U CHICAGO REU CALCULUS OF VARIATIONS PROBLEM SET 3

MAX ENGELSTEIN AND STANLEY SNELSON

Throughout this problem set, E is an open, connected subset of \mathbb{R}^{n} with ∂E smooth. Problem 1: Let $1 \leq p<q \leq \infty$.
i) Show that $L^{q}(E) \subset L^{p}(E)$.
ii) Show by example that $L^{p}\left(\mathbb{R}^{n}\right) \not \subset L^{q}\left(\mathbb{R}^{n}\right)$ and $L^{q}\left(\mathbb{R}^{n}\right) \not \subset L^{p}\left(\mathbb{R}^{n}\right)$.

Problem 2: Let $\lambda \in \mathbb{R}$, and define

$$
f(x)=\|x\|^{\lambda} .
$$

For what values of n, p, λ is f in $W^{1, p}(B(0,1))$, where $B(0,1)=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$? For what values of n, p, λ is f in $W^{1, p}\left(\mathbb{R}^{n} \backslash B(0,1)\right)$?
Problem 2: Let V be an inner product space with inner product $\langle\cdot, \cdot\rangle$. As mentioned in class, V is also a normed vector space with norm $\|v\|_{V}=\sqrt{\langle v, v\rangle}$. Show that this norm satisfies the parallelogram law: for any $v, w \in V$,

$$
2\|v\|^{2}+2\|w\|^{2}=\|v+w\|^{2}+\|v-w\|^{2} .
$$

With E as in Problem 1, conclude that $L^{p}(E)$ cannot be given an inner product structure (and therefore is not a Hilbert space) for any $p \neq 2$.
Problem 3: Let H be a Hilbert space. Recall that a sequence u_{n} in H converges weakly to $u \in H$ if $\left\langle u_{n}, v\right\rangle \rightarrow\langle u, v\rangle$ for all $v \in H$.
i) Show that if u_{n} converges strongly to u, then u_{n} converges weakly to u.
ii) If $H=\mathbb{R}^{n}$, show that strong and weak convergence are equivalent.
iii) Show that if u_{n} converges to u weakly, and $\left\|u_{n}\right\| \rightarrow\|u\|$, then u_{n} converges to u strongly.

Problem 4: Consider the functional $J(u)=\int_{E}|\nabla u|^{2} \mathrm{~d} x$.
i) Show that J is lower-semicontinuous with respect to strong convergence in $H^{1}(E)$, i.e. $J\left(u_{0}\right) \leq \liminf _{n \rightarrow \infty} J\left(u_{n}\right)$ for any sequence u_{n} converging (in the strong H^{1} sense) to u_{0}.
ii) Show that J is convex, i.e. $J(t u+(1-t) v) \leq t J(u)+(1-t) J(v)$ for any $u, v \in H^{1}(E)$ and $t \in[0,1]$.
(It is a theorem that these two properties imply J is lower-semicontinous with respect to weak convergence in $H^{1}(E)$, which is needed to prove existence of a minimizer.)
Problem 5 (Hard): Recall that $\Delta u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}$.
i) Let $f \in C^{2}(E)$ satisfy $\Delta f(x)=0$ for every $x \in E$ (in other words, f is harmonic). Show that f satisfies the following mean value property: for every ball $B\left(x_{0}, r\right) \subset E$,

$$
f\left(x_{0}\right)=\frac{1}{\omega_{n} r^{n}} \int_{B\left(x_{0}, r\right)} f(x) \mathrm{d} x=\frac{1}{n \omega_{n} r^{n-1}} \int_{\partial B\left(x_{0}, r\right)} f(x) \mathrm{d} \sigma(x),
$$

where ω_{n} is the volume of the unit ball in \mathbb{R}^{n}.
(Hint: Show that the quantity

$$
\frac{1}{n \omega_{n} \rho^{n-1}} \int_{\partial B\left(x_{0}, \rho\right)} f(x) \mathrm{d} \sigma(x)
$$

is constant in ρ for $0<\rho \leq r$.)
ii) Let $u \in L^{1}(E)$ satisfy

$$
\int_{E} u(x) \Delta \phi(x) \mathrm{d} x=0 \quad \text { for all } \phi \in C_{0}^{\infty}(E)
$$

