Exercises 6, April 25, 2006

The Normalized Chain Complex

1) Let A_{\bullet} be a simplicial Abelian group and let $\chi(A_{\bullet}) = (\hat{A}_*, \hat{d}_*)$ be the (un-normalized) chain complex associated to it. Remember that $\hat{A}_n = A_n$ for $n \geq 0$ and with differential $\hat{d}_n : A_n \to A_{n-1}$ given by

$$\hat{d}_n(x) = \sum_{i=0}^n (-1)^i d_i(x)$$
.

For $n \geq 0$, define

$$N_n = \ker d_0 \cap \ker d_1 \cap \ldots \cap \ker d_{n-1} \subset A_n$$
.

Use the simplicial identity $d_i d_j = d_{j-1} d_i$ for i < j to show that $N_* \subset \hat{A}_*$ is a sub chain complex. Note also that the differential $N_n \to N_{n-1}$ is given by $d(x) = (-1)^n d_n(x)$.

2) For each $p \ge 0$, let

$$F^p \hat{A}_n = \{ x \in A_n \mid d_i(x) = 0, \ 0 \le i < \min(n, p) \}$$

Show that, for a fixed p, the inclusions $F^{p+1}\hat{A}_n \subset F^p\hat{A}_n$, for $n \geq 0$, give an inclusion of chain complexes $i^p : F^{p+1}\hat{A}_* \subset F^p\hat{A}_*$.

3) Note that for $p \geq n$, we have $F^p \hat{A}_n = N_n$ and that $F^0 \hat{A}_n = \hat{A}_n$. Thus, we have now the following filtration of chain complexes

$$\hat{A}_* \supset F^0 \hat{A}_* \supset F^1 \hat{A}_* \supset \dots N_*$$
.

We will now show that every inclusion i^p induce an isomorphism on homology. We do this by constructing a morphism of chain complexes, $f^p: F^p \hat{A}_* \to F^{p+1} \hat{A}_*$ which is an inverse to i^p up to chain homotopy.

Let $x \in F^p \hat{A}_n$. Then define

$$f^{p}(x) = \begin{cases} x & ; n \leq p \\ x - s_{p}d_{p}(x) & ; n > p \end{cases}$$

Check that f^p is a morphism of chain complexes, i.e. check that the following diagram commutes

$$F^{p}\hat{A}_{n} \xrightarrow{f^{p}} F^{p+1}\hat{A}_{n}$$

$$\downarrow \hat{d}_{n} \qquad \qquad \downarrow \hat{d}_{n}$$

$$F^{p}\hat{A}_{n-1} \xrightarrow{f^{p}} F^{p+1}\hat{A}_{n-1}$$

- 4) Show that the composite $f^p \circ i^p$ is equal to the identity morphism on $F^{p+1}\hat{A}_*$.
- 5) We will now define a chain homotopy between the identity morphism on $F^p \hat{A}_*$ and the composite $i^p \circ f^p$. Let $x \in F^p \hat{A}_n$, and define $t^p : F^p \hat{A}_n \to F^p \hat{A}_{n+1}$ by the formula

$$t^{p}(x) = \begin{cases} 0 & ; n$$

Verify that

$$\hat{d}_{n+1}t^p(x) + t^p\hat{d}_n(x) = x - (i^p \circ f^p)(x).$$

- 6) Let $f: \hat{A}_* \to N_*$ be the map of chain complexes defined by letting $f_n: \hat{A}_n \to N_n$ be the composite $f^{n-1} \circ f^{n-2} \circ \ldots \circ f^0$. Conclude from the above that the inclusion $i: N_* \subset \hat{A}_*$ induces an isomorphism on homology with inverse H(f).
- 7) Note that the composite $f \circ i$ is the identity morphism on N_* . Conclude that $\hat{A}_* \cong N_* \oplus \ker f$.
- 8) Let $D_n = \bigcup_{i=0}^{n-1} s_i(A_{n-1})$. We showed in the previous lecture that $D_* \subset \hat{A}_*$ is a sub chain complex.

Show by the definition of f that ker $f \subset D_*$.

- 9) Let $k \geq 0$ be fixed and let $x^k = \sum_{i=k}^{n-1} s_i(y_i^k)$ where $y_i^k \in A_{n-1}$ for all i. Show by calculation that $f^k(x^k) = \sum_{i=k+1}^{n-1} s_i(y_i^k s_k d_k y_i^k)$.

 Define inductively $y_i^{k+1} := y_i^k s_k d_k y_i^k$ and let $x^{k+1} := \sum_{i=k+1}^{n-1} s_i(y_i^{k+1})$.

 Now show that $D_* \subset \ker f$: Let $x = \sum_{i=0}^{n-1} s_i(y_i) \in D_n$, where $y_i \in A_{n-1}$. Then calculate $f(x) := f^{n-1} \circ \dots f^1 \circ f^0(x)$ using the notation above and verify that the result is zero.
- 10) Two previous exercises show that we have a splitting of chain complexes $\hat{A}_* \cong N_* \oplus D_*$.

Conclude from the above that the projection $\hat{A}_* \to \hat{A}_*/D_*$ induce an isomorphism on homology.