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Abstract. Dirichlet’s theorem states that if q and l are two relatively prime

positive integers, there are infinitely many primes of the form l+kq. Dirichlet’s
theorem is a generalized statement about prime numbers and the theory of

Fourier series on the finite abelian group (Z/qZ)∗ plays an important role in

the solution.
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1. Dirichlet’s theorem on arithmetic progressions

Dirichelt’s theorem on arithmetic progressions is a statement about the infinitude
of prime numbers.

Theorem 1.1. If q and l are relatively prime positive integers, then there are
infinitely many primes of the form l + kq with k ∈ Z

This theorem was proved by Dirichlet in 1837, and before that, there were several
mathematicians whose work dealt closely with the achievements related to Dirich-
let’s theorem.
We can easily prove by contradiction that there exist infinitely many primes and
by constructing a converging alternating series, we can also prove that there are
infinitely many primes in the form 4k + 1.

Dirichlet proved this theorem by showing that the series

(1.2)
∑

p≡lmodq

1

p

1
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diverges, where the sum is over all primes congruent to l modulo q.
The starting point of Dirichlet’s argument is Euler’s product formula for the zeta
function, and Legendre conjectured the theorem for his proof of the law of quadratic
reciprocity. Later, Riemann extended the zeta function to the complex plane and
indicated the non-vanishing of zeta function was essential in the understanding of
the distribution of prime numbers.
The main idea of this proof is to prove that∑

p≡l
1
ps ,

diverges as s → 1+, and the proof starts with Fourier analysis, which reduces the
theorem to a statement, which is easier to analyze and related to the Dirichlet
L-function. We analyze the L-functions and introduce a general form of Euler’s
product formula, ∑∞

n=1
χ(n)
ns =

∏
p

1
(1−χ(p)p−s) ,

where the product is over all primes. We then prove the non-vanishing of L-
functions and finish the proof.
Moreover, the requirement of relatively prime integers q and l is indispensable for
the result since we can easily construct a counterexample by picking q = 2, l = 4
and there is only one prime, namely 2, contained in the arithmetic progression of
q, l.

2. Fourier analysis, Direchlet characters, and reduction of the
theorem

Definition 2.1. Let Z∗(q) denote the abelian group of all non-negative integers,
which are smaller than q and relatively prime to q. Define the Euler phi-function
by the order of Z∗(q). And the operation on this group is the normal multiplication.
Write

φ(q) = |Z∗(q)|

Set G = Z∗(q),consider the function δl on G, the characteristic function of l; if
n ∈ Z∗(q), then

δl(n) =

{
1 if n ≡ l mod q,
0, otherwise.

Expand the function in a Fourier series as follows:

δl(n) =
∑
e∈Ĝ δl(e)e(n)

where, Ĝ denotes the group of all characters of G, and δ̂l(e) denotes the Fourier
coefficient of δl(n) with respect to e.

δ̂l(e) = 1
|G|
∑
m∈G δ̂l(m)e(m) = 1

|G|e(l)

Hence

(2.2) δl(n) =
1

|G|
∑
e∈Ĝ

e(l)e(n)

Definition 2.3. The Dirichlet characters modulo q is a function defined on Z
given by



DIRICHLET’S THEOREM ABOUT PRIMES IN ARITHMETIC PROGRESSIONS 3

χ(m) =

{
e(m) gcd(m, q) = 1

0, otherwise.

Clearly, the Dirichlet characters modulo q are multiplicative on all of Z and for
each character e of G, there is an associated Dirichlet character.

Lemma 2.4. The Dirichlet characters are multiplicative. Moreover,

(2.5) δl(m) =
1

ϕ(q)

∑
χ

χ(l)χm,

where the sum is over all Dirichlet characters.

This lemma shows that∑
p≡l

1
ps =

∑
p
δl(p)
ps = 1

φ(q)

∑
χ χ(l)

∑
p
χ(p)
ps .

We divide the above sum in two parts depending on whether or not χ is trivial.
Let χ0 denotes the trivial Dirichlet character. So we have

∑
p≡l

1

ps
=

1

ϕ(q)

∑
p

χ0(p)

ps
+

1

ϕ(q)

∑
χ 6=χ0

χ(l)
∑
p

χ(p)

ps

=
1

ϕ(q)

∑
p-q

1

ps
+

1

ϕ(q)

∑
χ 6=χ0

χ(l)
∑
p

χ(p)

ps
(2.6)

Since there are finitely many primes dividing q, the first sum on the right-hand
side diverges when s tends to 1. Therefore, Dirichlet theorem is a consequence of
the following assertion.