Prove that $u \in C^{\infty}(E)$.
(Hint: Define

$$
u_{h}(x)=\frac{1}{h^{n}} \int_{E} \psi\left(\frac{|x-y|}{h}\right) u(y) \mathrm{d} y
$$

where h is a small positive number and ψ is a smooth function on the positive real line such that $\psi(t) \geq 0$ for all $t, \psi(t)=0$ for $t \geq 1$, and $\int_{B(0,1)} \psi(|x|) \mathrm{d} x=1$. Show that u_{h} are smooth and harmonic, and that $\left\|u_{h}\right\|_{L^{1}(E)}$ is bounded uniformly in h. Use i) to estimate the gradient of u_{h}, and repeat the argument to bound all higher-order derivatives of u_{h}, such that the bounds are uniform in h. Conclude that u_{h} converges to a C^{∞} function v and argue that $u=v$.)
iii) Using ii), show that if u minimizes the functional J from Problem 4 over the class $\left\{u \in H^{1}(E): u-g \in H_{0}^{1}(E)\right\}$, where $g \in C^{\infty}(\bar{E})$, then $\Delta u=0$ in E.

Problem 6: Finish proving the key lemma in our solution to the Sturm-Liouville problem. That is, let $P \in C^{1}[a, b]$ and $Q \in C[a, b]$ and $f \in C[a, b]$ be such that

$$
\int_{a}^{b} f(x)\left(-P(x) h^{\prime}(x)\right)^{\prime}+Q(x) f(x) h(x) d x=0
$$

for all $h \in C^{2}[a, b]$ with $h(a)=h(b)=h^{\prime}(a)=h^{\prime}(b)=0$. Then, $f \in C^{2}[a, b]$ and $\left(-P(x) f^{\prime}(x)\right)^{\prime}+Q(x) f(x)=0$ for all $x \in[a, b]$.
Problem 7: Lets prove the claim from class that the ODE,

$$
\begin{equation*}
\left(-P(x) u^{\prime}(x)\right)^{\prime}+Q(x) u(x)=\lambda u(x) \tag{0.1}
\end{equation*}
$$

has at most one solution on $[a, b]$ with $u(a)=u(b)=0$ and $\int_{a}^{b} u^{2}(x) d x=1$. Recall that $P \in C^{1}[a, b]$ satisfies $P(x)>0$ and that $Q \in C[a, b]$.
i) Let u, \tilde{u} be two solutions to (0.1). Define the Wronskian to be $u^{\prime} \tilde{u}-\tilde{u}^{\prime} u$. Find an equation for $-P(x) \frac{d}{d x} W(x)$.
ii) Prove that the Wronskian is a constant multiple of the function P. HINT: Use the equation you found in part (i).
iii) Prove that the Wronskian is identically 0.
iv) Conclude that there is a unique solution to (0.1) with zero boundary values and square integral equal to one.
Problem 8: Use the Ritz method to approximate the minimum of the functional

$$
\begin{equation*}
J[y]=\int_{0}^{1}\left[y^{\prime}\right]^{2}-y^{2}-2 x y d x, y(0)=y(1)=0 . \tag{0.2}
\end{equation*}
$$

Can solve the Euler-Lagrange equations to find the actual minimum of 0.2? Does the minimizing sequence you found using the Ritz method converge to the minimum you found using the E-L equations?

HINT: For the Ritz method, consider choosing the sequence of functions $x(1-x), x^{2}(1-$ $x), x^{3}(1-x), \ldots$. For extra challenge, prove that this sequence spans the relevant space.

