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Introduction. In this paper, we build up to one of the remarkable results in
representation theory called Schur-Weyl Duality. It connects the irreducible rep-
resentations of the symmetric group to irreducible algebraic representations of the
general linear group of a complex vector space. We do so in three sections:

(1) In Section 1, we develop some of the general theory of representations of
finite groups. In particular, we have a subsection on character theory. We
will see that the simple notion of a character has tremendous consequences
that would be very difficult to show otherwise. Also, we introduce the group
algebra which will be vital in Section 2.

(2) In Section 2, we narrow our focus down to irreducible representations of
the symmetric group. We will show that the irreducible representations of
S, up to isomorphism are in bijection with partitions of n via a construc-
tion through certain elements of the group algebra. Finally, we mention
the beautiful Robinson-Schensted correspondence. The correspondence up-
grades a formula involving the dimension of the irreducible representations
of S, to a bijection which has many combinatorial applications.

(3) In Section 3, we prove the classical case of Schur-Weyl Duality by using the
Double Centralizer Theorem. We describe exactly which representations
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of the general linear group GL(V) come from this relationship. And we
close the section by showcasing other forms of Schur-Weyl Duality for other
matrix groups and Lie algebras.

1. REPRESENTATION THEORY OF FINITE GROUPS

1.1. Preliminaries. A representation of a finite group G on a finite-dimensional
complex vector space V is a group homomorphism p : G — GL(V). We will often
abuse notation by referring to V' as the representation of G and write gv for p(g)(v)
whenever the map p is understood from context. We say that a subspace W of a
representation V' is a subrepresentation if W is invariant under the the action of
G, that is, gw € W for all ¢ € G and w € W. Notice that a representation V'
always contains at least two subrepresentations, namely, 0 and V itself. We say V'
is irreducible if it contains no proper nonzero invariant subspaces, i.e., 0 and V are
the only subrepresentations of V. However, note that we do not consider V=0 to
be an irreducible representation. We will see that this is analogous to the reason 1
is not a prime number.

Examples 1.1. Let G be a finite group. Here are some examples of representations.

(1) The trivial representation C where gv = v for all g € G and v € U. Notice
that the trivial representation is always (trivially) irreducible.

(2) Let G act on a finite set X. The permutation representation is the vector
space with basis X where p(g)(z) = gz for all g € G and © € X. When G
acts on itself by multiplication, we get the regular representation.

We can always build up new vector spaces from old using operations such as the
tensor product. Similarly, given representations V' and W of G, we can form the
representations V& W, V@ W, Sym™ V, Alt" V, V*, and Hom(V, W) where each
is given their ordinary underlying vector space structure. For the first four, just let
G act factorwise, e.g., g(v®@w) = gv@gw in V@ W. For the dual V* = Hom(V, C)
of V, we require p*(g) be the transpose of p(¢g~!). This forces p to respect the
natural pairing of V* and V in the following sense: {p*(g)(}\), p(g)(v)) = (A, v) for
all g € G, A € V*, and v € V. Having this, the action on Hom(V, W) is given by
the identification Hom(V, W) = V* @ W.

One of the main goals in representation theory is to classify all representations
of a given group G. For a general (possibly infinite) group, this is hard. And if we
work over a field other than C, this can complicate matters even more. However,
we will see that this classification is possible for representations over C of a finite
group. But instead of directly classifying all representations, we can narrow our
focus down to indecomposable representations, those which cannot be written as a
direct sum of others. So we then can build up all other representations from these.
At this point, we have introduced two notions of atomicity: irreducible and inde-
composable. Clearly, if a representation is irreducible, then it is indecomposable.
Luckily, in the case of representations over C of finite groups, the converse holds.

Maschke’s Theorem 1.2. If W is a subrepresentation of V of a finite group G,
then there exists a complementary subrepresentation W' of V so that V. =W aW’.
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Proof. Pick W' to be any subspace so that V=W @ W"” and let 7’ : V. — W be
the projection along W' onto W. Now define the projection 7 : V — W by

1 -
() = g7 2 767
geG
Notice that hm(v) = 7(hv) for all h € G. In particular, W’ := Ker is a comple-
mentary G-invariant subspace because we have w(hv) = hr(w) = 0 for all h € G
and v € W’. In which case, V=W & W’. O

Corollary 1.3. Ewvery representation over C of a finite group can be decomposed
as a direct sum of irreducible representations.

FEzxzamples 1.4. Corollary 1.3 holds in further generality. If we work over a different
scalar field or characteristic zero but still require our group to be finite, then the
previous proof of Maschke’s Theorem 1.2 still works. For scalar fields with posi-
tive characteristic, we cannot have the characteristic of the scalar field divide the
order of the group (otherwise, the projection cannot be defined). To see why this
generalization of Corollary 1.3 fails if we do not assume this:

(1) Let V = F3 and G = Z/27 where 1 € Z/2Z sends (z,y) € F3 to (y, ).
Notice the span of (1,1) € F3 is invariant under the action Z/27Z. However,
the remaining complementary subspaces—the span of (1,0) and the span
of (0,1)—are not invariant. So F% is indecomposable but not irreducible
with this action of Z/2Z.

To see why the generalization of Corollary 1.3 fails if the group is infinite:
(2) Let V =C? and G = C where z € C acts on (z,y) € C? by

wo=(, 3 ()-(17)

Then the only 1-dimensional invariant subspace is the span of (1,0). Again,
we have C? is indecomposable but not irreducible under this action of C.

However, we can adjust the proof of Maschke’s Theorem 1.2 by swapping the sum
with integration with respect to a Haar measure to show a version of Corollary 1.3
for compact groups, e.g. S'. More precisely, any finite-dimensional continuous rep-
resentation of a compact group can be decomposed into irreducible representations.

So the previous corollary tells us that there always exists a decomposition of a
representation into a sum of irreducible representations. So the natural question is
now: in what sense (if any) is this decomposition unique? But we have yet to even
describe a way to distinguish representations.

A G-map f of representations V and W of G is a linear map f : V. — W that
commutes with the action of G, that is, gf(v) = f(gv) for all g € G and v € V.
Notice that Ker f and Im f are always subrepresentations of V' and W respectively.
We say a G-map f : V — W is an isomorphism of representations if it is an
isomorphism of vector spaces. In this case, we say that V and W are isomorphic
and denoted this by V ~ W. Let Homg(V, W) denote the set of all G-maps from
V to W and define Endg(V) = Homg(V, V). The following elementary lemma is
perhaps the most useful fact about G-maps.

