
U CHICAGO REU CALCULUS OF VARIATIONS PROBLEM SET 2

MAX ENGELSTEIN AND STANLEY SNELSON

Problem 1: Find the critical points of the functional

J(f) =

∫ 1

0

((f ′(x))2 + x2) dx

subject to the conditions

f(0) = 0, f(1) = 0,

∫ 1

0

(f(x))2 dx = 2.

Problem 2: Consider a particle of mass m moving in R2 and attracted to the origin with

force F (x, y) = − C

x2 + y2
, where C is a constant.

i) Use the principle of least action to find a functional J(r, θ) that is minimized by the
path (r(t), θ(t)) of the particle in polar coordinates. Find the corresponding equations
of motion.

ii) Verify that the functional J is invariant under rotations of the plane, and use Noether’s
Theorem (in polar coordinates) to find the corresponding conservation law. What geo-
metric fact does this law express?

Problem 3: Consider functions f : E → R, where E ⊂ R2 is a smoothly bounded region.
Let

J(f) =

∫
E

√
1 + ‖∇f‖2 dx dy,

where ‖∇f‖2 =

(
∂f

∂x

)2

+

(
∂f

∂x

)2

.

i) Let g be a smooth function defined on ∂E. Show that the Euler-Lagrange equation
corresponding to minimizing J over the class of continuously differentiable functions on
E such that f(x) = g(x) for x ∈ ∂E is

d

dx

(
∂f/∂x√

1 + ‖∇f‖2

)
+

d

dy

(
∂f/∂y√

1 + ‖∇f‖2

)
= 0.

You can do this directly, or use the general form of the Euler-Lagrange equation we
proved in class. If you prove it directly, you will need a lemma analogous to Lemma 1
from Tuesday’s lecture, but that applies for functions defined on subsets of R2.

ii) If g(x) = 0, find the minimizer f of J(f) by pure thought.
iii) A minimizing sequence is a sequence fn of admissible functions (in this case, fn ∈ C1(E)

and fn = g on ∂E) such that J(fn) → inf J(f), the infimum taken over all admissible
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functions. Show by example that if E is the unit circle and g = 0, a minimizing sequence
fn does not necessarily converge pointwise to the minimizer f .

(Remark: This issue is a major challenge in “direct methods” of calculus of variations,
because one often wants to prove existence of a minimizer by taking the limit of a
minimizing sequence. But as this example shows, the minimizing sequence may not
converge to a minimizer, and can even fall out of the function space being minimized
over. We will explore this and related issues in the second week of lectures.)

Problem 4: A geodesic on a surface is the shortest path contained in that surface connecting
the two points on that surface. Given two points (x0, y0, z0), (x1, y1, z1) ∈ S2 find the geodesic
between them. HINT: Set this up as a constrained optimization problem.

Problem 5: Find the shortest curve γ in R2, connecting (a, 0) and (−a, 0), such that the
area between γ and the x-axis is equal to one.
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