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Abstract. This paper will introduce and prove several theorems involving the

separation of convex sets by hyperplanes, along with other interesting related
results. It will begin with some basic separation results in Rn, such as the

Hyperplane Separation Theorem of Hermann Minkowski, and then it will focus

on and prove the extension of this theorem into normed vector spaces, known
as the Hahn-Banach Separation Theorem. This paper will also prove some

supporting results as stepping stones along the way, such as the Supporting

Hyperplane Theorem and the analytic Hahn-Banach Theorem.
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Introduction

The intent of this paper is to introduce and prove several results relating to
the separation of sets by hyperplanes, terms that will be formally defined later.
Intuitively, the reader can think about drawing a line between two disjoint subsets
of R2 such that the two sets are on different sides of the line, and thinking about
the conditions that will make this possible. Results that will be proved include the
Hyperplane Separation Theorem in Rn, as well as its generalization into normed
vector spaces, known as the Hahn-Banach Separation Theorem. In addition to this
topic being interesting in a mathematical perspective, it is also particularly useful
due to its many applications, such as in optimization problems. This paper will
assume that the reader is familiar with a few basic concepts (such as that of a
vector space) and with some fundamental analysis results, but at least a cursory
definition will be given for most of the terms and concepts used in the paper, so
little background is needed.
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1. Convex Sets

Before we can proceed to results about separation by hyperplanes, we need to
define what convex sets are and establish some basic results about them, since con-
vexity is the most important property that determines whether sets are separable.

Since we will define convexity for sets in a vector space, we will first recall that
a vector space is a set V equipped with two operations, vector addition and scalar
multiplication, that satisfy the eight vector space axioms (the scalars are members
of a field F , usually taken to be the real or complex numbers). For the purposes of
this paper, the scalar field for a vector space will always be assumed to be the real
numbers; in this case, we have what is called a real vector space.

Also, it will be useful to define a normed vector space here, which establishes a
notion of length for a vector space:

Definition 1.1. A real normed vector space is a real vector space V , endowed
with a nonnegative real function ‖ · ‖, called a norm, which satisfies the following
properties:

(1) ‖v‖ ≥ 0 for all v ∈ V , ‖v‖ = 0 if and only if v = 0
(2) ‖αv‖ = |α|‖v‖ for all α ∈ R, v ∈ V
(3) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V

It is important to note that the norm induces a notion of distance: the distance
between two vectors u and v in a normed vector space V is given by ‖u− v‖.

Now, we may proceed to the definition of a convex set:

Definition 1.2. A set A in a real vector space V is said to be convex if for all x,
y ∈ A and all t ∈ [0, 1], the point tx+ (1− t)y ∈ A as well.

In other words, if x and y are in a convex set, then any point in the line segment
connecting x and y will be in the set as well.

The following are several significant examples of convex sets:

Example 1.3.

• The open ball of radius r centered at x0 in a normed vector space V , denoted
Br(x0), is a convex set. More formally, Br(x0) = {x ∈ V | ‖x− x0‖ < r}
is a convex set.
• Similarly, the closed ball of radius r centered at x0 in a normed vector space
V , Br(x0), is a convex set (the bar overhead denotes the closure). More

formally, Br(x0) = {x ∈ V | ‖x− x0‖ ≤ r} is a convex set.

Examples of open and closed balls in R2

It will also be useful to introduce the following definition here, as it plays a large
role in convexity and separation results:
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Definition 1.4. By the Minkowski sum (or simply sum) of two sets A and B in
a vector space V , we mean the set A+B produced by adding each vector in A to
each vector in B. In other words,

A+B = {a+ b | a ∈ A, b ∈ B}
The Minkowski difference (or simply difference) of two sets A and B is defined
similarly:

A−B = {a− b | a ∈ A, b ∈ B}
A+B and A−B are clearly subsets of the same vector space as A and B. Now,

we shall establish an important lemma about convex sets that will be used later on:

Lemma 1.5. If A and B are convex subsets of a vector space V , then A + B is
convex.

Proof. Let x and y be two elements in A+B.
Then x = a1 + b1 for a1 ∈ A, b1 ∈ B, and y = a2 + b2 for a2 ∈ A, b2 ∈ B
So then for all t ∈ [0, 1],

tx+ (1− t)y = t(a1 + b1) + (1− t)(a2 + b2)

= ta1 + tb1 + (1− t)a2 + (1− t)b2
= [ta1 + (1− t)a2]︸ ︷︷ ︸

∈ A

+ [tb1 + (1− t)b2]︸ ︷︷ ︸
∈ B

So for all x, y ∈ A + B and all t ∈ [0, 1], we have that tx + (1 − t)y ∈ A + B,
meaning that the set is convex. �

Note that A− B = A+ (−B), where the set −B is defined in the obvious way,
so A−B is convex as well if A and B are both convex.

2. Closed and Compact Sets

Now, we shall restrict our attention to the the n-dimensional real coordinate
space Rn, which is certainly a vector space. The following definitions and results
will serve as a setup for the separation results we want to show in Rn.

Definition 2.1. We say that a set A in Rn is closed if every convergent sequence
(an)n∈N ⊆ A has a limit a that is also in A. In other words, a closed set is one
such that all limit points are contained in the set.