Schur’s Lemma 1.5. Let f: V — W be a nonzero G-map.
(1) If V is irreducible, then f is injective.
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(2) If W is irreducible, then f is surjective.
(8) If V=W is irreducible, then f =tI for some nonzerot € C.

Proof. The first two parts boil down to considering the subrepresentations Ker f
and Im f. The last part comes from taking any f € Endg(V) and applying the
first parts to show f —tI € Endg (V) is the zero map for any eigenvalue ¢ of f. O

Corollary 1.6. For any representation V' of a finite group, we can write
V ~ Vléenl DB Vk@nk

where V; are distinct irreducible representations. The number of factors k and the
V; that occur (up to isomorphism) along with their multiplicities n; are all unique.

Proof. Schur’s Lemma 1.5 tells us that a map in Homg(V, W) with the decompo-
sitions V = @ V,*" and W = @W;ij must take the factor V%™ into a factor

Wj@mj where V; ~ W;. Applying this to the identity map on V' with two different
decompositions will show the stated uniqueness. [

FEzample 1.7. Consider an abelian group G and an irreducible representation V' of
G. For h € G, let f, : V — V so that fr(v) = hv. This is a G-map because
gfn(v) = ghv = hgv = f(gv) for all g € G. By Schur’s Lemma 1.5, for each h € G,
there exists a t, € C so that f;, = t,I. Thus, the span of any nonzero vector v
is a nonzero invariant subspace of V and, hence, is V. Therefore, all irreducible
representations of an abelian group are 1-dimensional.

1.2. Group Algebra. We will now introduce a powerful lens though which to view
representations. The group algebra C[G] of a group G is the associative C-algebra
with basis G and where multiplication is inherited from group multiplication, i.e.,

Z app Z beq | = Z apbgpq = Z Cq9

pEG qeG p,qeG geG

where ¢, is the sum of all a,b, where g = pq.

We can generalize the notation of a representation onto other algebraic struc-
tures. A representation of an associative C-algebra A on a complex vector space V'
is an algebra homomorphism p : A — End(V'). In particular, V is an A-module. We
want to stress that throughout this paper, we will only be working with associative
algebras over the scalar field C.

Notice that given a representation of a finite group G, we can extend it linearly
to get a representation of the group algebra C[G]. And conversely, given a repre-
sentation of C[G], we can restrict it to G to get back a representation of G. So it
may seem that introducing the group algebra has not given us anything new. But
it gives us a new language and tools which make constructions and definitions more
transparent. For instance, here is a short excerpt of the dictionary between a group
and its corresponding group algebra.

G-representation C|G]-module
subrepresentation submodule
irreducible representation simple module
G-map C[G]-homomorphism

We will not yet prove the following proposition on the structure of C[G]. It actu-
ally follows from the main theorem that we will show in the in the next subsection.
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Proposition 1.8. As algebras,
Ci6] = @ End (V)

where the sum is over all distinct irreducible representations V; of G.

But Proposition 1.8 can be proved without the mentioned theorem, using more
ring theoretic tools as seen in the appendix. In fact, Proposition 1.8 can be used
to prove the mentioned main theorem.

Although the image of ¢ € G under a representation is a map in GL(V) C
End(V), it is not necessarily in Endg (V). Clearly, the image of g in End(V) is a
G-map if and only if g is in the center Z(G). Similarly, it can be seen that the image
of f € C[G] in End(V) is a G-map if and only if f is in the center Z(C[G]). We
will now show an alternate characterization of elements in Z(C[G]), which involves
functions « : G — C so that a(g) = a(hgh™!) for all g,h € G. We call such
functions class functions, and they will appear again later on.

Proposition 1.9. Let V' be a representation of G and o : G — C a function. Let
f=> alg)yg € Clal.
geG
The following are equivalent:
(1) f belongs to Z(C[G]).
(2) the image of f in End(V) is in Endg (V).
(8) « is a class function.
(4) « is a sum of indicator functions on conjugacy classes of G.
In particular, here is an important such function.

Lemma 1.10. Let VG = {v € V : gv = v for all g € G}. Then the image of
"= |1G|ZGQ € 2(C(G))
in End(V) is a G-map and a projection onto V.
Notice that V& is the sum of all copies of the trivial representation found in V.
1.3. Character Theory. The character of a representation V of G, is the map
xv:G—C where xv(g)=tr(glv)

is the trace of g on V. Although this is a simple notion, we will soon see it is
absolutely vital to the study of representations of finite groups.
Since the trace of a linear transformation is the sum of eigenvalues, the identities

(1.11) Xvew = Xv + Xw, XVew = XVXW, Xvs =Xv

can easily be verified. In addition, by the properties of trace, we have that for any
character y of a representation, x(g) = x(hgh™?!) for all g,h € G, that is, x is a
class function on G. Let F(G) denote the set of all class functions G — C. Then
we can endow F(G) with the inner product

(1.12) (o, B) = |—Cﬂ| S a@)8(9)

geG
for a, € F(G). We have the following fundamental theorem of character theory.



6 JAMES STEVENS

Theorem 1.13. The set of characters xv for irreducible V of G form an orthonor-
mal basis for F(G) with respect to the inner product in (1.12).

Proof. Let V and W be irreducible representations of G. By the properties (1.11),

(xv,xw) = |G| Z xv(9)xw(9) |G| Z XHom(V, W) = tr(7T|Hom(v,W))
geG geG

where 7 is the projection from Hom(V, W) onto Hom(V,W)% = Homg(V, W) in
Lemma 1.10. Therefore, by Schur’s Lemma 1.5, we have that

. 1, VW
<XV7 XW> = tI‘(7T|Hom(V,W)) = dlmHomG(Vvv W) = { 0, if VLW

So characters of irreducibles are orthonormal and, thus, are linearly independent.

