REU Algebraic Topology Assignment 2

Problem 1. 1. Prove that $D^{n} / \partial D^{n}$ is homeomorphic to S^{n}.
2. Prove that $(A / \partial A) \wedge(B / \partial B)$ is homeomorphic to $(A \times B) / \partial(A \times B)$. Use this to prove that $S^{n} \wedge S^{m}$ is homeomorphic to S^{n+m}.

Problem 2. Find a general formula for $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$.
Problem 3. Let $f, g \in k[x]$. Compute $k[x] /(f) \otimes k[x] /(g)$.
Problem 4. Prove that there is a bijective correspondence between bilinear maps from $M \times N$ to P and homomorphisms from $M \otimes N$ to P.

Problem 5. Prove the following properties for R-modules.

1. $R \otimes_{R} M \cong M \cong M \otimes_{R} R$.
2. $\left(M \otimes_{R} N\right) \otimes_{R} P \cong M \otimes_{R}\left(N \otimes_{R} P\right)$.
3. $M \otimes_{R} N \cong N \otimes_{R} M$.

Problem 6. Let G be a finite abelian group. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} G=0$. Moreover, prove that if G is an abelian group, then $\mathbb{Q} \otimes_{\mathbb{Z}} G$ is a rational vector space and that a rational vector space is a free abelian group.
Problem 7. Let $F: \mathscr{C} \rightarrow \mathscr{D}$ be a functor. Suppose f is an isomorphism in \mathscr{C}. Prove that $F f$ is an isomorphism in \mathscr{D}.
Problem 8. Define \mathscr{I} to be the category $\underline{\mathbf{1}}=\{0 \rightarrow 1\}$. Let $F, G: \mathscr{C} \rightarrow \mathscr{D}$ be two functors. Show that defining a natural transformation $\alpha: F \Rightarrow G$ is equivalent to defining a functor $\widetilde{\alpha}: \mathscr{C} \times \mathscr{I} \rightarrow \mathscr{D}$ such that the following diagram commutes.

Note that i_{0}, i_{1} sends an object C in \mathscr{C} to $(C, 0),(C, 1)$ in $\mathscr{C} \times \mathscr{I}$, respectively.
Problem 9. Fix a set X. Define a functor X_{*} : Set \rightarrow Set as

$$
X_{*}(A)=\operatorname{Set}(X, A)
$$

Note that given a function $f: A \rightarrow B$, there is a natural function from $\operatorname{Set}(X, A)$ to $\operatorname{Set}(X, B)$ defined by the evident composition. Prove that X_{*} is a covariant functor.

Problem 10. Fix a set X. Define a functor X^{*} : Set \rightarrow Set as

$$
X^{*}(A)=\operatorname{Set}(A, X)
$$

Note that given a function $f: A \rightarrow B$, there is a natural function from $\operatorname{Set}(B, X)$ to $\operatorname{Set}(A, X)$ defined by the evident composition. Prove that X^{*} is a contravariant functor. Also prove that $X^{*}(A)$ is naturally isomorphic to the cartesian product A^{X} of copies of A indexed by the elements of X.

