
U CHICAGO REU CALCULUS OF VARIATIONS PROBLEM SET 3

MAX ENGELSTEIN AND STANLEY SNELSON

Throughout this problem set, E is an open, connected subset of Rn with ∂E smooth.
Problem 1: Let 1 ≤ p < q ≤ ∞.

i) Show that Lq(E) ⊂ Lp(E).
ii) Show by example that Lp(Rn) 6⊂ Lq(Rn) and Lq(Rn) 6⊂ Lp(Rn).

Problem 2: Let λ ∈ R, and define

f(x) = ‖x‖λ.

For what values of n, p, λ is f in W 1,p(B(0, 1)), where B(0, 1) = {x ∈ Rn : ‖x‖ ≤ 1}? For
what values of n, p, λ is f in W 1,p(Rn \B(0, 1))?

Problem 2: Let V be an inner product space with inner product 〈·, ·〉. As mentioned in

class, V is also a normed vector space with norm ‖v‖V =
√
〈v, v〉. Show that this norm

satisfies the parallelogram law: for any v, w ∈ V ,

2‖v‖2 + 2‖w‖2 = ‖v + w‖2 + ‖v − w‖2.

With E as in Problem 1, conclude that Lp(E) cannot be given an inner product structure
(and therefore is not a Hilbert space) for any p 6= 2.

Problem 3: Let H be a Hilbert space. Recall that a sequence un in H converges weakly to
u ∈ H if 〈un, v〉 → 〈u, v〉 for all v ∈ H.

i) Show that if un converges strongly to u, then un converges weakly to u.
ii) If H = Rn, show that strong and weak convergence are equivalent.

iii) Show that if un converges to u weakly, and ‖un‖ → ‖u‖, then un converges to u strongly.

Problem 4: Consider the functional J(u) =
∫
E
|∇u|2 dx.

i) Show that J is lower-semicontinuous with respect to strong convergence in H1(E), i.e.
J(u0) ≤ lim infn→∞ J(un) for any sequence un converging (in the strong H1 sense) to
u0.

ii) Show that J is convex, i.e. J(tu+ (1− t)v) ≤ tJ(u) + (1− t)J(v) for any u, v ∈ H1(E)
and t ∈ [0, 1].

(It is a theorem that these two properties imply J is lower-semicontinous with respect to
weak convergence in H1(E), which is needed to prove existence of a minimizer.)

Problem 5 (Hard): Recall that ∆u =
n∑
i=1

∂2u

∂x2i
.
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i) Let f ∈ C2(E) satisfy ∆f(x) = 0 for every x ∈ E (in other words, f is harmonic). Show
that f satisfies the following mean value property: for every ball B(x0, r) ⊂ E,

f(x0) =
1

ωnrn

∫
B(x0,r)

f(x) dx =
1

nωnrn−1

∫
∂B(x0,r)

f(x) dσ(x),

where ωn is the volume of the unit ball in Rn.
(Hint: Show that the quantity

1

nωnρn−1

∫
∂B(x0,ρ)

f(x) dσ(x)

is constant in ρ for 0 < ρ ≤ r.)
ii) Let u ∈ L1(E) satisfy∫

E

u(x)∆φ(x) dx = 0 for all φ ∈ C∞0 (E).

Prove that u ∈ C∞(E).
(Hint: Define

uh(x) =
1

hn

∫
E

ψ

(
|x− y|
h

)
u(y) dy,

where h is a small positive number and ψ is a smooth function on the positive real
line such that ψ(t) ≥ 0 for all t, ψ(t) = 0 for t ≥ 1, and

∫
B(0,1)

ψ(|x|) dx = 1. Show

that uh are smooth and harmonic, and that ‖uh‖L1(E) is bounded uniformly in h. Use
i) to estimate the gradient of uh, and repeat the argument to bound all higher-order
derivatives of uh, such that the bounds are uniform in h. Conclude that uh converges
to a C∞ function v and argue that u = v.)

iii) Using ii), show that if u minimizes the functional J from Problem 4 over the class
{u ∈ H1(E) : u− g ∈ H1

0 (E)}, where g ∈ C∞(Ē), then ∆u = 0 in E.

Problem 6: Finish proving the key lemma in our solution to the Sturm-Liouville problem.
That is, let P ∈ C1[a, b] and Q ∈ C[a, b] and f ∈ C[a, b] be such that∫ b

a

f(x)(−P (x)h′(x))′ +Q(x)f(x)h(x)dx = 0,

for all h ∈ C2[a, b] with h(a) = h(b) = h′(a) = h′(b) = 0. Then, f ∈ C2[a, b] and
(−P (x)f ′(x))′ +Q(x)f(x) = 0 for all x ∈ [a, b].

Problem 7: Lets prove the claim from class that the ODE,

(0.1) (−P (x)u′(x))′ +Q(x)u(x) = λu(x),

has at most one solution on [a, b] with u(a) = u(b) = 0 and
∫ b
a
u2(x)dx = 1. Recall that

P ∈ C1[a, b] satisfies P (x) > 0 and that Q ∈ C[a, b].

i) Let u, ũ be two solutions to (0.1). Define the Wronskian to be u′ũ − ũ′u. Find an
equation for −P (x) d

dx
W (x).

ii) Prove that the Wronskian is a constant multiple of the function P . HINT: Use the
equation you found in part (i).

iii) Prove that the Wronskian is identically 0.
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iv) Conclude that there is a unique solution to (0.1) with zero boundary values and square
integral equal to one.

Problem 8: Use the Ritz method to approximate the minimum of the functional

(0.2) J [y] =

∫ 1

0

[y′]2 − y2 − 2xydx, y(0) = y(1) = 0.

Can solve the Euler-Lagrange equations to find the actual minimum of (0.2)? Does the
minimizing sequence you found using the Ritz method converge to the minimum you found
using the E-L equations?

HINT: For the Ritz method, consider choosing the sequence of functions x(1− x), x2(1−
x), x3(1− x), . . .. For extra challenge, prove that this sequence spans the relevant space.
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