Xn−1, and a
submartingale increases on average, as the expected value of Xn given all previous
information is higher than Xn−1. In addition, note that X is a supermartingale if
and only if −X is a submartingale, and that X is a martingale if and only if it is
both a supermartingale and a submartingale.

We now describe how martingales and supermartingales can be thought of as
fair and unfair games, respectively. Take Xn − Xn−1 and think of it as your net
winnings per unit stake in game n, where n ≥ 1. There is a series of games played
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at times n = 1,2,... and there is no game at time 0. If X is a martingale, we will
see that

E[Xn|Fn−1] = Xn−1 =⇒ E[Xn|Fn−1]−Xn−1 = 0

=⇒ E[Xn|Fn−1]− E[Xn−1|Fn−1] = 0

=⇒ E[Xn −Xn−1|Fn−1] = 0

The second implication follows because E[Xn−1|Fn−1] = Xn−1, since X is adapted
to Fn−1 and therefore knowing Fn−1 will tell you exactly what Xn−1 is. The last
implication follows because the sum (difference) of expectations is the expectation
of the sums (differences). This is the definition of a fair game, when your expected
net winnings per game is zero for all games. In the supermartingale case, where X is
a supermartingale instead of a martingale, we can obtain through similar methods

E[Xn −Xn−1|Fn−1] ≤ 0.

In this case, the game is unfair because your expected net winnings are negative
after each game. We ignore the submartingale case because we typically are not
concerned with games where you expect to win money after every game.

Lastly, note that this gives us a new way to define a martingale or supermartin-
gale, as all of the above implications can be reversed.

We will now define a previsible process, which can be thought of as a mathe-
matical way of expressing a particular gambling strategy.

Definition 4.4. We call a process C = (Cn : n ∈ N) previsible if Cn is Fn−1

measurable for n ≥ 1.

Each Cn represents your particular stake on game n. You can change Cn based
upon the history of your previous bets up to and including time n− 1. Recall that
Xn −Xn−1 is your net winnings per unit stake in game n. It thereby follows that
Cn(Xn −Xn−1) is your winnings on game n and your total winnings up to time n
are

Yn =
∑

1≤k≤n

Ck(Xk −Xk−1) =: (C •X)n.

Since you can’t win anything if no games have been played, (C • X)0 = 0. In
addition, by taking the difference of two consecutive total winnings, we can recover
the winnings on game n.

Yn − Yn−1 = Cn(Xn −Xn−1)

Now we will define what a stopping time is. This will become important later
on in our definition of Doob’s Optional-Stopping Theorem, which will be the key
to solving the ABRACADABRA problem.

Definition 4.5. A map T : Ω → {0,1,2,...;∞} is called a stopping time if,

{T ≤ n} = {ω : T (ω) ≤ n} ∈ Fn,∀n ≤ ∞,
or equivalently,

{T = n} = {ω : T (ω) = n} ∈ Fn,∀n ≤ ∞.

This means that for a stopping time T , it is possible to decide whether {T ≤ n}
has occurred based on the filtration Fn, or in other words the event {T ≤ n} is
Fn-measurable. For example, a gambler who will leave when he runs out of money
or has played 100 games or rounds is a stopping time, whereas a gambler who plays
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until he has won more money then he ever will is not a stopping time because this
requires knowledge about both the past and the future, not just the past.

We now present a theorem that will be used in the proof of the Doob’s Optional-
Stopping Theorem. First, let me introduce some notation. For a, b ∈ R,

a ∧ b := min(a, b).

Theorem 4.6. If X is a supermartingale and T is a stopping time, then the
stopped process XT = (XT∧n : n ∈ Z+) is a supermartingale, so that in partic-
ular,

E(XT∧n) ≤ E(X0), for all n.

Similarly, if X is a martingale and T is a stopping time, then XT is a martingale,
so that in particular,

E(XT∧n) = E(X0), for all n.

Note that this theorem does not say anything about when

(4.7) E(XT ) = E(X0)

for a martingale X. One often desires this to hold and this does indeed hold in
general, but not in all cases. Doob’s Optional-Stopping Theorem will give us some
sufficient conditions when (4.7) holds.

Finally, here is the Doob’s Optional-Stopping Theorem.