Definition 2.2. A set A in Rn is bounded if it is contained inside some ball of
finite radius.

The definition of a general compact set can be rather opaque and will not be
very insightful for the purposes of this paper. Instead, I offer (without proof) a
famous result that clarifies what a compact set is in Rn:

Theorem 2.3 (Heine-Borel Theorem). A subset A of Rn is compact if and only if
it is both closed and bounded.

Then, by the Bolzano-Weierstrass Theorem, which states that every bounded
sequence in Rn has a convergent subsequence, we have that for a compact subset
A of Rn, every sequence has a convergent subsequence, whose limit is in A. For a
subset A of Rn, this characterization is often taken as the definition of compactness.

We shall prove the next lemma only for Rn (although this lemma is also true for
any normed vector space).
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Lemma 2.4. Let A and B be subsets of Rn. If A is closed and B is compact, then
A+B is closed.

Proof. LetX = A+B. We wish to show that for any convergent sequence (xn) ⊆ X,
the limit point is in X as well. Assume that (xn) converges to a point x ∈ Rn.
Consider (an) ⊆ A and (bn) ⊆ B such that (xn) = (an)+(bn). By the compactness
of B, (bn) has a subsequence (bnk) such that (bnk) converges to a limit point b ∈ B.
Now, consider (ank) = (xnk)− (bnk), which converges to x− b, as every convergent
subsequence converges to the same limit as its sequence (meaning (xnk) converges
to x). Because A is closed, x− b is a point in A. Finally, consider x = (x− b) + b,
which is a point in the set X, as it is the sum of two elements, one in A and one
in B. Thus, (xn) converges to a point x ∈ X. This implies that X = A + B is
closed. �

This also implies that A−B is closed if A is closed and B is compact.
It will be useful to also define the closure of a set, which gives us the ‘smallest’

closed set that contains the given set, as well as some other related terms:

Definition 2.5.

• The closure of a set A in Rn, denoted A, is the set A including its limit
points.
• The boundary of a set A in Rn, denoted ∂A, is the set of points that are

members of both the closure of A and the closure of Ac, the set complement
of A. In other words, ∂A = A ∩Ac.
• The interior of a set A in Rn, denoted Å, is the set A excluding its bound-

ary. In other words, Å = A \ ∂A.

Now, the next lemma will establish that the closure of a convex set retains its
convexity:

Lemma 2.6. Let A be a subset of Rn. If A is convex, then A is also convex.

Proof. Let x, y ∈ A. By the definition of closure, there exists sequences (xn),
(yn) ⊆ A with limits x and y, respectively. Now, because A is convex, we know that
for each xi and yi, and for all t ∈ [0, 1], we have txi+(1− t)yi ∈ A. This establishes
the sequence (txn + (1− t)yn) ⊆ A, which is convergent by the convergence of (xn)
and (yn). So we have that tx + (1 − t)y ∈ A, as A includes all limit points of A.
This establishes that A is convex. �

We need one more important result about compact sets before we can finally
establish results about separation of sets in Rn. I shall present it without proof:

Theorem 2.7 (Extreme Value Theorem). Every continuous real-valued function
on a compact set attains its extreme values on that set.

3. Hyperplane Separation in Rn

Now, we finally have the tools to establish some separation results in Rn with the
standard Euclidean norm, which is of course a normed vector space. Our primary
means of separation here will be through hyperplanes, which I now define:

Definition 3.1. Let p ∈ Rn be nonzero, and let c ∈ R be constant. The set H(p, c)
consisting of all vectors x ∈ Rn such that

p · x = p1x1 + p2x2 + ...+ pnxn = c
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is a subset of Rn called a hyperplane. More concisely, a hyperplane H(p, c) of Rn

is the set {x ∈ Rn | p · x = c}.

Hyperplanes according to this definition have one dimension less than the space
they reside in, so hyperplanes in R2 are lines, while hyperplanes in R3 are planes.
Additionally, they divide Rn into two half-spaces, which I denote

O(p, c) = {x ∈ Rn | p · x > c}

P(p, c) = {x ∈ Rn | p · x < c}
We can also consider the closure of the two half-spaces, referred to as the closed

half-spaces:

O(p, c) = {x ∈ Rn | p · x ≥ c}

P(p, c) = {x ∈ Rn | p · x ≤ c}
Lastly, it is helpful to note that p can be thought of as as a vector that is

orthogonal to the hyperplane at every point.
One more definition is necessary to formalize the notion of separation:

Definition 3.2.

• We say that two nonempty sets A and B in Rn are separated by a hyper-
plane if there exists a p ∈ Rn nonzero and a constant c ∈ R such that
p · a ≥ c ≥ p · b for all a ∈ A and all b ∈ B.
• We say that two nonempty sets A and B in Rn are strictly separated by

a hyperplane if there exists a p ∈ Rn nonzero and a constant c ∈ R such
that p · a > c > p · b for all a ∈ A and all b ∈ B.

The above definitions establish that A and B either lie in different O(p, c) and

P(p, c) (in the case of separation) or in different O(p, c) and P(p, c) (in the case of
strict separation).