Now we will now show that the linearly independent set of irreducible characters
is in fact maximal and, hence, forms a basis for F(G). Suppose a € F(G) such
that («, xv) = 0 for all irreducible V. It suffices to show oo = 0. Notice that

0= (a,xv) |G‘ > alg)xv(9) |G\ > alg)tr(glv) = tr(flv)
geG geG

where [ = \GI dgeq @ a(g)g € Endg(V) by Proposition 1.9. Since f € Endg(V),
then Schur’s Lemma 1.5 tells us that f = ¢I for some t € C. Therefore, we have
that ¢t = tr(f|y)/dimV = 0 and, thus, o = 0. O

Here are some important consequences of this which fall out almost immediately.
Corollary 1.14. We have that V ~ W if and only if xyv = xw -
Example 1.15. This tells us that all representations V' of §,, are self-dual since
xv+(9) = xv(g) = xv(g™") = xv(9)
for all g € S,, because g and g~! have the same cycle type and, thus, are in the

same conjugacy class. Hence V' =~ V*. This will be a useful fact later on. Note that
for a group G in general, this does not hold.

Corollary 1.16. A representation V is irreducible if and only if (xv,xv) = 1.

Corollary 1.17. If V and W are representations with V being irreducible, then
the multiplicity of V' in the decomposition of W is {xv,xw)-

Corollary 1.18. For the regular representation R of G, we have that
R— @ y@dim Vi
where the sum is over all distinct irreducible representations V; of G.
In particular, we obtain the beautiful formula
(1.19) G| =dimR =) (dimV;)?

Notice since this sum is finite, there must be finitely many irreducible represen-
tations. But in fact, since the indicator functions of conjugacy classes also form a
basis for F(G), we get the following corollary.

Corollary 1.20. The number of distinct irreducible representations of G is equal
to the number of conjugacy classes of G.
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Interestingly, in general, there is no natural bijection between irreducible repre-
sentations and conjugacy classes of a finite group. But we will later see that there
is a somewhat natural bijection in the case of the symmetric group S,.

The orthogonality in Theorem 1.13 is called row orthogonality for reasons we will
see when constructing character tables. Similarly, there is a corresponding column
orthogonality.

Corollary 1.21. For g,h € G, we have

1 —_ | 1/c(g), if g and h are conjugate
1G] ZXV xv.(h) = { 0, otherwise

where the sum is over all distinct irreducible representations V; of G and c(g) is the
size of the conjugacy class of g.

Proof. Since characters are class functions, we can define yy : Conj(G) — C by
evaluating on a representative. Then the row orthogonality says

(1.22) (Xvis Xv;) @l Z |Cilxv, (Cr)xv, (Cr) = b
where the sum is over all conjugacy classes Cy € Conj(G) and 6;; is the Kronecker
delta function. Consider the matrix X = (z;;) where z;; = /|C;|/|G|xv;(C)).
Then (1.22) says X X = I where X is the conjugate transpose of X. Therefore,
we have that X = X1 and, thus, X X = I as well. This says

VICHIC]
where the sum is over all distinct 1rreduc1ble representations V; of G. (I

FEzample 1.23. It would an absolute sin to have a section on character theory and
never mention a character table. So we will compute the character table for the
alternating group Aj.

In general, if we have a representation G/N — GL(V') for some normal subgroup
N, we can lift to a representation on G by the composition G — G/N — GL(V). So
notice that N = ((12)(34), (14)(23)) is a normal subgroup of A4 with A,/N ~ Z/3Z.
Since A4 /N is abelian, then by Example 1.7, A4 /N ~ Z/3Z has three 1-dimensional
irreducible representations, call them U, U’, and U”. We know that one is the
trivial representation. The other two come from naturally sending 1 € Z/3Z to one
of the two primitive 3rd roots of unity. The lifts of these representations must be
irreducible for G as well because they are 1-dimensional. So we have the partial
character table

1 4 4 3
A |1 (123) (132) (12)(34)
U |1 1 1 1
U1l w w? 1
Uil w? w 1

where the top row indicates sizes, and representatives, for the conjugacy classes of
Ay. Now, since there are 4 conjugacy classes of A4, then by Corollary 1.20, we
only need to find one more irreducible representation V' to complete the table. By
(1.19), we know that dim V' = 3 because |44 = 12 = 12 + 1% + 1% + 32. Using this,
we can then compute the rest of the table by using column orthogonality (1.21).
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1 4 4 3
Ag |1 (123) (132) (12)(34)
U |1 1 1 1
U |1 w w? 1
Uu'l1  w? w 1
V|3 0 0 -1

The representation V' comes from the restriction of a representation of S, that
we will later call the standard representation. Also, it turns out that V' can be
realized geometrically as the rotational symmetries of the tetrahedron.

2. IRREDUCIBLE REPRESENTATIONS OF THE SYMMETRIC (GROUP

2.1. Specht Modules. Recall that conjugacy classes of S,, are completely deter-
mined by cycle type, which can be encoded as a partition. A partition A of n is an
integer sequence A = (Ay,...,Ag) sothat A\y > - > Ay >1landn=X + -+ A\g.
Let p(n) denote the number of partitions of n. Since the number of conjugacy
classes of S, is p(n), then by Corollary 1.20, we know that there are also p(n)
many distinct irreducible representations of S,,. But, remarkably, we will see that
not only does each partition A uniquely give rise to a conjugacy class, but A also
gives rise to an irreducible representation of .S,,.

To a partition A = (Aq,..., Ax) of n, we associate a combinatorial object called
the Young diagram of A which is a collection of n cells arranged in left-justified rows
with A; cells on the ith row. Given the Young diagram of A, we number the cells by
the integers 1,...,n to form a tableau. In this case, a picture is more illuminating
than the definition. Here is the tableau for (4,2,2,1) with the canonical labeling.

2[3]4]
6
8

‘@\]C)‘l)—‘

There is a natural action of the symmetric group on tableaux by permuting the
labels. For a tableau of A\ of n, consider the following subgroups of S,,:

P, = {g € S, : g preserves each row of A}
and, similarly,
Qx ={g € Sy, : g preserves each column of \}.
To each of these subgroups, we can associate an element in the group algebra C[S,,]:

ay = Z g and by = Z sgn(g)g.

gEPx gEQN

Finally, we call their product ¢y = axby € C[S,,] the Young symmetrizer of .

Theorem 2.1. The image V), = C[S,]en is an irreducible representation of Sp
(under left multiplication). Furthermore, every irreducible representation of Sy is
isomorphic to Vy for some unique partition \ of n.