Theorem 4.8.
(a) Let T be a stopping time. Let X be a supermartingale. Then XT is integrable
and

E(XT ) ≤ E(X0)

in each of the following situations:

(1) T is bounded (for some N in N, T (ω) ≤ N, ∀ω);
(2) X is bounded (for some K in R+, |Xn(ω)| ≤ K for every n and every ω)

and T is almost surely finite;
(3) E(T ) <∞, and, for some K in R+, |Xn(ω)−Xn−1(ω)| ≤ K ∀(n, ω).

(b) If any of the conditions 1-3 holds and X is a martingale, then

E(XT ) = E(X0).

Proof. First we will prove (a). We know that XT∧n is integrable and

(4.9) E(XT∧n −X0) ≤ 0

because of Theorem 4.6. To prove (1), we can take n = N . For (2), let n → ∞ in
(4.9) using the Bounded Convergence Theorem. For (3), we have

|XT∧n −X0| = |
T∧n∑
k=1

(Xk −Xk−1)| ≤ KT

and E(KT ) <∞, so that the Dominated-Convergence Theorem applies and justi-
fies letting n→∞ in (4.9) to obtain the answer that we want.

To prove (b), simply apply (a) to X and to (−X). You will get two inequalities
in opposite directions which will imply equality. �

Here is an important corollary of Doob’s Optional-Stopping Theorem.
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Corollary 4.10. Suppose that M is a martingale, the increments Mn − Mn−1

of which are bounded by some constant K1. Suppose that C is a previsible process
bounded by some constant K2, and that T is a stopping time such that E(T ) <∞.
Then,

E(C •M)T = 0.

Roughly speaking, this corollary shows that you cannot beat a fair game no
matter what your gambling strategy - provided that you cannot look into the future.

5. ABRACADABRA Problem

Now I will finally present the problem that we will solve using the Martingale
theory we have presented above. At first glance, this problem will seem difficult to
solve, but will be much easier with the use of martingales.

At each of times 1,2,3,... a monkey types a capital letter at random, the sequence
of letters typed forming an independent and identically distributed sequence of ran-
dom variables each chosen uniformly from amongst the 26 possible capital letters.

Just before each time n = 1,2,..., a new gambler arrives on the scene. He bets
$1 that the nth letter will be A. If he loses, he leaves. If he wins, he receives $26
all of which he bets on the event that the (n+ 1)th letter will be B. If he loses, he
leaves. If he wins, he bets his whole fortune of $ 262 that the (n + 2)th letter will
be R and so on through the ABRACADABRA sequence. Let T be the first time
by which the monkey has produced the consecutive sequence ABRACADABRA.
Show that

E(T ) = 2611 + 264 + 26

and prove this.
The intuition behind the solution is to note that at each time period, a new

gambler comes and bets $1 before he wins or loses. Thus, after T periods, there
will have been a total of T dollars bet. By then taking the expected value of the
total winnings of all the gamblers, we are left with this T term, which is what we
wanted to solve for. Below is a more formal solution.

Let us first define some variables. Define An to be the nth letter of the sequence.
Let Cj

n be the bet of the jth gambler betting at time n.

Cj
n =


0 if n < j

1 if n = j

26k if Aj ,...,Aj+k−1 were correct and n = j + k

0 otherwise

We can easily see that each Cj
n is a previsible process because it is determined

only by using information from and up to the (n− 1)th bet. Now let us define the
martingale M j

n to be the payoff after n bets for the jth gambler. Note that this
definition of M j

n already has Cj
n built into it because we have defined M j

n to be the
total payoff and not the payoff per unit stake. It will be easier to solve the problem
by defining M j

n in this manner. In addition, note that each gambler leaves if he
loses any one of his bets. Thus, if the (n + 1)th wager is to be made, then M j

n =

26n and M j
n+1 = 26n+1 with probability 1/26 and 0 with probability 25/26. This is

because the monkey types each letter randomly and independently of the previous
letters, with each letter having an equal probability of being typed at any given
moment. To show that M j

n is a martingale, we must show that
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(1) M j
n is adapted,

(2) E(|M j
n|) < ∞, ∀ n,

(3) E[M j
n|Fn−1] = M j

n−1, n ≥ 1

To show (1), we note that M j
n is determined by the event An and whether the

letter that is typed at time n is correct. For (2), we note that M j
n is always positive

and that the max value of M j
n is 26n, that is when the gambler wins all previous

n times. Since 26n < ∞ and E[|M j
n|] = E[M j

n] < 26n, (2) is satisfied. There are
two cases for (3). If the gambler loses anywhere before time n, then given that

information E[M j
n|Fn−1] = 0 = M j

n−1. If the gambler wins the first (n− 1) times,
then

E[M j
n|Fn−1] = 26n · 1

26
+ 0 · 25

26
= 26n−1 = M j

n−1.