Now, we shall establish and prove our first separation result:

Lemma 3.3. Let A be a nonempty, closed, and convex subset of Rn. Let x0 be a
point in Rn such that x0 /∈ A. Then there exists an a0 ∈ A and p ∈ Rn nonzero
such that p · a ≥ c = p · a0 > p · x0 for all a ∈ A.

Note that the separation established in the lemma is stronger than separation,
but not quite as strong as strict separation.

Proof. Let a0 ∈ A be a point that realizes the minimum distance from any point in
A to x0. That is, a0 ∈ A is a point such that for all a ∈ A, ‖x0 − a0‖ ≤ ‖x0 − a‖.

We must first show that such a point exists:
First, note that the standard Euclidean norm ‖·‖ is continuous. Now, note that A is

nonempty, so there is a point z ∈ A. Let Z = A∩B‖z−x0‖(x0), where B‖z−x0‖(x0)
is the closed ball of radius ‖z−x0‖ centered at x0. Z is clearly closed and bounded,
so Z is compact. Also, note that x0 /∈ Z. Thus, we can use the Extreme Value
Theorem to find a point in Z that minimizes the distance from x0 to any point in
Z (in other words, the norm function attains a minimum in Z). Call this point
a0. Finally, note that this construction causes all points in A \ Z to be not closer
to x0 than any point in Z (or causes A \ Z to be empty), so a0 is also a point
that minimizes the distance from x0 to the entire set A i.e. a0 is a point such that
‖x0 − a0‖ ≤ ‖x0 − a‖ for all a ∈ A.
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Let p = a0 − x0 and c = p · a0. We first note that p is nonzero because x0 /∈ A,
but a0 ∈ A. We need to show that these values satisfy p · x0 < c and p · a ≥ c for
all a ∈ A. The first inequality is easier to show:

p · x0 = p · x0 − p · a0 + p · a0
= p · (x0 − a0) + p · a0
= p · (−p) + p · a0
= −‖p‖2 + p · a0
< p · a0 = c

The last line follows from the fact that because p is nonzero, −‖p‖2 is necessarily
negative.

Finally, we need to show that p · a ≥ c for all a ∈ A, a harder task:
By the convexity of A, we know that w = ta + (1 − t)a0 ∈ A for all t ∈ [0, 1] and
all a ∈ A. So now we consider

‖x0 − a0‖2 − ‖x0 − w‖2 = ‖x0 − a0‖2 − ‖x0 − (ta+ (1− t)a0)‖2

= ‖x0 − a0‖2 − ‖x0 − ta− a0 + ta0‖2

= (x0 − a0) · (x0 − a0)−
[(x0 − a0) + t(a0 − a)] · [(x0 − a0) + t(a0 − a)]

= (x0 − a0) · (x0 − a0)− [(x0 − a0) · (x0 − a0)+

2t(a0 − a) · (x0 − a0) + t2(a0 − a) · (a0 − a)]

= −2t(a0 − a) · (x0 − a0)− t2(a0 − a) · (a0 − a)

= −2t(a0 − a) · (−p)− t2‖a0 − a‖2

= t[2p · (a0 − a)− t‖a0 − a‖2]

Now, we will show by contradiction that it cannot be true that p · a < c = p · a0,
meaning that p · a ≥ c. Assume by contradiction that p · a < c. Then we have that

p · (a0 − a) = p · a0 − p · a
= c− p · a︸︷︷︸

< c

> 0

So then continuing with the manipulations above, we have that for t sufficiently
small, it is certainly true that 2p · (a0 − a) > t‖a0 − a‖2, which then implies that
‖x0 − a0‖2 − ‖x0 − w‖2 > 0 for t sufficiently small. This in turn implies that
‖x0 − a0‖ > ‖x0 − w‖. However, this indicates that the distance from w to x0 is
less than then distance from a0 to x0, which cannot be true since we established
that a0 attains the minimum distance from any point in A to x0. Thus, we have
reached a contradiction, so it must be true that p · a ≥ c for all a ∈ A.

Thus, we have established that p · a ≥ c = p · a0 > p · x0 for all a ∈ A. This
completes the proof. �

Now, with this lemma, we can prove the Supporting Hyperplane Theorem, which
we can use to easily prove one version of the Hyperplane Separation Theorem. First,
I define what a supporting hyperplane is:
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Definition 3.4. We say that a nonempty set A in Rn is supported by a hyperplane
at the point x0 ∈ Rn if there exists a p ∈ Rn nonzero such that p · a ≥ p · x0 for all
a ∈ A.

This definition establishes that the set A is contained entirely in one of the closed
half-spaces O(p, c) or P(p, c) created by the supporting hyperplane.

Theorem 3.5 (Supporting Hyperplane Theorem). Let A be a nonempty and convex

subset of Rn. If x0 /∈ Å, then A is supported by a hyperplane at x0.

Proof. We distinguish two cases: x0 /∈ A and x0 ∈ A.
If x0 /∈ A, we can apply Lemma 3.3 on A and the point x0, as A is closed and

by Lemma 2.6, A is also convex. Then there exists a p ∈ Rn nonzero such that
p ·a ≥ c > p ·x0 for all a ∈ A. Thus, it is in fact true that p ·a > p ·x0 for all a ∈ A.