Theorem 2.7. If χ is a nontrivial Dirichlet character, then the sum∑
p
χ(p)
ps

remains bounded as s→ 1+.

3. Dirichlet’s L-functions

To prove the Dirichlet’s theorem, we introduce Dirichlet’s L-functions, which are
general forms of the Euler zeta function.

Definition 3.1. The zeta function is defined by ζ(s) =
∑∞
n=1 = 1

ns .

Definition 3.2. Let χ be a Dirichlet character.Then the L-function, L(s, χ) is
defined for s > 1 by

(3.3) L(s, χ) =

∞∑
n=1

χ(n)

ns
,

where χ is a Dirichlet character.

Proposition 3.4. Suppose χ0 is the trivial Dirichlet character,

χ0(n) =

{
1 if gcd(q, n) = 1,
0, otherwise,

and q =
∏N
n=1 p

an
n is the prime factorization of q. Then

(3.5) L(s, χ0) = (

N∏
n=1

(1− p−sn ))ζ(s).
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Therefore L(s, χ0)→∞ as s→ 1+.

Proof. For the fact that χ(n) = 0 if gcd(n, q) 6= 1, we have

L(s, χ0) =
∑∞
n=1

χ0(n)
ns =

∑
pi-n

χ0(n)
ns ,

where the sum is over all positive integers, which can be divided by pi (i =
1, 2, ..., N).Therefore

L(s, χ0) =
∏
p 6=pi(

1
1−p ) = (

∏N
n=1(1− p−sn ))ζ(s).

Moreover, ζ(s)→∞ as s→∞, therefore L(s, χ0)→∞. �

Proposition 3.6. If χ is a non-trivial Dirichlet character, then L(s, χ) converges
for s > 0. Moreover:

(1) The function L(s, χ) is continuously differentiable for 0 < s <∞.
(2) There exists constants c, c′ > 0 so that

L(s, χ) = 1 +O(e−cs) as s→∞ , and

L′(s, χ) = O(e−c
′
s) as s→∞.

We first prove the cancellation property that non-trivial Dirichlet characters
possess. We will need the following lemma

Lemma 3.7. If χ is a non-trivial Dirichlet character, then

(3.8)

∣∣∣∣∣
k∑

n=1

χ(n)

∣∣∣∣∣ ≤ q,
for any k.

Proof. First prove that
∑q
n=1 χ(n) = 0. Let S =

∑q
n=1 χ(n) and select a ∈ Z∗(q),

we have

χ(a)S =
∑
χ(a)χ(n) =

∑
χ(an) =

∑
χ(n) = S.

Since χ is nontrivial, χ(a) 6= 1 for some a. Therefore S = 0. We write k = aq + b
with 0 ≤ b < q, then

|
∑k
n=1 χ(n)| = |

∑aq
n=1 χ(n) +

∑qa+b
n=aq+1 χ(n)| = |

∑aq+b
n=aq+1 χ(n)| ≤ q

�

We can now prove the proposition 3.6 .

Proof. Let sk =
∑k
n=1 χ(n), and s0 = 0. Know that L(s, χ) is defined for s > 1 as∑∞

n=1
χ(n)
ns , which converges absolutely and uniformly for s > δ > 1. We have

N∑
n=1

χk

ks
=

N∑
k=1

sk − sk−1
ks

=

N−1∑
k=1

sk

[
1

ks
− 1

(k + 1)s
+
sN
Ns

]

=

N−1∑
k=1

fk(s) +
sN
Ns

,(3.9)
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where fk(s) = sk[k−s−(k+1)−s]. Letg(x) = x−s. The Mean value theorem implies

|g(k)− g(k + 1)| = |g′(x)| ≤ |sx−s−1|.

We also have |sk| ≤ q, so |fk(s)| ≤ qsk−s−1. Therefore the series
∑
fk(s) converges

uniformly and absolutely for s > δ > 0, and this proves that L(s, χ) is continuous.
To prove L(s, χ) is also continuously differentiable, we differentiate L(s, χ) and get∑

(log(n))χ(n)ns .