We call V) a Specht module. Notice that different labellings of the same partition
will give different elements of C[S,,] for the Young symmetrizer. We will always work
with tableaux with the canonical labeling. However, in this case, these different
Young symmetrizers will give rise to isomorphic Specht modules.
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This Young symmetrizer construction may at first seem to come out of nowhere.
But recall that a left module is simple if and only if it is a minimal left ideal, and
such ideals are generated from primitive idempotents. So a simple left C[S,,]-module
(a irreducible representation of S,,) is of the form C[S,]e for a primitive idempotent
e. We will later show that these Young symmetrizers are primitive idempotents up
to scaling. In particular, recall that from Proposition 1.8, as an algebra

C[Sn] ~ P End(W2)
A

where the sum is over all irreducible representations V) of S,. Fix a partition p
of n and pick a basis for V,,. Notice that the matrix Ej;; in End(V),) of all zeros
except for a single one in the (,7)th position i is a primitive idempotent. Moreover,
the image ¢ of E;; under the map End(V,) — @, End(Vy) — C[S,,] then has the
property C[S,]c ~ End(V,,)E;; ~ V,,. The choice of ¢ is analogous to the choice of
labeling of our tableau.

Example 2.2. We will compute the Young symmetrizers for all partitions of 3 and,
thus, all the distinct irreducible representations of S3. Here are all the canonical

tableau.
2]

:
=

For A\ = (3), we have that Py = S3 and Q(3) = {1}. Hence

cs) = a@bE) = Y, 9
geSs

For any h € S3, we have hcisy = c¢3y. Therefore, Vi3) = C[S3]c(g) is the trivial
representation.

Now for A = (2, 1), we have that P 1) = {1,(12)} and Q2,1) = {1, (13)}. Hence
¢ = aenben = (1+(12))(1 - (13)) =1+ (12) — (13) — (132).

It turns out that V(s 1) = C[S3]c(2,1) is the span of ¢(5 1) and (13)c(a,1).
For A = (1,1,1), we have that P ;1) = {1} and Q1,1,1) = S3. Hence

c@3) = a@be = Y sen(g)g.
gES3

For any h € S3, we have hc(y,1,1) = sgn(h)c(,1,1y. Therefore, Viy 11y = C[Ss]c1,1,1)
is the alternating representation.

The general case for S, is that V(, is the trivial representation, V{; 1) is the
alternating representation, and V,,_1 1) is the standard representation. Consider the
permutation representation of the natural action of S, on {1,2,...,n}. The image
of the element of S,, are the familiar permutation matrices. This representation is
not irreducible because it contains of the proper S,-invariant subspace U spanned
by 142+ -+ + n. But the complementary invariant subspace of U is irreducible.

We will now prove Theorem 2.1 though a sequence of lemmas.

Lemma 2.3. There exists ty € C[S,]* such that axgby = tx(g)ca for all g € C[S,].



10 JAMES STEVENS

Proof. Tt suffices to show this for g € S,. Notice if ¢ € P\Qx, we can uniquely
write g = pq with p € Py and ¢ € @y. Thus,

axgbx = (axp)(gbx) = ax(sgn(q)br) = sgn(g)cx.

Now if g € P\@Q», then notice that the coefficient for the identity 1 in aygby is 0
because if pgq = 1 for some p € Py and q € Q, then g = p~1¢~' € P\Qx. Thus,
we must show that £5(g) = 0. So it suffices to show that there exists a transposition
g € Q) so that p = ggg~' € Py because then

axgbx = (axp)g(sgn(q)gbr) = —ax(gqg™")ggbr = —axgbx

and, hence, ayxgby = 0. Consider the tableau T’ = ¢T where T is the original
tableau and T” is a tableau of the same shape where each entry ¢ in T is replaced
by ¢g(i). Equivalently, we want to show that there exists two distinct integers which
lie in the same row in 7" and in the same column in 7. (This is because p is a row-
preserving transposition in T’ because p € Py, and p = ggg~! is a column-preserving
transposition in 7" because q € Q».)

So suppose there were not two such integers. We could then find a row-preserving
permutation p; € Py of T and a column-preserving permutation ¢ € gQxg~* of
T’ so that p1T and ¢}{7” have the same first row. Continuing this, we could find
p € Pyand ¢ = ggg~' € gQxg~ ! so that pT = ¢'T" = ¢'¢gT = gqT. But then
p = gq and, hence, g = pg~' € P\Q>. [l

Notice that under the lexicographical order, partitions are totally ordered.
Lemma 2.4. If A > pu, then axgb, =0 for all g € C[S,].

Proof. Again, it suffices to show this for g € S,,. And similarly, it suffices to find a
transposition ¢ € @, so that p = gqg~' € Py because then

axgbu = (axp)g(sgn(q)gb,) = —ax(gqg™")gab, = —axgb,

and, hence, axgb, = 0. Let T be the tableau used to construct ay and 7" be the
tableau used to construct b,. Thus, we want to show there exists two distinct
integers which lie in the same row of T' and in the same column of ¢g7".

Notice if A\; > g1, then this must be true because of the pigeonhole argument
that the A; many entries of the first row of T have pu; many possible columns in
gT’ to lie in. So if Ay = p; and two such integers did not exist, we could find
a row-preserving permutation p; € Py of T and a column-preserving permutation
¢; € gQug~* of gT” so that piT and ¢{gT” have the same first row.

We can continue this for each consecutive row until we have \; > p;. By the
pigeonhole argument, there exists two distinct integers which lie in the same row
of p;—1---p1T and in the same column of ¢;_, --- ¢197". O

Lemma 2.5. We have that cxcy = nycy where ny = n!/dim Vj.

Proof. Tt follows from Lemma 2.3 that cycyx = nycy for some ny € C. Now, consider
the map F : C[S,] — V) where z — xcy). Notice that F' multiplies by ny on Vj,
while F' multiplies by 0 on Ker F'. Therefore, tr F = n) dim V).

On the other hand, since the coefficient of 1 € S, in ¢, is 1, the coefficient of g
in F(g) = gey is also 1. Thus, we also have that tr F' = dim C[S,,] = nl. O

Lemma 2.6. For each partition A of n, Vy is an irreducible representation of S, .
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Proof. Notice that ¢)V) = Ccy by Lemma 2.3 and because cycy = nycy # 0 by
Lemma 2.5 where cxcy € c\Vy. Let W C V) be a subrepresentation. There are
two cases. If cxW = 0, then W -W C V, - W = 0 and, hence, W = 0. But if
W = Cey, then

\ = C[S,L]C)\ = C[STL](C,\W) = (C[Sn]CA)W cw
because W is a representation of S,,. Therefore, V) is irreducible. ]

Lemma 2.7. If A # u, then Vy\ £ V,.