If x0 ∈ A, then it is necessarily true that x0 ∈ ∂A, as x0 /∈ Å. So then for all
ε > 0, there exists some zε ∈ Bε(x0)∩Ac. Thus, there is a sequence (zn) in A

c
that

converges to x0. For each zi, consider the set A− {zi}. Now, notice that we have
the difference between a closed set A and a compact set {zi} (since a set containing
only one point is closed and bounded), so by Lemma 2.4, A− {zi} is closed. Also,
we have a difference between two convex sets (a set containing only one point is
trivially convex), so by Lemma 1.5, A− {zi} is convex as well. Also, since zi /∈ A,
we have 0 /∈ A− {zi}.

Then, using Lemma 3.3 on each A − {zi} and the point 0, we have that there
exists pi ∈ A−{zi} such that pi ·(a−zi) > pi ·0 = 0 for all a ∈ A. Thus, pi ·a > pi ·zi
for all a ∈ A. Now, let p̂i = pi

‖pi‖ . Note that each p̂i ∈ {x ∈ Rn | ‖x‖ = 1}, a

compact set. Also, note that p̂i · a > p̂i · zi is certainly true as well. Because each
p̂i belongs to the same compact set, (p̂n) has a convergent subsequence whose limit
lies in {x ∈ Rn | ‖x‖ = 1}. Denote this limit p. Now, since (zn) converges to x0, by
the continuity of the dot product when one argument is fixed, we have p · a ≥ p ·x0
for all a ∈ A. Thus, this inequality certainly holds for all a ∈ A as well. �

Now, our first Hyperplane Separation Theorem can be proven easily:

Theorem 3.6 (Weak Hyperplane Separation Theorem). Let A and B be nonempty
and convex subsets of Rn. If A and B are disjoint, then A and B can be separated
by a hyperplane.

Proof. Consider the set Z = A − B. By Lemma 1.5, Z is convex since both A
and B are convex. Also, note that A and B are disjoint, so 0 /∈ Z. Then, by the
Supporting Hyperplane Theorem, there exists a p ∈ Rn such that p · z ≥ p · 0 = 0
for all z ∈ Z. Now, note that all z ∈ Z are of the form a − b for a ∈ A and
b ∈ B. Then p · z = p · (a − b) ≥ 0, so we have that p · a ≥ p · b for all a ∈ A and
b ∈ B. Thus, inf

a∈A
{p · a} ≥ sup

b∈B
{p · b}, and we know that inf

a∈A
{p · a} > −∞ because

it is bounded below by p · b0, where b0 can be any point in B. Similarly, we know
that sup

b∈B
{p · b} < ∞. So we can choose c any real number between sup

b∈B
{p · b} and

inf
a∈A
{p · a} to obtain p · a ≥ c ≥ p · b for all a ∈ A and all b ∈ B. �

The separation in the theorem above can be strengthened into strict separation
if we make more assumptions about A and B. This is the Strong Hyperplane
Separation Theorem:
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Theorem 3.7 (Strong Hyperplane Separation Theorem). Let A and B be nonempty
and convex subsets of Rn. Let A be closed and B be compact. If A and B are dis-
joint, then A and B can be strictly separated by a hyperplane.

Proof. Again, consider the set Z = A − B. Z is convex by Lemma 1.5 and closed
by Lemma 2.4. Also, 0 /∈ Z because A and B are disjoint. Thus, we can apply
Lemma 3.3 on the set Z and the point 0. Thus, there exists a p ∈ Rn nonzero such
that p · z ≥ k > p · 0 = 0 for all z ∈ Z. Thus, in order to obtain a strict inequality,
we can say that p ·z > k

2 > 0 for all z ∈ Z. Now, note that all z ∈ Z can be written

in the form a− b for a ∈ A and b ∈ B. Thus, p · (a− b) > k
2 > 0. This means that

p · a > k
2 + p · b > p · b for all a ∈ A and b ∈ B. Since this chain of inequalities is

true for all b ∈ B, it remains true if we replace the middle term with its supremum.
Now, because B is compact and the dot product is certainly continuous when one
argument is fixed, we have by the Extreme Value Theorem that

sup
b∈B
{k

2
+ p · b} = max

b∈B
{k

2
+ p · b}

=
k

2
+ p · b0

for some b0 ∈ B. Now, we have p · a > k
2 + p · b0 > p · b for all a ∈ A and b ∈ B. We

can set c = k
2 + p · b0 to get our desired inequality: p · a > c > p · b for all a ∈ A

and b ∈ B. �

Hyperplane Separation in R2

There are many other interesting separation results in Rn that can be proven,
such as results involving cones or other types of separation. Additionally, the Hy-
perplane Separation Theorems have numerous applications, such as in optimization
problems (See [2] for some constrained optimization results and see [6] for many
other applications of hyperplanes and convex sets). However, this paper will now
focus on the generalization of the Hyperplane Separation Theorem into normed
vector spaces, commonly known as the Hahn-Banach Separation Theorem.