Using a similar method, we can prove this series converges uniformly and absolutely
for s > δ > 0 and thus L′(s, χ) is continuously differentiable.
To prove the second proposition, we notice that for s large enough

(3.10) |L(s, χ)− 1| =

∣∣∣∣∣
∞∑
n=1

χ(n)

ns

∣∣∣∣∣ ≤ 2q

∞∑
n=2

1

ns
≤ 2−sa,

where a is a constant. If we take a = log 2, then L(s, χ) = 1 +O(e−cs) as s→∞.
For L′(s, χ), we have

(3.11) |L′(s, χ)| = |
∑

(log n)
χ

ns
| ≤ 2q

∞∑
n=2

(log n)n−s ≤ 2−sa′,

where a′ is also a constant. Therefore, similarly L′(s, χ) = O(e−c
′s) as s→∞ with

c′ = c. �

Theorem 3.12. If s > 1, then

(3.13)

∞∑
n=1

χ(n)

ns
=
∏
p

1

(1− χ(p)p−s)
,

where the product is over all primes.

4. Logarithms

To prove the theorem above, we need to construct two logarithms, which are
different from the normal logarithms.

Definition 4.1. For the first logarithm, we define

(4.2) log1(
1

1− z
) =

∞∑
k=1

zk

k

for |z| < 1.

Proposition 4.3. The logarithm function log1 satisfies the following properties:

(1) If |z| < 1, then

(4.4) exp(log1(
1

1− z
)) =

1

1− z
.

(2) If |z| < 1,then

(4.5) log1(
1

1− z
) = z + E1(z),

where the error E1 satisfies
∣∣E1(z) ≤ |z|2

∣∣ if |z| < 1/2.



6 ANG LI

(3) If |z| < 1/2, then

(4.6)

∣∣∣∣log1(
1

1− z
)

∣∣∣∣ ≤ 2|z|.

Proof. To establish the first property, let z = reiθ with 0 ≤ r < 1, and we prove
that

(4.7) (1− z)elog1(
1

1−z ) = (1− reiθ)e
∑∞
k=1(re

iθ)k/k = 1

We differentiate the left-hand side with respect to r, and get

[−eiθ + (1− reiθ)(
∑∞
k=1(reiθ)k/k)′]e

∑∞
k=1(re

iθ)k/k

We also have

−eiθ + (1− reiθ)(
∑∞
k=1(reiθ)k/k)′ = −eiθ + (1− reiθ)eiθ 1

1−reiθ = 0.

Hence, the left-hand side of the equation (4.7) is constant. Let r = 0, we get the
desired result.
For the second property, we simply replace log1( 1

1−z ) by the infinite series.

|E1(z)| =
∣∣∣∑∞k=2

zk

k

∣∣∣ ≤ |z|2∑∞k=0 |z|k ≤ |z|2.

The last inequality holds since |z| < 1/2. Therefore,∣∣∣log1( 1
1−z )

∣∣∣ = |z + E1(z)| ≤ |z|+ |z|2 ≤ 2|z| for |z| < 1/2

for |z| < 1/2 and this proves the third property. �

Proposition 4.8. If
∑
|an| converges, and an 6= 1 for all n, then

∏∞
n=1( 1

1−an )
converges. Moreover, this product is non-zero.

The proof of this proposition is omitted.

We now can prove theorem 3.12, the Dirichlet product formula

(4.9)
∑
n

χn

ns
=
∏
p

1

(1− χ(p)p−s)
.

Proof of Theorem 3.12. Let L denote the left-hand side of equation (4.9). Define

SN =
∑
n≤N χ(n)n−s and

∏
N =

∏
p≤N ( 1

1−χ(p)p−s ).

If we set an = χ(pn)p−sn , where pn is the nth prime, then
∑
|an| converges when

s ≥ 1. By the previous proposition, the infinite product
∏

= limN→∞
∏
N =∏

p(
1

1−χ(p)p−s ) converges. Also, define∏
N,M =

∏
p≤N (1 + χ(p)

ps + ...+ χ(pM )
pMs

)

Now given ε > 0 and choose N large enough so that

|SN − L| < ε and |
∏
N −

∏
| < ε.
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Given prime p ≤ N , according to the fundamental theorem of arithmetic, there
exists Mp ∈ Z such pMp doesn’t divide any integer n ≤ N but there exists n0 ≤ N
such that pMp−1 divides n0. Together with the fact that the Dirichlet characters
are multiplicative, we can find M large enough so that∣∣∣SN −∏N,M

∣∣∣ < ε and
∣∣∣∏N,M −

∏
N

∣∣∣ < ε.

