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As we’ve been saying, this course is a bit experimental. Some of it is being
worked out on the fly! – and some things we’re used to from classical algebraic
topology just don’t work.

At Inna’s request, we will be saving the calculation of the homology groups
of a torus for a later date, when it can be presented in a more polished form.
Finite models for spaces have a tendency to get large very quickly; consequently,
calculating homology by hand and from the definition quickly becomes unwieldy.

In this set of notes, we’re going to go after some more low-hanging fruit. First,
we’ll consider a notion of “dimension” related to homology, and then we’ll develop
a useful piece of machinery called the Mayer-Vietoris Sequence.

1. Dimension

Having a reasonable notion of dimension can be quite useful. For example, the
rank-nullity theorem from linear algebra allows us to draw conclusions about linear
maps with hardly any work. We’re going to introduce two measures of dimension
for a poset (equivalently, an A-space).

Suppose C is a poset. Given x, y ∈ C , we say that x and y are comparable if
either x 5 y or y 5 x. We say they are incomparable otherwise. Since the order
5 on C is partial, there might be incomparable elements, but a subset A j C is
called a chain if any pair of elements a, b ∈ A are comparable.

Exercise: Consider the poset of subsets of {0, 1, 2} ordered under inclusion:
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{0, 1, 2}

{0, 2}{0, 1} {1, 2}

{0} {1} {2}

∅

Draw some chains (this is where the name comes from).

The height of a poset C to be the supremum (least upper bound) of the car-
dinalities of chains in C :

height(C ) := sup
A j C

A a chain

|A|.

In the case of a finite poset (which is what we’re most interested in), this is just
the largest size of a chain in C . This gives one notion of how big/tall a poset is.

Exercise: Suppose C and D are finite posets and that f : C → D is a sur-
jective order-preserving map such that f(x) 5 f(y) implies x 5 y. Prove that
height(C ) = height(D). Compare to a surjective linear map between vector spaces.

Exercise: Suppose C and D are finite posets and that r : C � D : s are or-
der preserving maps such that r ◦ s = id. Prove that r is surjective, s is injective,
and height(C ) = height(D).

Height is related to the geometry and homology of the poset. If A is a finite
chain, then it can be written

A = {a0 < a1 < · · · < an}.

Thus, a chain of size (n+ 1) <∞ is the same thing as a nondegenerate n-simplex.
We can therefore regard the height of a poset as a measure of geometric dimension:

dimgeom(C ) := height(C )− 1,

where the geometric dimension dimgeom(C ) is the dimension of the largest non-
degenerate simplex in C . It follows that if height(C ) < n + 1, then C has no
nongenerate n-simplices. Recalling that the homology of C could be computed
using only the nondegenerate simplices in C , it follows that if height(C ) < n + 1,
then Hn(C ) = 0. We define the “topological dimension”1 of C to be the largest n
such that Hn(C ) 6= 0:

dimtop(C ) := max
{
n ∈ N

∣∣∣Hn(C ) 6= 0
}
.

1This is nonstandard terminology.
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From the definitions, we see that

dimtop(C ) 5 dimgeom(C ) = height(C )− 1.

The moral is that homology detects dimension in some ways. However, because ho-
mology is a homotopy invariant, dimtop(C ) can be strictly smaller than dimgeom(C ).

Exercise: Give an example of a poset C such that dimtop(C ) < dimgeom(C ).
(Hint: what happens if C has a maximum element?)

Exercise: Suppose that C and D are posets and that r : C � D : s are or-
der preserving maps such that r ◦ s = id. Prove that r is surjective, s is injective,
and dimtop(C ) = dimtop(D). Compare to linear maps between vector spaces.

2. The Mayer-Vietoris Sequence

The Mayer-Vietoris sequence is a tool that allows us to relate the homology of a
space X to the homology of its subspaces. Informally, suppose that X = A∪B and
that A and B are “sufficiently nice”. In this case, the Mayer-Vietoris sequence will
give us information about how the homology of X, A, B, and A∩B interact. Thus,
if we choose A and B wisely, we can use this sequence to leverage (known) informa-
tion about H∗(A), H∗(B) and H∗(A ∩ B) up to information about H∗(X). More
precisely, the Mayer-Vietoris sequence is a long exact sequence involving H∗(X),
the direct sum2 H∗(A)⊕H∗(B), and H∗(A ∩B).