4. The Hahn-Banach Separation Theorem

The Hahn-Banach Theorem is one of the central tools and results of functional
analysis. One of its formulations, usually referred to as the Hahn-Banach Separation
Theorem, is a generalization of the Hyperplane Separation Theorem into normed
vector spaces.

We will first establish the general Hahn-Banach Theorem for any real vector
space in order to help us prove the separation theorem, but we will need several
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definitions first (recall that for our purposes, we assumed that the scalar field of a
vector space is always the real numbers):

Definition 4.1. By a functional, we mean a scalar-valued function defined on a
vector space. In our case, a functional is simply a function p : V → R, where V is
a real vector space.

Definition 4.2. A functional p on a real vector space V is said to be linear if

(1) p(u+ v) = p(u) + p(v) for all u, v ∈ V
(2) p(αv) = αp(v) for all α ∈ R, v ∈ V

Note that the dot product (with one argument fixed) in Rn, which we used many
times in the preceding section, is an example of a linear functional.

Definition 4.3.

• A functional p on a real vector space V is called subadditive if p(u + v) ≤
p(u) + p(v) for all u, v ∈ V .
• A functional p on a real vector space V is called positive homogeneous if
p(αv) = αp(v) for all α > 0 and v ∈ V .

Note that the norm is clearly a subadditive, positive homogeneous functional.

Definition 4.4. A subspace of a vector space V is a subset of V which is itself a
vector space.

Definition 4.5. Let S be a subset of a real vector space V . The span of S,
denoted span(S), is the smallest subspace of V that contains S. Equivalently,
the span of S is the set of all finite linear combinations of elements in S, i.e.
span(S) = {λ1v1 + λ2v2 + ...+ λkvk | vi ∈ S, λi ∈ R}, where k ≥ 1.

We will also need to define some terms and symbols related to set theory. This
will be nonexhaustive, as the purpose of this paper is not to delve into set theory.

Definition 4.6.

• Given a set X, a relation on X is a subset R of X ×X.
• A relation R is called reflexive if (x, x) ∈ R for all x ∈ X.
• A relation R is called transitive if (x, y) ∈ R and (y, z) ∈ R implies that

(x, z) ∈ R.
• A relation R is called antisymmetric if (x, y) ∈ R and (y, x) ∈ R implies

that x = y.
• A reflexive, transitive, and antisymmetric relation R on a set X is called a

partial ordering. In particular, we use the notation x 4 y if (x, y) ∈ R is a
partial order, and x ≺ y when x 6= y.
• Two elements x and y of a set X along with a partial ordering 4 are

comparable if either x 4 y or y 4 x
• A subset C of a set X with partial ordering 4 is called a chain if any two

elements of S are comparable. In other words, for all x, y ∈ C, either x 4 y
or y 4 x.
• An element x ∈ X is called an upper bound for a subset Y of X if y 4 x

for all y ∈ Y .
• An element x ∈ X is called a maximal element for X if x 4 y holds only

when y = x.
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The relation ≤ on the real numbers is a familiar example of a partial ordering.
Now, we have the definitions to state the following lemma, one of the most

important propositions in set theory, which I will not offer a proof for:

Lemma 4.7 (Zorn’s Lemma). If P is a nonempty partially ordered set such that
every chain has an upper bound, then P contains a maximal element.

The most important use of this lemma (for us) is that it allows us to prove that
there is a ‘maximal extension’ in the proof of the Hahn-Banach Theorem. There
are actually many interesting results about Zorn’s Lemma that unfortunately do
not coincide with the goals of this paper (such as its equivalence with the Axiom
of Choice, etc.).

Now, we are finally in the position to state and prove the general form of the
Hahn-Banach Theorem.

Theorem 4.8 (Hahn-Banach Theorem). Let V be a real vector space, and let U
be a subspace of V . Let p be a subadditive, positive homogeneous functional on V .
If f is a linear functional on U such that f(v) ≤ p(v) for all v ∈ U , then there is a
linear functional F on V such that F (v) = f(v) for all v ∈ U and F (v) ≤ p(v) for
all v ∈ V .

In other words, this theorem allows certain linear functionals defined on some
subspace to be extended to the entire vector space, making it a particularly useful
tool. Additionally, several geometric/separation results follow (and are actually
equivalent) to this theorem, and they are of particular interest to us.

Proof. Let P be the collection of all ordered pairs (Z, g), where Z is a subspace of
V that contains U and g is a linear functional on Z that is equal to f on U and is
less than or equal to p on Z. First, note that P is nonempty because it contains
(U, f). Now, we establish a partial ordering on P by (Z1, g1) ≺ (Z2, g2) if Z1 ⊂ Z2

and if g2 = g1 for g2 in Z1. If {(Zα, gα) | α ∈ A} is a chain (where A is an arbitrary

indexing set), then it would have an upper bound (Z, g), where Z =
⋃
α∈A

Zα and g

is a linear functional on Z defined by g(v) = gα(v) for all v ∈ Zα.
Let us first verify that Z and g are well-defined and fulfill the necessary condi-

tions. Z is clearly a subspace of V that contains U . To see that g is well-defined,
suppose that v ∈ Zα and v ∈ Zβ . Because Zα and Zβ are in a chain, we have
that either (Zα, gα) ≺ (Zβ , gβ) or (Zβ , gβ) ≺ (Zα, gα). Without loss of generality,
assume that the former is true. Then Zα ⊂ Zβ and gβ = gα for gβ in Zα, meaning
that gβ(v) = gα(v) for v ∈ Zα. This implies that g is well-defined. Addition-
ally, g is linear because for u, v ∈ Z, there exists some α such that u, v ∈ Zα,
so then for ζ, η ∈ R, we have g(ζu + ηv) = gα(ζu + ηv) = ζgα(u) + ηgα(v) =
ζg(u) + ηg(v). So finally, we can conclude that (Z, g) ∈ P is an upper bound of the
chain {(Zα, gα) | α ∈ A} i.e. (Zα, gα) ≺ (Z, g) for all α.