Therefore, we have

(4.10)
∣∣∣L−∏∣∣∣ ≤ |L− SN |+

∣∣∣∣∣∣SN −
∏
N,M

∣∣∣∣∣∣+

∣∣∣∣∣∣
∏
N,M

−
∏
N

∣∣∣∣∣∣+

∣∣∣∣∣∏
N

−
∏∣∣∣∣∣ < 4ε.

Then

(4.11)
∑
n

χ(n)

ns
=
∏
p

1

(1− χ(p)p−s)
.

. �

We can now define the logarithm for L(s, χ), and associate it with the logarithm
defined for 1

1−z .

Definition 4.12. If χ is a nontrivial Dirichlet character and s > 1, we define

(4.13) log2 L(s, χ) = −
∫ ∞
s

L′(t, χ)

L(t, χ)
dt.

The following proposition links log1 and log2.

Proposition 4.14. If s > 1 then

(4.15) elog2 L(s,χ) = L(s, χ).

Moreover

(4.16) log2 L(s, χ) =
∑
p

log1(
1

1− χ(p)p−s
).

Proof. Differentiating e− log2 L(s,χ)L(s, χ) with respect to s, we get

(4.17) −L
′(s, χ)

L(s, χ)
e− log2 L(s,χ)L(s, χ) + e− log2 L(s,χ)L′(s, χ) = 0

is immediate from the definition of log2. This implies that e− log2 L(s,χ)L(s, χ)
should be a constant and take s→∞, we have e− log2 L(s,χ)L(s, χ) = 1. To associate
two logarithms, simply take the exponential of both sides. We have

(4.18) exp

(∑
p

log1(
1

1− χ(p)p−s
)

)
=
∏
p

(
1

1− χ(p)p−s

)
= L(s, χ),

This means for each s,there existsM(s) ∈ Z such that log2 L(s, χ)−
∑
p log1( 1

1−χ(p)p−s ) =

2πiM(s).
The left side is continuous in s, but M(s) is integer-valued so M(s) should be
constant. Moreover, let s→∞, we have M(s) = 0. �
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Recall that in order to prove theorem 1.1
∑
p
χ(p)
ps is bounded for any nontrivial

Dirichlet character χ. From the proposition above, we have

log2 L(s, χ) =
∑
p

log1(
1

1− χ(p)p−s
)

=
∑
p

χ(p)

ps
+O(

∑
p

1

p2s
)

=
∑
p

χ(p)

ps
+O(1).(4.19)

The equation above implies that if L(1, χ) 6= 0 for nontrivial Dirichlet character,

then log2L(s, χ) remains bounded as s→ 1+. Thus
∑
p
χ(p)
ps remains bounded.

5. Non-vanishing of the L-function

Therefore, our next goal is to prove that L(1, χ) 6= 0 for nontrivial Dirichlet
character χ.

Theorem 5.1. If χ 6= χ0, then L(1, χ) 6= 0.

Definition 5.2. A Dirichlet character is said to be real if it takes only real values
and complex otherwise.

We prove L(1, χ) 6= 0 for real and complex characters separately.

5.1. Complex Dirichlet characters. We prove by contradiction that for complex
Dirichlet characters, L(1, χ) 6= 0.

Lemma 5.3. The product is real-valued and if s > 1, then

(5.4)
∏
χ

L(s, χ) ≥ 1,

where the product is taken over all Dirichlet characters.

Proof. By the Proposition 4.16, we know that∏
χ

L(s, χ) = exp(
∑
χ

∑
p

log1(
1

1− χ(p)p−s
))

= exp

(∑
χ

∑
p

∞∑
k=1

1

k

χ(pk)

pks

)

= exp

(∑
p

∞∑
k=1

∑
χ

1

k

χ(pk)

pks

)
.(5.5)

Lemma 2.4 implies that
∑
χ χ(pk) =

∑
χ χ(1)χ(pk) = ϕ(q)δ1(pk). Therefore

(5.6)
∏
χ

L(s, χ) = exp

(
ϕ(q)

∑
p

∞∑
k=1

1

k

δ1(pk)

pks

)
≥ 1,

since every term in the exponential is non-negative. �

Lemma 5.7. The following three properties hold:

(1) If L(1, χ) = 0, then L(1, χ) = 0.
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(2) If χ is non-trivial and L(1, χ) = 0, then

(5.8) |L(s, χ)| ≤ C|s− 1|,

when 1 ≤ s ≤ 2.
(3) For the trivial Dirichlet character χ0, we have

(5.9) |L(s, χ0)| ≤ C

|s− 1|
,

when 1 < s ≤ 2.