Proof. Without loss of generality, assume A > p. Then by the previous proof along
with Lemma 2.4, we have that c\V\ = Ccy but c\V,, = ¢xC[S,]¢, = 0. O

Now the proof of Theorem 2.1 follows from the previous two lemmas and the
fact that partitions of n enumerate all conjugacy classes of S,,, which by Corollary
1.20, enumerate all irreducible representations of S,,.

2.2. Dimension Formulas. Although we have given an explicit way to compute
all the irreducible representations of S,,, it still takes some work to really see how
these representations behave. It is not even clear what the dimension of the irre-
ducibles are. As we saw in the previous section, the most powerful tool for studying
representations of finite groups was characters. It turns out that we can compute
the characters x := xv,, but this still takes some work.

Some of the proofs of the statements in this subsection are quite involved and not
important for our purposes. So we will omit proofs and just focus on the results.
All proofs in this subsection can be found in [5].

Frobenius Formula 2.8. Given a partition A = (A,..., ;) of n. Let ¢ =
(c1,...,cn) Tepresent the cycle type of g € Sy, that is, ¢; is the number of i-cycles
in the disjoint cycle representation of g. Set t = (t1,...,tx) where t; = \; + k — .
Then

MORISINGOR | P08

where A(z) = [[;;(x; — x;) is the Vandermonde determinant, p;(x) = Zle !
are the power sums, and [v']f(x) is the coefficient of xi* ---xi* in f.

Notice that we can specialize the Frobenius formula to the cycle type ¢ =
(n,0,...,0) of the identity, and—with some reinterpretation—extract some formu-
las for (1) = dim V. The hook length formula is the easiest dimension formula
to compute. The hook length of a cell in a Young diagram is the number of boxes
that are either directly to the right or directly below the cell, counting the cell itself
only once. Here are all the hook lengths for A = (4,2,2,1).

5[2]1]
2
1

‘HCO»P\I

Hook Length Formula 2.9. Let A\ be a partition of n. Then

dim V; n
1m = =
* T TIRG,j)
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where the product is over all cells (i,7) in the Young diagram of X\, (i,j) denotes
the cell in the ith row and jth column, and h(i,j) is the hook length of cell (i, 7).

So for A = (4,2,2,1), we see that dim V), =9!/(7-5-4-3-2-2) = 216.

The next dimensional formula involves the concept of standard Young tableau.
We will see that it has great combinatorial significance, at the cost of being more
difficult to compute. A standard Young tableau has a labeling that is strictly
increasing to the right across the rows and strictly increasing down the columns.
Here are all five of the standard Young tableaux for A = (3,2).

1[2]3] 1]2]4] 1[2]5] 1[3]4] 1[3]5]
4[5 35 3[4 2[5 2[4

Also, by the Hook Length Formula 2.9, we have dim V), = 5. This is no coincidence.
Proposition 2.10. Let A\ be a partition of n. Then

dimVy, = |SYT()\)]
where SYT(X) is the set of standard Young tableaux for .

Define f\ = |SYT()\)|. We have seen that |G| = > (dim V;)? where the sum is
over all irreducible representations V; of G. For G = S,,, this says

(2.11) nl=>" £

|A|=n

2.3. The RSK-Correspondence. In this section will describe a remarkable com-
binatorial interpretation for (2.11) known as the Robinson-Schensted correspon-
dence. Recall we have defined f) to count the number of standard Young tableau
of \. Incredibly, we can promote the equation (2.11) to a bijection

Sn 25 T SYT(N) x SYT(N).

[Al=n

But permutations and pairs of standard Young tableau are very different objects,
so the fact that a nice bijection exists is far from obvious.

The map RSK is an algorithm that takes in permutations ¢ = g¢192-- g, in
one-line notation and iteratively builds a pair of tableau via a process called row-
insertion. An incomplete standard Young tableau of n is a Young diagram of m for
some m < n that is filled by a m-subset of {1,2,...,n} that is increasing to the
right across the rows and increasing down the columns. As input, row-insertion
takes in a positive integer k and an incomplete standard Young tableau P not
containing k. It works as follows:

First, look at the first row and find the smallest j (first entry in row) so that
k < P(1,j). If no such j exists, then add cell containing & at the end of the row and
terminate. Otherwise, if j does exist, take ¥’ = P(1,j) and then replace P(1,)
with k and insert &” into the second row using the same rules. And so on, continue
until termination.

For g = g192 -+ gn € Sn, find RSK(g) as follows: Start with (P, Qo) = (0, 0).
Given a pair of incomplete standard Young tableau (P;_1,Q;—1). Row-insert g;
into P;_1 to get P;, and add the same newly formed cell from P; to (Q;—1 and label
it 7. In the end, we have RSK(g) = (P, Q) := (Pp, Qn)-
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Example 2.12. Here is the algorithm for g = 351462 € Sg.

1]2]6]
P 02 [3] -2 [3]5] L L8] 4, [LA] 6, J1[416] 2 15
3] 305 315 :
1]2] 1]2 1]2]5] 1]2]5]
Q: (Z)—>—>—>3 — gl T ETa . 8l4
- 6]

Ezample 2.13. Here are the images for all permutations of S3 under RSK.

123: 132: 213:
1]2] 1]2] 1]3] 1]3]
123 [[2[3] Al e
231: 312: 321
1 1
1]3] 1]2] 1]2] 1]3] 5 Bl
2] 3] 3] 2] 3 3

It turns out that RSK exhibits some (non-evident) marvelous symmetry, that
has some unexpected consequences.

Proposition 2.14. If g — (P,Q), then g~ — (Q, P).
So if g is a involution in S, then g — (P, P). So we obtain the following formula.

Corollary 2.15. We have that

# involutions of S,, = Z Ix-
|A|=n

The next fact, will be about the longest decreasing subsequence and longest
increasing subsequence of a permutation g in one-line notation, denoted 1ds(g) and
lis(g) respectively.

Proposition 2.16. Let g — (P, Q) and X be the shape of P (or, equivalently, Q).
Then lis(g) = A1 which is the length of first row of P and, similarly, 1ds(g) = £()\)
which is the length of first column of P.

