REU Algebraic Topology Assignment 2

Problem 1. 1. Prove that $D^n/\partial D^n$ is homeomorphic to S^n .

2. Prove that $(A/\partial A) \wedge (B/\partial B)$ is homeomorphic to $(A \times B)/\partial (A \times B)$. Use this to prove that $S^n \wedge S^m$ is homeomorphic to S^{n+m} .

Problem 2. Find a general formula for $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$.

Problem 3. Let $f, g \in k[x]$. Compute $k[x]/(f) \otimes k[x]/(g)$.

Problem 4. Prove that there is a bijective correspondence between bilinear maps from $M \times N$ to P and homomorphisms from $M \otimes N$ to P.

Problem 5. Prove the following properties for *R*-modules.

- 1. $R \otimes_R M \cong M \cong M \otimes_R R$.
- 2. $(M \otimes_R N) \otimes_R P \cong M \otimes_R (N \otimes_R P)$.
- 3. $M \otimes_R N \cong N \otimes_R M$.

Problem 6. Let G be a finite abelian group. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} G = 0$. Moreover, prove that if G is an abelian group, then $\mathbb{Q} \otimes_{\mathbb{Z}} G$ is a rational vector space and that a rational vector space is a free abelian group.

Problem 7. Let $F: \mathscr{C} \to \mathscr{D}$ be a functor. Suppose f is an isomorphism in \mathscr{C} . Prove that Ff is an isomorphism in \mathscr{D} .

Problem 8. Define \mathscr{I} to be the category $\underline{\mathbf{1}} = \{0 \to 1\}$. Let $F, G : \mathscr{C} \to \mathscr{D}$ be two functors. Show that defining a natural transformation $\alpha : F \Rightarrow G$ is equivalent to defining a functor $\widetilde{\alpha} : \mathscr{C} \times \mathscr{I} \to \mathscr{D}$ such that the following diagram commutes.

Note that i_0, i_1 sends an object C in \mathscr{C} to (C, 0), (C, 1) in $\mathscr{C} \times \mathscr{I}$, respectively.

Problem 9. Fix a set X. Define a functor $X_* : \mathbf{Set} \to \mathbf{Set}$ as

$$X_*(A) = \mathbf{Set}(X, A)$$
.

Note that given a function $f: A \to B$, there is a natural function from $\mathbf{Set}(X, A)$ to $\mathbf{Set}(X, B)$ defined by the evident composition. Prove that X_* is a **covariant functor**.

Problem 10. Fix a set X. Define a functor $X^* : \mathbf{Set} \to \mathbf{Set}$ as

$$X^*(A) = \mathbf{Set}(A, X)$$
.

Note that given a function $f:A\to B$, there is a natural function from $\mathbf{Set}(B,X)$ to $\mathbf{Set}(A,X)$ defined by the evident composition. Prove that X^* is a **contravariant functor**. Also prove that $X^*(A)$ is naturally isomorphic to the cartesian product A^X of copies of A indexed by the elements of X.