Proof. It’s easy to show that L(1, χ) = L(1, χ), the first statement is obvious. To
prove the second statement, we apply mean the value theorem to L(s, χ). We have

(5.10) |L(s, χ)− L(1, χ)| = |s− 1|L(a, χ),

for some 1 < a < s ≤ 2. Therefore, |L(s, χ)| ≤ C|s− 1|.
Finally, the last statement follows because
(5.11)

|L(s, χ0)| =

∣∣∣∣∣∣
∏
pi|q

(1− p−si )ζ(s)

∣∣∣∣∣∣ ≤
∣∣∣∣A(1 +

∫ ∞
1

dx

xs
)

∣∣∣∣ =

∣∣∣∣A(1 +
1

s− 1
)

∣∣∣∣ ≤ C

|s− 1|
.

The first equality holds according to proposition 3.4 and the first inequality holds
because there are only finitely many pi so the product is bounded by some A and
ζ(s) is bounded by

(
1 +

∫∞
1

dx
xs

)
. �

Now we can conclude the proof that L(1, χ) 6= 0 for a non-trivial complex Dirich-
let character χ.

Proof. Suppose we have L(1, χ) = 0, then L(1, χ) = 0 and χ 6= χ. Therefore, there
are at least two terms in

∏
χ L(s, χ), that vanish like |s− 1| as s→ 1+. Moreover,

by the last proposition, only the trivial character contributes to a increasing term as
s→ 1+, and this growth is no better than O( 1

|s−1| ). Thus, the product
∏
χ L(s, χ)

vanishes as s→ 1+, which contradicts Lemma 5.3. �

5.2. Real Dirichlet characters. As for the a real and non-trivial χ, we use the
summation along hyperbolas to prove that L(s, χ) 6= 0.
Given a real and non-trivial Dirichlet character χ, let

(5.12) F (m,n) =
χ(n)

(nm)1/2
,

and define

(5.13) SN =
∑∑

F (m,n),

where the sum is over all integers m,n ≥ 1 that satisfy mn ≤ N .
Before we start to prove that L(1, χ) 6= 0, we first analyze the sum

∑
1≤n≤N

1
n1/2

Proposition 5.14. If N is a positive integer, then

(5.15)
∑

1≤n≤N

1

n1/2
= 2N1/2 + c+O

(
1

N1/2

)
.
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Proof. Let an = 1
n1/2 −

∫ n+1

n
dx
x1/2 , we have

(5.16) 0 ≤ an ≤
1

n1/2
− 1

(n+ 1)1/2
≤ C

n3/2
.

Suppose the series
∑∞
n=1 an converges to a limit a. Moreover, we have

(5.17)

∞∑
N+1

an ≤
∞∑

n=N+1

C

n3/2
≤ C

∫ ∞
N

dx

n3/2
= O(

1

N1/2
).

Therefore

(5.18)

N∑
n=1

1

n1/2
−
∫ N

1

dx

x1/2
= a−

∞∑
n=N+1

+

∫ N+1

N

dx

x1/2
= a+O(

1

N1/2
).

�

Proposition 5.19. The following statements are true for SN ::

(1) SN ≥ c logN for some constant c > 0.
(2) SN = 2N1frm−eL(1, χ) +O(1).

Proof. For the first statement, we first prove the following lemma.

Lemma 5.20.
∑
n|k χ(n) ≥

{
0 for all k
1, if k = l2 for l ∈ Z,

Proof. If k is a power of a prime, k = pa, then the divisor of k are only the powers
of p. We have ∑

n|k

χ(n) = χ(1) + χ(p) + ...+ χ(pa)

= 1 + χ(p) + χ(p)2 + ...+ χ(p)a.(5.21)

Hence,
∑
n|k χ(n) ≥ 0 for any a, and

∑
n|k χ(n) ≥ 1 for even a.