Corollary 2.17 (Erdds-Szekeres). If g € Spq41, then lis(g) > p orlds(g) > q.
Proof. Otherwise, the shape of the image of g would fit in a p X ¢ square. O

3. SCHUR-WEYL DUALITY

3.1. Representations of Lie Groups and Lie Algebras. Before we can discuss
the main content of this section, we will first have to cover some needed Lie theory.

Recall that a Lie group G is a group that is also a smooth manifold where the
multiplication map (g, h) — gh and inverse map g — g~! are both smooth. A Lie
group homomorphism is group homomorphism that is also smooth. We will really
only need the case G = GL(V) for a finite dimensional complex vector space V.

A Lie algebra g is a vector space with a bilinear map [-,-] : g X g — g called the
Lie bracket with following two properties: [X, X] =0 for all X € g and

(X, [V, 2] + [V, [2, X]] + [2, [X, Y]] = 0



14 JAMES STEVENS

for all X,Y,Z € g. Note that g along with multiplication given by [-,-] forms a
nonassociative algebra. A Lie algebra homomorphism p : g — § of Lie algebras g
and b is a linear map that respects the Lie bracket, i.e.,

p([X,Y]g) = [p(X), p(Y)]p

for all X,Y € g. Like for Lie groups, we are really only interested in the case of
gl(V) where V is a finite dimensional complex vector space, which we can identify
as End(V) under the Lie bracket given by the commutator [X,Y] = XY — Y X.

There is a beautiful connection between Lie groups and Lie algebras. However,
we do not have time to fully explain it, and it will not be necessary for later in the
section. For details, see Chapter 8 of [3]. For any Lie group G, there is an associated
Lie algebra Lie(G) where as sets, Lie(G) is the tangent space T.G at the identity.
And for any Lie algebra g, there is a unique simply connected Lie group G where
Lie(G) = g. In fact, for any discrete subgroup I' < G, we have that Lie(G/T') = g.
And remarkably, if G is simply connected, then if p : Lie(G) — Lie(H) is a Lie group
homomorphism, then there exists a unique Lie group homomorphism f : G — H
such that p = (df)e.

A representation of a Lie group G on a complex vector space W is a Lie group
homomorphism p : G — GL(W). Similarly, a representation of a Lie algebra g on a
complex vector space W is a Lie algebra homomorphism p : g — gl(W). So in the
case where G is simply connected, there is an equivalence between representations
of G and of Lie(G).

Recall that for a finite group G, we had an associative algebra C[G] where rep-
resentations of C[G] are representations of G and vice versa. More generally, the
group algebra of G has the property that for any associative C-algebra A,

Homa e (C[G], A) ~ Homg,p(G, AX)

where A* is the group of units of A. Analogously, for a Lie algebra g, we have
an associative algebra Ug called the universal enveloping algebra with the property
that for any associative C-algebra A,

Homais(Ug, A) ~ Hompiealg (g, LA)

where LA is the Lie algebra of the set A with the commutator as the Lie bracket.

We can actually construct Ug as a quotient of the tensor algebra 7Tg of which
g is a subset. The tensor algebra Tg is the set €, ~, %" where g®° := C with
multiplication given by the canonical isomorphism g®" @ g®™ — g®(+™)  Then
Ug = Tg/I where I is the ideal generated by elements X @ Y - Y ® X — [X, Y] for
all XY e g C Tg.

The isomorphism of the above specialized to A = End(V') says that studying
representations of g is the same as studying representations of Ug. For if we have a
Lie algebra representation p : g — gl(V'), we can extend to an algebra representation
p :Ug — End(V) by setting p/(X1®---®X,,) = p(X1) - - - p(X,,) and then extending
by linearity. Similarly, given an algebra representation p’ : g — End(V'), we can
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restrict to g C Ug to get a Lie algebra representation p : g — gl(V') because
p([X, Y]E) = p/([X, Y]g)

=p(X®Y -Y®X)

=o' (X)p'(Y) = p'(Y)p'(X)

= p(X)p(Y) = p(Y)p(X)

= [p(X), p(Y)]g1(v
forall X,Y € g.
3.2. Schur-Weyl Duality for GL(V). Consider the space V™ for some complex
vector space V. We have two natural actions on this space. Since there are n

factors, there is the natural (right) action of S,, of permuting the factors, that is,
where for all 7 € S,,, we have

(M OV ® - @ Up)T = V(1) @ V(2) @+ * @ V()
And since each factor is V', we have the natural factorwise action of GL(V') where
g1 @V ® -+ @vn) = g(v1) ® g(v2) @ -+ ® g(vn)

for all g € GL(V). Notice that these two actions commute with each other. How-
ever, these actions have a stronger connection that we will show. Namely, the spans
of the images of S,, and GL(V) in End(V®") are centralizers of each other. We
will see that this fact remarkably connects the representation theory of these two
groups. In order to show this connection, we must prove some lemmas.

Lemma 3.1. The image of U(gl(V')) in End(V®™) is B = Endg(g,(V®").
Proof. The action of X € gl(V) on v ® --- @ v, € VO™ is

n
X(’U1®"'®vn):ZU1®"‘®XUi®"'®Un
i=1

and, thus, the image of X in End(V®") is
IL(X) =X ®id®- Qid+idoX @ - ®id+-- +id®--- ®id ®X.
Clearly, the image of gl(V') and, thus the image of U(gl(V)), is contained in B.
Now since the elementary symmetric polynomial e, (x) = z1x2 - - - 2, is express-
ible as P(p1(z),p2(),...,pn(x)) for some polynomial P in the power sum sym-
metric polynomials p;(z) = @] + 23 + - - - + 2J,, we get
X@X® - ®X =PI,(X),I1,(X?),..., II,(X")).

Thus, elements of the form X®" for X € End(V) are generated by the images of
elements in U(gl(V)). And since elements of the form X®" for X € End(V) span
Sym” End(V) ~ (End(V)®")5" ~ (End(V®"))%" = Endg(s,;(V®"),
then the image of U(gl(V)) in End(V®") is B. O

Proposition 3.2. The images of C[S,] and U(gl(V')) in End(V®™) are centralizers
of each other.