Now, we can see that P fulfills the assumptions of Zorn’s Lemma, so P has a
maximal element, which I denote (Y, F ). Now, we must show that Y is in fact equal
to V , in which case F is our desired extension of f into V . Assume by contradiction
that Y 6= V , so then there exists some v0 ∈ V \ Y . Let Y ′ = Y + span{v0} =
{v + λv0 | v ∈ Y, λ ∈ R}. So now, we will find some (Y ′, F ′) ∈ P such that
(Y, F ) ≺ (Y ′, F ′), which will contradict the maximality of (Y, F ).

We already have that Y ⊂ Y ′ and that Y ′ is a subspace of V that contains U .
Now, we will need to show that F ′ = F for F ′ in Y , and also that the F ′ fulfills
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the conditions for (Y ′, F ′) be in the collection P (i.e. we need to show that F ′ is a
linear functional that coincides with f on U and satisfies F ′ ≤ p on Y ′). For some
α ∈ R fixed, we can define F ′(v + λv0) = F (v) + λα for all v ∈ Y , λ ∈ R, with
F ′(v0) = α. Then it follows immediately that F ′ is linear and that F ′ = F for F ′

in Y (which in turn implies that F ′ coincides with f on U , as (Y, F ) is in P and is
maximal, meaning that (U, f) 4 (Y, F )). So finally, we just need to show that we
can choose an α such that F ′ ≤ p on Y ′.

In other words, we need an α such that when λ > 0, we have

(4.9) F ′(v + λv0) = F (v) + λα ≤ p(v + λv0)

and when λ < 0, we have (by letting λ = −µ)

(4.10) F ′(v − µv0) = F (v)− µα ≤ p(v − µv0)

for all v ∈ Y . Now, we see that (4.9) is equivalent to

(4.11) α ≤ p(w + v0)− F (w)

for all w ∈ Y if we divide by λ and let w = v
λ , and we see that (4.10) is equivalent

to

(4.12) α ≥ F (x)− p(x− v0)

for all x ∈ Y if we divide by µ and let x = v
µ . We can combine (4.11) and (4.12) to

obtain
p(w + v0)− F (w) ≥ α ≥ F (x)− p(x− v0)

for all w, x ∈ Y .
Thus, to see that α exists and is well-defined, we need to show that

inf
w∈Y
{p(w + v0)− F (w)} ≥ sup

x∈Y
{F (x)− p(x− v0)}

This means that we need to show that

p(w + v0)− F (w) ≥ F (x)− p(x− v0)

holds for all w, x ∈ Y . This is equivalent to stating that

(4.13) F (w) + F (x) = F (w + x) ≤ p(w + v0) + p(x− v0)

Now, we can show that (4.13) is true for all w, x ∈ Y , which will establish that we
can find a suitable α. It is not a difficult task to do so:

F (w + x) ≤ p(w + x)

= p(w + v0 − v0 + x)

≤ p(w + v0) + p(x− v0)

So, we are finally able to verify the existence of a proper α such that F ′ ≤ p.
Thus, we can conclude that (Y ′, F ′) is in the collection P and that (Y, F ) ≺ (Y ′, F ′).
This contradicts the maximality of (Y, F ) established by Zorn’s Lemma, so we can
conclude that Y = V , with F being the desired extension of f into V . �

I will demonstrate the strength of the general Hahn-Banach Theorem by estab-
lishing some useful corollaries that follow. We will now work with normed vector
spaces, which play a very important role in functional analysis; in particular, Ba-
nach Spaces and Hilbert Spaces are both examples of normed vector spaces. Be-
cause we are working with normed vector spaces, we may consider bounded linear
functionals, which I define now:
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Definition 4.14. Let V be a normed vector space. A linear functional F on V is
bounded if there exists some M > 0 such that |F (v)| ≤M‖v‖ for all v ∈ V .

We will also need to define the norm of a bounded linear functional:

Definition 4.15. Let V be a normed vector space and F be a bounded linear
functional on V . The norm of F is defined by ‖F‖ = sup

‖v‖≤1
{|F (v)|}.

First, I will prove a useful lemma that establishes the equivalence of bounded and
continuous linear functionals. Thus, we can replace all the occurrences of ‘bounded
linear functional’ with ‘continuous linear functional,’ and vice versa.

Lemma 4.16. Let V be a normed vector space. A linear functional F on V is
bounded if and only if it is continuous.