Generally, if k =
∏N
n=1 p

an
n , any divisor of k is of the form

∏N
n=1 p

bn
n , where 0 ≤

bn ≤ an. Therefore,

(5.22)
∑
n|k

χ(n) =

N∏
j=1

(χ(1) + χ(pj) + χ(p2j ) + ...+ χ(p
aj
j )).

Therefore,
∑
n|k χ(n) ≥ 1 if k = l2 for some l ∈ Z. �

From lemma (5.20), we then have

SN =
∑

nm=N

χ(n)

(nm)1/2

=
1

N1/2

∑
n|N

χ(n)

≥
∑

k=l2,l≤N1/2

1

k1/2
≥ c logN,(5.23)

for some constant c.
To prove the second statement, we calculate the sum SN by taking the sum in a
different way. Consider the sums over three separated regions,
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S1 =
∑
F (m,n);

S2 =
∑
F (m,n);

S3 =
∑
F (m,n).

where S1, S2, S3 are sums over the regions {1 ≤ m < N1/2, N1/2 < n ≤ N/m},
{1 ≤ m ≤ N1/2, 1 ≤ n ≤ N1/2} and {N1/2 < m ≤ N/n, 1 ≤ n < N1/2} We write

(5.24) SN = S1 + (S2 + S3),

and we evaluate S1 by first fixing m, and S2 + S3 by first fixing n. To prove the
statement, we also need the following lemma:

Lemma 5.25. For all integers 0 < a < b we have

(1)
∑b
n=a

χ(n)
n1/2 = O(a−1/2),

(2)
∑b
n=a

χ(n)
n = O(a−1).

Proof. We use summation by parts. Let sn =
∑

1≤k≤n χ(k), and by Lemma 3.7,

we have |sn| ≤ q for all n. Therefore

b∑
n=a

χ(n)

n1/2
=

b∑
n=a+1

(sn − sn−1)
1

n1/2
+
χ(a)

a1/2

=

b−1∑
n=a

sn[n−1/2 − (n+ 1)−1/2] +O(a−1/2)

= O(

∞∑
n=a

n−3/2) +O(a−1/2)

= O(a−1/2).(5.26)

Similarly we can prove the second statement. �

With this lemma, we can finish the proof of the proposition. Summing vertically
for S1, we have

(5.27) S1 =
∑

m<N1/2

1

m1/2

 ∑
N1/2<n≤N/m

χ(n)

n1/2

 =
∑

m<N1/2

1

m1/2
O(N−1/4).

Moreover,

(5.28) O

 ∑
m<N1/2

1

m1/2

 = O

(∫ N1/2

1

1

m1/2
dm

)
= O(N1/4).

Therefore, S1 = O(1).
Finally, we sum horizontally for S2 + S3:

S2 + S3 =
∑

1≤n≤N1/2

χ(n)

n1/2

 ∑
m≤N1/2

1

m1/2


=

∑
1≤n≤N1/2

χ(n)

n1/2
{2(N/n)1/2 + c+O((n/N)1/2)}

= 2N1/2
∑

1≤n≤N1/2

χ(n)

n
+ c

∑
1≤n≤N1/2

χ(n)

n1/2
+O(

1

N1/2

∑
1≤n≤N1/2

1).(5.29)
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Let A = 2N1/2
∑

1≤n≤N1/2
χ(n)
n , then

(5.30) A = 2N1/2L(1, χ) + 2N1/2ON−1/2 = 2N1/2L(1, χ) +O(1).

Moreover, the Lemma 5.25 gives c
∑

1≤n≤N1/2
χ(n)
n1/2 = O(1) and we also have

O( 1
N1/2

∑
1≤n≤N1/2 1) = O(1). Thus SN = 2N1/2L(1, χ) + O(1), which is the

second statement of Proposition 5.19. �

Suppose L(1, χ) = 0 for some non-trivial real Dirichlet character χ, by Proposi-
tion 5.19, we know that

(5.31) SN = O(1) ≥ c logN,

which is impossible. Therefore L(1, χ) 6= 0 for non-trivial χ.

6. Conclusion

From the last section, we know that L(1, χ) 6= 0 for any non-trivial Dirichlet

character χ. Then by equation 4.21, we have that
∑
p
χ(p)
ps remains bounded as

s→ 1+, which by equation 2.6 implies that
∑
p≡l

1
ps diverges as s→ 1+.

Thus there are infinitely many primes p such that p ≡ l mod q and we have proved
the Dirichlet’s theorem.
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