Proof. Let A be the image of C[S,] in End(V®"). By Maschke’s Theorem 1.2 (and
the fact that quotient of semisimple ring is semisimple), A is semisimple. The rest
follows from the Double Centralizer Theorem A.3. g
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Lemma 3.3. The span of the image of GL(V) in End(V®") is B.

Proof. Since GL(V) commutes with Sy, then the image of GL(V'), and thus its
span, is contained in B = End(V®").

Conversely, let X € End(V) and B’ be the span of the image of the elements g®™
for g € G. Since X 4t is invertible for all but finitely many ¢ € C, by interpolation,
the polynomial (X + ¢tI)®" is in the subalgebra B’ for all but finitely many ¢ and,
hence, for all ¢. In particular, for ¢ = 0, we have that X®" € B’. But again, we
know that these in fact span B = End 4 (V®"). O

Therefore, by the Double Centralizer Theorem A.3, we have the following.
Schur-Weyl Duality 3.4. We have the decomposition
Ve~ B Vi @S,V
[A|=n

as a representation of S, x GL(V') where Vy runs through all the irreducible repre-
sentations of S, and each S,V := Homg, (Vx, V®") is an irreducible representation
of GL(V) or is zero.

In fact, S)V is zero when Ag41 # 0 where d = dim V, that is, the number of
parts of A is greater than d.

3.3. Schur Functors and Algebraic Representations. We call the covariant
functor Sy : FinVect — FinVect the Schur functor of \. If f : V. — W is a linear
map, we define S)f : S\V — S\W by (Sxf)(¥) = f@" o . It can be verified that

S)\(f og) = (S)\f) o (S)\g) and S)\ idv = idg/\ .

Since representations of S,, are self-dual by Example 1.15, we get the following
more constructive descriptions of the Schur functor.

SAV = Homg, (Vy, V&™)
~ (Vi) ®cs,) VE"
=~ V) Qcls,] yen
= C[Suler ®crs,) V"
= C[S,] ®cCIS,] Vene,
~ VOney
Ezample 3.5. For A = (n), we have that S(,)V ~ Sym™ V. Similiarly, for A =

(1,...,1), we have that S¢; 1)V ~ Alt" V. Note that Alt" V' is zero if dim V' < n.
So Schur-Weyl Duality tells us that

Ver ~ B (s\V)H
[A|=n
as a representation of GL(V) where f\ = dim V). So, in particular, we have
VO 2 Sym’ Ve A’V and VO = Sym®V @ (S V)% @ Al V.

It turns out that S5,1)V does not have a description as nice as Sym™ V' or Alt" V.
But it can be shown using Example 2.2, that

SV = V&cu ) = Ker(V @ Alt? V — Al V)
where the map V ®Alt? V — Alt® V the canonical map v ® (va Avg) — v1 Avg Avs.
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Recall that any representation of .S, could be decomposed into the Specht mod-
ules V. However, it is not true that any representation of GL(V') can be decom-
posed into the images S)V of V under the Schur functors. For example, we cannot
get the dual of S\V. However, we do essentially get the whole class of algebraic
representations. Proofs and details of the following can be found in section 5.23 of
[2] and in section 15.5 of [3].

A finite dimensional representation W of GL(V) is algebraic if the corresponding
map p : GL(V) — GL(W) is a morphism of algebraic varieties. Concretely, this says
that if we choose bases, then the coordinates of p(A) are rational functions of the
coordinates of A € GL(V'). Any such rational function is, in fact, in Cla,;][1/ det A].

It turns out that the Schur functors only give us representations which are
polynomial, that is, the coordinates of p(A) are polynomials of the coordinates
of A € GL(V). Thus, we could never hope to get the algebraic representation
det™' : GL(V) — GL(C) where det™'(A) = 1/det A. But this is essentially it.

Proposition 3.6. Let W be an algebraic representation of GL(V). Then for all
k > 0 and X\ such that S\V # 0, we have that S\V ® det™" s an irreducible
algebraic representation of GL(V). Moreover, W decomposes as a direct sum of
copies of SV @ det™*.

3.4. Other Cases of Schur-Weyl Duality. Note that the key to showing Schur-
Weyl Duality for GL(V) was showing that the images of C[S,] and C[GL(V)]
were centralizers of each other in End(V®"). But there are many other groups
that naturally act on V®". So if we can realize the centralizer in End(V®™) of
such a group, we can learn more about the representations of that group and its
corresponding centralizer. In this section, we will describe a few particularly nice
examples of these. As before, we will focus on the results. The proofs of the
following material can be found in [1] and [4].

Recall that when we showed Schur-Weyl Duality for GL(V'), we first showed it
for gl(V') in Proposition 3.2. That is, as a representation of S, x gl(V),

Ven ~ @ Vi @ S\V.
[A|=n

where V) are all the irreducible representations of S,, and each S,V := Homg, (Vi, V®")
is an irreducible gl(V')-representation or zero.

In both these cases, the resulting centralizers have all been the same, the image
of C[S,]. In fact, if we equipped V with an inner product, then we could show
that C[S,,] is still the centralizer of both the image of u(V') and the image of U(V)
in End(V®™). But now, we will show some examples where this is not the case.
For the remainder of the section, we will often be working with a basis for our
underlying vector space. So let V = C¢ with the standard basis.

Let S4(C) C GL,,(C) denote the group of d x d permutation matrices. This group
is isomorphic to Sy, but we give it different notation because it has a different action
on V®". It turns out that the corresponding centralizer for S4(C) in End(V®") can
be realized as the image of an algebra called the partition algebra C[P,(d)]. But
we will first have to do a little work to describe this algebra.

First, we will define the partition monoid P,. As a set,

P, = {set partitions of {1,2,...,n,1",2',...,n'}}.
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We will represent a set partition S € P, by a graph written as a top row of n
vertices corresponding to 1,2,...,n and bottom row of n vertices corresponding to
1/,2',...,n’ with the property that the collection of path connected components
is S, that is, the vertices i,j are connected by a path if and only if 4,5 are in a
same block in S. Clearly, such a graph is not unique for a given set partition .S,
but any representative will work. This freedom will allow us to draw less cluttered
diagrams.

We will define the composition S 0.5 of two set partitions Sy, Se € P, as the set
partition corresponding to the diagram formed by stacking a diagram of S; on top
of a diagram of S; and identifying each vertex on the bottom row of S; with the
corresponding vertex on the top row of Ss. The composition will have the diagram
with the top row as the top row of S; and the bottom row as the bottom row of
So, ignoring the middle vertices but not the paths through them.