Example: To illustrate how this might be useful, consider the torus T = S1 ×S1,
where S1 is regarded as the set of unit length complex numbers. Let

A = T \ ({1} × S1)

B = T \ ({−1} × S1)

be the subsets obtained by deleting two opposite bounding circles from T (draw
the picture). A and B are both homeomorphic to the tube (−1, 1) × S1, which is
homotopy equivalent to S1 via the contraction onto {0} × S1. On the other hand,
A∩B is homeomorphic to two copies of this tube, and hence homotopy equivalent to
S1tS1. Since homology is homotopy invariant, the Mayer-Vietoris sequence would
allow us to understand H∗(T ) in relation to H∗(S

1) ⊕ H∗(S1) and H∗(S
1 t S1).

Thus, given sufficient information about H∗(S
1), we might hope to recover H∗(T ).

The Mayer-Vietoris sequence also is useful for understanding the homology of cer-
tain inductively defined spaces; later on, we’re going to show how to use it to
compute the homology of all Sn inductively from H∗(S

1). Note, by Sn, we mean a
finite (poset) model for the space

{x ∈ Rn+1 | ||x|| = 1}

since we have not really considered the homology of spaces in general. To see how
this will go, let us first recall how suspension works.

2We will define ⊕ momentarily.
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2.1. Suspension and Spheres. Let us begin with the geometric situation. For a
space X, define the cone on X to be

X × [0, 1]/(X × {1}),

i.e. the space obtained by taking the cylinder X × [0, 1] on X and then collapsing
the top to a point. The (unreduced) suspension ΣX is obtained by gluing two
copies of CX together along their base to form a double-cone over X:

ΣX = CX ∪X CX.

It is sometimes convenient to regard the vertex of one cone as a “north pole” and
the vertex of the other as a “south pole”.

Exercise: Let S0 := {0, 1}. Show inductively that the Euclidean sphere Sn ⊂ Rn+1

is homeomorphic to the n-fold suspension ΣnS0.

Poset suspension is completely analogous; the suspension ΣC is the double-cone
on C . Formally, the suspension ΣC of a poset C is obtained by adjoining two
new incomparable points {N1, N2} and declaring that Ni > x for i = 1, 2 and every
x ∈ C . Adjoining a single new point N > x corresponds to forming a cone over C ,
so adjoining N1 and N2 forms a double-cone. Alternatively, we could set Ni < x
for i = 1, 2 and all x ∈ C , but we cannot have N1 < x < N2. Orientation matters.

Exercise: What goes wrong if we take N1 < x < N2? (Hint: maximum.)

Thus, for posets, it is not a good idea to think of the cone vertices as north and
south poles, but rather as a doubled north (or south) pole.

In analogy to the case for Euclidean spheres, we start wth S0 := {0, 1}, regarded
as a poset with two incomparable elements, and take Sn := ΣnS0. Observe Sn will
have 2n+ 2 points. In particular, S1 is the familiar poset below.

∗ ∗

∗ ∗

Exercise: Draw pictures of the posets Sn for some n > 1.

Now, the key observation for us is that ΣC = (C ∪ {N1}) ∪ (C ∪ {N2}) and
(C ∪ {N1}) ∩ (C ∪ {N2}) = C . The cones C ∪ {N•} are contractible because they
have a maximum, hence Hn(C ∪ {N•}) = 0 for all n > 0 and H0(C ∪ {N•}) ∼= Z.
Thus, taking this decomposition as input into the Mayer-Vietoris Sequence will
yield a direct comparison between H∗(C ) and H∗(ΣC ). This will let us compute
H∗(S

n) inductively.

2.2. Direct Sums. We shall now give a brief account of the direct sum. Suppose
that G and H are abelian groups. The direct sum of G and H is the set of
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ordered pairs (g, h) ∈ G×H equipped with componentwise operations:

(g, h) + (g′, h′) = (g +G g
′, h+H h′)

0 = (0G, 0H)

−(g, h) = (−g,−h).