Proof. Assume that F is bounded. Then we have that for all v, h ∈ V , h nonzero,
|F (v + h) − F (v)| = |F (v) + F (h) − F (v)| = |F (h)| ≤ M‖h‖ for some M > 0.
Continuity at v follows from letting h go to zero.

Now, assume that F is continuous. Then F is obviously continuous at 0. Thus,
there exists a δ > 0 such that |F (h)| = |F (h) − F (0)| ≤ 1 for all h ∈ V with
‖h‖ ≤ δ (we note that for any linear functional f , we have that f(0) = 0 due to
the fact that f(0) = f(0 + 0) = f(0) + f(0)). Thus, for all v ∈ V nonzero, we have

|F (v)| = |‖v‖δ F (δ v
‖v‖ )| =

‖v‖
δ |F (δ v

‖v‖ )| ≤
‖v‖
δ · 1 = ‖v‖

δ , so F is bounded. �

The next theorem is an easy application of the general Hahn-Banach Theorem,
and it is generally called the Hahn-Banach Theorem for Normed Vector Spaces:

Theorem 4.17 (Hahn-Banach Theorem for Normed Vector Spaces). Let V be
a normed vector space, and let U be a subspace of V . If f is a bounded linear
functional defined on U with norm ‖f‖U , then there is a bounded linear extension
F of f to V such that ‖F‖ = ‖f‖U .

Proof. Let p(v) = ‖f‖U‖v‖ in the Hahn-Banach Theorem. It is easily verified that
p is subadditive and positive homogeneous. We also see that f ≤ p on U . So by
the Hahn-Banach Theorem, we have that there is a linear extension F of f to V
such that F ≤ p. Now, by using the linearity of F and the properties of norms, we
get the following chain of inequalities: −p(v) = −p(−v) ≤ −F (−v) = F (v) ≤ p(v)
for all v ∈ V . Thus, we get that −‖f‖U‖v‖ ≤ F (v) ≤ ‖f‖U‖v‖, or in other words,
|F (v)| ≤ ‖f‖U‖v‖ for all v ∈ V (i.e. F is bounded). Since this is true for all v ∈ V ,
it follows that ‖F‖ ≤ ‖f‖U . Also, because F is an extension of f , it cannot have a
smaller norm, so we also have ‖F‖ ≥ ‖f‖U . This implies that ‖F‖ = ‖f‖U �

Corollary 4.18. Let V be a normed vector space, and let v0 ∈ V be nonzero. Then
there is an bounded linear functional F on V such that ‖F‖ = 1 and ‖v0‖ = F (v0).

Proof. Let U = span{v0}. Define f on U by f(αv0) = α‖v0‖, so f is clearly
a bounded linear functional with ‖f‖U = 1. By the Hahn-Banach Theorem for
Normed Vector Spaces, we see that there is a norm-preserving extension F of f to
V that is also a bounded linear functional (so ‖F‖ = 1). Now, because v0 ∈ U and
F = f on U , we have that F (v0) = f(v0) = ‖v0‖. �

Now, to begin the separation results for normed vector spaces, we will need
several other definitions, including a generalization of the definition of a hyperplane.
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Definition 4.19. Let C be a set in a real normed vector space V . The Minkowski
functional of C is a functional p : V → R, defined by p(v) = inf

v∈λC
{λ > 0}.

It is clear that a Minkowski functional is always nonnegative, but it is possible
that it can be equal to ∞. Note that the Minkowski functional of the unit ball
B1(0) is the norm ‖ · ‖.

Definition 4.20. Let V be a real normed vector space, F be a continuous linear
functional, and c ∈ R be constant. A hyperplane in V is a set of the form H(F, c) =
{x ∈ V | F (x) = c}.

We see now that hyperplanes in Rn are just a special case of this definition, where
the continuous linear functional is the dot product (with one argument fixed).

Definition 4.21. We say that two nonempty sets A and B in a real normed vector
space V are separated by a hyperplane if there exists a continuous linear functional
F on V and a constant c ∈ R such that F (a) ≥ c ≥ F (b) for all a ∈ A and b ∈ B.

If O(F, c) = {x ∈ V | F (x) ≥ c} and P(F, c) = {x ∈ V | F (x) ≤ c} are the two
closed half-spaces of a real normed vector space V , then this definition of separation
establishes that A and B lie in different O(F, c) and P(F, c).

We will now establish that we can ensure that the Minkowski functional be
subadditive and positive homogeneous by putting some requirements on the set it
is defined on:

Lemma 4.22. Let C be a nonempty convex set in a real normed vector space V such
that 0 ∈ C̊. The Minkowski functional of C, p(v) = inf

v∈λC
{λ > 0}, is subadditive

and positive homogeneous.