Now that we have shown that M j
n is a martingale, we can apply Doob’s Optional-

Stopping Theorem. As you know, there are three conditions in the theorem, one
of which must be satisfied. I will now show that condition (3) is satisfied, which is
reproduced below for convenience.

(5.1) E(T ) <∞, and, for some K in R+, |Xn(ω)−Xn−1(ω)| ≤ K ∀(n, ω).

To show that E(T ) <∞, we will need the following Lemma.

Lemma 5.2. Suppose that T is a stopping time such that for some N in N and
some ε > 0, we have, for every n in N:

P(T ≤ n+N |Fn) > ε, almost surely.

Then E(T ) < ∞.

For the ABRACADABRA problem, let N = 11 and ε =
(

1
26

)N
. Now, no matter

what n is, there is a
(

1
26

)11
chance that ABRACADABRA will be typed in the

next 11 letters. In other words, no matter where in the sequence we are, there is a
small chance that the next 11 letters will be correct Thus, the condition holds with

N = 11 and ε =
(

1
26

)11
and E(T ) < ∞.

Now we need to show the second part of condition (5.1). First, let us define

Xn =

∞∑
j=1

M j
n =

n∑
j=1

M j
n.

The second equality holds because after the stopping time, the n + 1 gamblers
haven’t even started playing yet and thus all terms after n are zero.

Think of Xn as representing the cumulative winnings of every gambler up to and
including time n. Since we have already shown that each M j is a martingale and
Xn is simply a sum and the expectation of a sum is the sum of expectations, this
implies that Xn is a martingale as well.

Now, note that
|Xn −Xn−1| ≤ 2611 + 264 + 26.

This is because |Xn − Xn−1| denotes the maximum payoff at time n. To find
the maximum, just simply assume that the monkey has typed everything correctly
and find the maximum amount of money that can be won after one unit of time.
Since each gambler wins increase the more correct bets they get in a row, it is easy
to see that the first gambler has won $2611 at time 11 if he started winning at the
first A. There can be no more winning gamblers until the 4th A because if the 1st
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gambler wins $2611 then the 2nd, 3rd, ... , 7th gamblers all must lose. The gambler
who started winning at the 4th A can win a maximum of $264 because there are
four more letters that the monkey can type correctly. Lastly, the 11th gambler can
also win $26 because the last letter is an A.

Now that we have met the requirements for Doob’s Optional-Stopping Theorem,
we can apply its conclusion:

E(XT ) = E(X0)

In this case, E(X0) = 0 because nothing happens at time 0. E(XT ) is simply
the cumulative winnings of all the gamblers after the monkey types out ABRA-
CADABRA correctly. As described in the previous paragraph, the winnings will
be $2611 +264 +26. There is an interesting case at the 3rd A in ABRACADABRA.
While the gambler who bets that the sixth letter will be an A will win $26, he
will lose his money on the next bet because the next letter is a D and not a B. In
calculating the total winnings of all the gamblers, we forgot to take into account
that each time a new gambler arrives, he bets $1 regardless of whether he wins or
loses. Thus, after time T , there will have been $T dollars lost because of the initial
$1 bet. Thus,

E(XT ) = E(2611 + 264 + 26− T )

= 2611 + 264 + 26− E(T ) = 0

⇔ E(T ) = 2611 + 264 + 26.

Note that the reason we were able to solve this problem was because E(T ) showed
up in the calculation for E(XT ). This is because of the unique way this problem
was defined, where each gambler bet $1 at the beginning. Note that this method
works for computing E(T ) of any pattern in a random sequence of symbols, such
as flipping a coin and looking for HHTT. This trick is a useful one to remember,
as it makes calculating the expectation of some things much easier.
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