It can be thought of as analogous to the product of two spaces, or the Cartesian
product of sets. For this reason, it is sometimes called the Cartesian product of
abelian groups.

Interestingly, there is a second perspective on the direct sum, which better ac-
counts for its name. We claim that G⊕H is the abelian group obtained by formally
allowing ourselves to add elements of G and H together (with a commutative sum),
while respecting the existing relations in G and H. For the time being, denote this
new group G�H. The generic element of G�H is a finite sum of the form

g1,1 + · · ·+ g1,n1 +h1,1 + · · ·+h1,m1 + g2,1 + · · ·+ g2,n2 +h2,1 + · · ·+ gN,nN
/hN,mN

,

which can be regrouped simply into∑
gi,j +

∑
hk,l = g + h.

Note, the sum
∑
gi,j takes place in G, while the sum

∑
hk,l takes place in H. Since

we assume the group operation + = +� on G�H is commutative, +� is actually
“componentwise”:

(g +� h) +� (g′ +� h
′) = g +� g

′ +� h+� h
′ = (g +G g

′) +� (h+H h′).

Consequently, identities and inversion are also: 0G�H = 0G + 0H and −(g + h) =
(−g) + (−h). Thus, we recover the same group structure as G ⊕ H, provided we
identify g +� h with the ordered pair (g, h).

Exercise: (Direct Sums are categorical products) Suppose G,H,K are abelian
groups. Check that the projection maps

G �
p

G⊕H
q - H

defined by p(g, h) = g and q(g, h) = h are group homomorphisms. Show that
for any pair of homomorphisms f : K → G and g : K → H, there is a unique
homomorphism k : K → G⊕H such that the diagram below commutes.

G �
p

G⊕H
q - H

K

k

6
g

-
�

f

Exercise: (Direct Sums are categorical sums) Suppose G,H,K are abelian groups.
Check that the inclusion maps

G
i- G⊕H �

j
H
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defined by i(g) = (g, 0) and j(h) = (0, h) are group homomorphisms. Show that
for any pair of homomorphisms f : G → K and g : H → K, there is a unique
homomorphism k : G⊕H → K such that the diagram below commutes.

G
i- G⊕H �

j
H

K

k

?�

gf

-

Exercise: Make sense of what a 2×2 matrix of homomorphisms G⊕H → G′⊕H ′
should mean. (Hint: regard G⊕H as a sum and G′ ⊕H ′ as a product.)

2.3. Constuction of the Mayer-Vietoris Sequence. We will need one more
definition before presenting the Mayer-Vietoris sequence. Let C be a poset. A
subset A j C is called a sieve in C if, for any x, y ∈ C , if x 5 y and y ∈ A , then
x ∈ A . Succinctly, a sieve in C is a downward-closed subset of C .

Exercise: Suppose C is a poset and A j C . Prove that A is a sieve if and
only if it is open in the associated Alexandroff topology.

Thus, sieves in a poset C are “reasonable” subspaces by any standard.

Theorem (Mayer-Vietoris). Suppose C is a poset, A ,B j C are sieves, and
C = A ∪B. Then there is a Long Exact Sequence (LES)

· · · → Hn(A ∩B)
in→ Hn(A )⊕Hn(B)

pn→ Hn(C )
dn→ Hn−1(A ∩B)→ · · · .

This sequence extends infinitely to the left and right, but it is eventually 0 as one
goes out to the right.

Proof. This is one of the few cases of a long exact sequence where everything is

constructed concretely.3 To define in, note that the inclusion maps A ∩B
iA→ A

and A ∩B
iB→ B are (trivially) order-preserving. Since Hn is a functor, it induces

group homomorphisms Hn(iA) and Hn(iB), which we take as the components of
in : Hn(A ∩B)→ Hn(A )⊕Hn(B). Explicitly,

in(α) = (α, α).