For example, if S; = {1354/,23',4,1'2',5'} and Sy = {15/,22/,343'4’)5,1'}, then
S1 0S5y ={12353'4',4,1'2' 5’} because

51052: 1 1 1 1 1 =

Now we define the partition algebra C[P,(d)] as the set C[P,] with multiplication
on the basis given by S5 = d* - (S1 0 S3) for S1, Sy € P, where / is the number
of middle-only blocks of the 3n set partition (top, middle, and bottom vertices)
induced from the composition. In our previous example, we have £ = 1 because

! = 5o (identification of 5" from S; with 5 from S3) is the only block containing
only middle vertices (namely, just itself). So S152 = d - (51 0 S2).

Let S € P,. For convenience, now label ¢/ as n + 4 for 1 < ¢ < n in the set
partition S. For a sequence i1, 19, ...,%2, with 1 <i; < d define

o 1, if i; =4, whenever j and k
S(S) i i = are in the same block in 9,
0, otherwise

Let v1,...,vq be the standard basis for V = C?. We can then define the action of
S on the basis elements v;, ® v;, ® --- @ v;, of V™ where 1 < i; < d as

Tn41,e-y02n

(i, ® iy ® -+~ ®;,)5 = Z B8 iy Vings © Vi @+ DUy,

where the sum is over all sequences %y,41,...,%, with 1 < i; < d. This action of
P, on V®™ actually extends to an action of C[P,(d)].

Proposition 3.7. The spans of the images of C[P,(d)] and Sq(C) in End(V®")
are centralizers of each other.

Therefore, we can get a version of Schur-Weyl Duality between the algebra
C[P,(d)] and the group S4(C) ~ Sy. It turns out that P, has some subsets whose
generated subalgebras give other interesting cases of Schur-Weyl Duality.
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Take S,, C P, to be the set partitions where each block of is the form {4, j'} where
1,7 € {1,2,...,n}. These partitions are identified with bijections on {1,2,...,n}.
Moreover, partition composition is exactly function composition and the induced
action is same as that of the symmetric group. So as the notation suggests, we
have that the subalgebra of C[P,(d)] generated by S, is isomorphic to the group
algebra C[S,] of the symmetric group. Note d does not matter since ¢ = 0 for any
composition. So in this case, we recover the original Schur-Weyl Duality for GL(V').

Now take B,, C P, to be the set partitions where each block is of size two (not
necessarily of the previous form). Then B, is closed under composition. And, we
call the the subalgebra C[B,(d)] of C[P,(d)] generated by B,, the Brauer algebra.
This gives rise to two interesting cases of Schur-Weyl Duality.

Proposition 3.8. The spans of the images of C[B,(d)] and O4(C) in End(V®")
are centralizers of each other where O4(C) is the orthogonal group.

Proposition 3.9. The spans of the images of C[B,,(—2d)] and Spy,;(C) in End(V®")
are centralizers of each other where Spy,(C) is the symplectic group.

APPENDIX A. SEMISIMPLE ALGEBRAS AND DOUBLE CENTRALIZER THEOREM

Recall that a module is said to be simple if it contains no proper nonzero sub-
modules. And a module is said to be semisimple if it can be decomposed as a direct
sum of simple submodules. Note that any module of an algebra over a field k is a
vector space over k, and hence it makes to talk about the dimension of the module.
We say that an algebra is semisimple if all of its finite dimensional modules are
semisimple. The following theorem is Maschke’s Theorem 1.2 reformulated in the
language of the group algebra.

Maschke’s Theorem A.l. Let G be a finite group. Then C[G] is semisimple.

The following is an important theorem on the structure of semisimple algebras.
However, the proof is quite involved, so we will have to omit it. For full details, see
Theorem 3.5.4. of [2].

Theorem A.2. Let A be a finite dimensional algebra. Then A has finitely many
simple modules U; up to isomorphism. These simple modules are finite dimensional.
Moreover, A is semisimple if and only if as an algebra,

A~ P End(U;).

where U; are simple A-modules.

As a corollary of the previous two theorems, we get Proposition 1.8. Now, the
main result of this section.

Double Centralizer Theorem A.3. Let V be a finite dimensional vector space,
A be a semisimple subalgebra of End(V'), and B = Enda (V). Then:

(1) B is semisimple.

(2) A=Endp(V).

(8) As a module of A® B, we have the decomposition

V:@U@Wi
[



20 JAMES STEVENS

where U; are all the simple modules of A and W; := Homu (U;, V) are all
the simple modules of B.

Proof. Since A is semisimple, we have the A-module decomposition

(A.4) V ~ P U; @ Homa (U3, V)

where a € A acts on U; @ Homu(U;, V) by a(u ® f) = au ® f. The space W; :=
Homy (U;, V) is the multiplicity space of U;. Then as algebras, we have the natural

isomorphisms
A~ GB End(U

and by properties of module homomorphisms,

B =Enda(V)
~ Homy <€B U, @ Wi, V)
~ @HomAl(Ui ® Wi, V)
~ @HomA(Wi ®@U;,V)

~ @) Hom(W;, Hom 4 (U;, V)

= @End(W

We now just need to show that W; are simple B-modules. We will show that B
acts transitively on the nonzero maps in Hom4 (U, V') where U is a simple A-module.
Fix a nonzero u € U. Since U is simple, any map f € Hom4 (U, V) is determined
by where it takes u because Aw is a nonzero submodule of U and hence Au = U. So
take f, f' € Homu(U, V) where f(u) = v and f’(u) = v’. Since Awv is an invariant
subspace of V', we can write V = (Av)®W for a complementary invariant subspace
W by Maschke’s Theorem. Define T': V' — V by T'(av) = av’ for av € Av and
T(w) = w for w € W. This is an A-homomorphism where T'o f = f’.

By Theorem A.2, we see that B is semisimple, and so we have (1). And we can
now view (A.4) as a decomposition of V into simple B-modules W; where U; are
the corresponding multiplicity spaces. Then, as B-modules,

V ~ @W ® Homp(W;, V) ~ @W ® U;

where the sums run over all simple B-modules W;. This then implies (3). Also, we
have that U; ~ Homp(W;, V'), and hence (2) follows. O
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