Proof. Positive homogeneity follows from

p(αv) = inf
αv∈λC

{λ > 0}

= α inf
v∈ λαC

{λ
α
> 0}

= αp(v)

To obtain subadditivity, we can do the following: if ε > 0 is given, let λ and µ
be positive numbers such that u = λc1 for some c1 ∈ C, v = µc2 for some c2 ∈ C,
λ < p(u) + ε

2 , and µ < p(v) + ε
2 . So then

u+ v = λc1 + µc2

= (λ+ µ)(
λ

λ+ µ︸ ︷︷ ︸
∈[0,1]

c1 +
µ

λ+ µ︸ ︷︷ ︸
∈[0,1]

c2)

which implies that u+ v ∈ (λ+µ)C by the convexity of C. Thus, by the definition
of the Minkowski functional, p(u + v) ≤ λ + µ < p(u) + p(v) + ε, implying that
p(u+ v) ≤ p(u) + p(v). �

Thus, the Minkowski functional is a viable functional to be used as the sub-
additive, positive homogeneous bounding functional required in the Hahn-Banach
Theorem. Now, we will finally be working with separation results in a normed
vector space. This is our first:
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Lemma 4.23. Let C be a nonempty convex subset of a real normed vector space V
such that C contains an interior point, and let x0 /∈ C. Then there is a continuous
linear functional F on V such that F (x) ≤ F (x0) for all x ∈ C.

Proof. Without loss of generality, we can assume that 0 ∈ C̊ because if not, we can
simply translate C. Let X = span{x0} = {λx0 | λ ∈ R}. We define the linear
functional f on X by f(λx0) = λ. We have that since x0 /∈ C, λx0 /∈ λC for
λ 6= 0, so then if p is the Minkowski functional of C, we have p(λx0) ≥ λ = f(λx0),
implying that f(x) ≤ p(x) for all x ∈ X. Then, by the Hahn-Banach Theorem,
there is a linear extension F of f into V that satisfies F (x) ≤ p(x) for all x ∈ V .
Now, for x ∈ C, we have that F (x) ≤ p(x) ≤ 1 = F (x0) (since by definition, the
Minkowski functional p(x) ≤ 1 when x ∈ C). So we have proven that F (x) ≤ F (x0)
for all x ∈ C. It remains to show that F is continuous.

Since we assumed without loss of generality that 0 ∈ C̊, we have that for a given
ε > 0 and for all y with ‖y‖ sufficiently small, y

ε , −
y
ε ∈ C. So because F (yε ) ≤ 1

and F (−yε ) ≤ 1, we have that −ε ≤ F (y) ≤ ε, or in other words, |F (y)| ≤ ε for
‖y‖ sufficiently small i.e. ‖y‖ ≤ δ. By the linearity of F and setting y = x− z, we
have that |F (x) − F (z)| = |F (x − z)| ≤ ε for ‖x − z‖ ≤ δ. In other words, F is
continuous. �

Note that the above lemma is a generalization of the Supporting Hyperplane
Theorem into normed vector spaces.

The following theorem is the goal of this paper. It is often called the Hahn-
Banach Separation Theorem for Normed Vector Spaces, and it is the generalization
of the Weak Hyperplane Separation Theorem (that we proved in the preceding
section) into normed vector spaces. Notably, the proof will work in almost exactly
the same manner.

Theorem 4.24 (Hahn-Banach Separation Theorem). Let A and B be nonempty
and convex subsets of a real normed vector space V . Furthermore, assume that A
and B are disjoint and that A has an interior point. Then there is a hyperplane
that separates A and B.

Proof. We consider the set Z = B − A, which is convex by Lemma 1.5. Since A
and B are disjoint, 0 /∈ Z. Also, note that it is necessarily true that Z has an
interior point. Then, the set Z with the point 0 fulfill the conditions of Lemma
4.23, so there exists a continuous linear functional F such that F (z) ≤ F (0) = 0
for all z ∈ Z (recall that for any linear functional f , we have that f(0) = 0). Now,
note that all z ∈ Z can be written as b − a for a ∈ A and b ∈ B. So then, we
have that F (z) = F (b − a) = F (b) − F (a) ≤ 0, or F (a) ≥ F (b) for all a ∈ A and
b ∈ B. Thus, inf

a∈A
F (a) ≥ sup

b∈B
F (b), and we know inf

a∈A
F (a) > −∞ because it is

bounded below by F (b0), where b0 can be any point in B (and F (b0) 6= −∞ by
the continuity of F ). Similarly, we know that sup

b∈B
F (b) < ∞. So we can choose c

any real number between sup
b∈B

F (b) and inf
a∈A

F (a) to obtain F (a) ≥ c ≥ F (b) for all

a ∈ A and b ∈ B. �

We see especially now that the Weak Hyperplane Separation Theorem estab-
lished in the preceding section is essentially just the Hahn-Banach Separation The-
orem, with the dot product (with one argument fixed) as the continuous linear
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functional. In fact, we even used the same process as proving the Weak Hyperplane
Separation Theorem to prove this theorem in that we first proved a generalization of
the Supporting Hyperplane Theorem and then used that to prove the Hahn-Banach
Separation Theorem.

There are numerous other separation results that can be established in a normed
vector space with the Hahn-Banach Theorem, including a generalization of the
Strong Hyperplane Separation Theorem. In fact, the Hahn-Banach Separation
Theorem can be even further generalized into topological vector spaces, although
this theorem takes much more work to establish and prove. The interested reader is
urged to look into [1] to see the Hahn-Banach Separation Theorem for Topological
Vector Spaces (although some basic knowledge of topology may be helpful before
doing so).
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