Similarly, the inclusions A
jA→ C and B

jB→ C induce maps Hn(jA) and Hn(jB) on
homology. Together, Hn(jA) : Hn(A )→ Hn(C ) and −Hn(jB) : Hn(B)→ Hn(C )
induce the homomorphism pn : Hn(A )⊕Hn(B) → Hn(C ), which is given by the
formula

pn(α, β) = α− β.
Finally, for dn we do the following. Suppose γ ∈ Hn(C ) is represented by the cycle∑k

i=1 ai[x
i
0 5 . . . 5 xin] =

∑
aix

i. For each i, the vertex xin is either in A or B,
because C = A ∪ B. Since A (resp. B) is downward closed, it follows that if

3For most LESs, the “connecting homomorphism” Hn → Hn−1 is constructed abstractly using
the Snake Lemma.
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xin ∈ A (resp. B), then [xi0 5 · · · 5 xin] ∈ Cn(A ) (resp. Cn(B)). Thus, for each
i, xi is in Cn(A ), or Cn(B), or both. Choose one of them for each i, and write

k∑
i=1

ai[x
i
0 5 . . . 5 x

i
n] =

∑
xi∈Cn(A )

aix
i +

∑
xi∈Cn(B)

aix
i = α+ β.

Consider ∂α. Since
∑
aix

i is a cycle, 0 = ∂(
∑
aix

i) = ∂(α + β) = ∂α + ∂β.
Therefore ∂α = −∂β as (n − 1)-cycles in C . Since ∂α is a cycle in A and ∂β is
a cycle in B, it follows ∂α is a cycle in A ∩B. W define dn(

∑
aix

i) to be the
homology class in Hn−1(A ∩B) represented by ∂α. �

Exercise: Check the details. We made a lot of (noncanonical) choices in the
construction of dn. Make sure the end results are independent of these choices.

2.4. A Sample Calculation. Let’s look at how to compute the homology of S2

using the Mayer-Vietoris sequence and the homology of S1.
From the work of the previous lecture, we know that

Hn(S1) ∼=
{

Z if n = 0, 1
0 else

.

We decompose S2 into two cones A ,B ∼= CS1 based over S1, with A ∩B = S1

(two hemispheres). See section 2.1. The cones are contractible, therefore

Hn(CS1) ∼=
{

Z if n = 0
0 else

.

Write down the Mayer-Vietoris sequence for n = 2, 1, 0 and plug in what we know:

0⊕ 0→ H2(S2)→ Z→ 0⊕ 0→ H1(S2)→ Z→ Z⊕ Z→ Z→ 0

0⊕ 0 ∼= 0, so there are lots of 0’s showing up in this exact sequence. That’s a good
thing. Do the following exercise:

Exercise: If 0 → A → B is exact, then A → B is injective. If A → B → 0
is exact, then A→ B is surjective.

So, the exactness of 0 → H2(S2) → Z → 0 implies H2(S2) ∼= Z. The exactness of
of 0→ H1(S2)→ Z→ Z⊕ Z implies

H1(S2) ∼= im(H1(S2)→ Z) = ker(Z→ Z⊕ Z).

By the definition of the Mayer-Vietoris sequence, we know that Z → Z ⊕ Z corre-
sponds to the “diagonal map” H0(S1)→ H0(CS1)⊕H0(CS1) sending α 7→ (α, α).
This is injective, so ker(Z → Z ⊕ Z) = 0. Therefore H1(S2) ∼= 0. We know S2 is
connected, so H0(S2) ∼= Z. Finally, since S2 has no nondegenerate n-simplices for
n > 2, Hn(S2) ∼= 0 for all n > 2. To summarize:

Hn(S2) ∼=
{

Z if n = 0, 2
0 else

.

Exercise: When showing Z→ Z⊕Z above is injective, did we need to use the spe-
cific formula given by the Mayer-Vietoris sequence, or would it have been enough
to know everything is exact?
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We pause to emphasize that the best way to learn these methods is to do things
yourself. It is generally accepted that diagram chasing is mostly (only?) beneficial
to the person doing the chasing, and is best done in the privacy of one’s own home.
In any event, try the following exercise.

Exercise: Understand what just happened. Now prove inductively that

Hk(Sn) ∼=
{

Z k = 0, n
0 else

.


