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3.4 More versions of Itô’s formula . . . . . . . . . . . . . . . . . . 105
3.5 Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.6 Covariation and the product rule . . . . . . . . . . . . . . . . 116
3.7 Several Brownian motions . . . . . . . . . . . . . . . . . . . . 117
3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4 More stochastic calculus 125
4.1 Martingales and local martingales . . . . . . . . . . . . . . . . 125
4.2 An example: the Bessel process . . . . . . . . . . . . . . . . . 131
4.3 Feynman-Kac formula . . . . . . . . . . . . . . . . . . . . . . 133
4.4 Binomial approximations . . . . . . . . . . . . . . . . . . . . . 137
4.5 Continuous martingales . . . . . . . . . . . . . . . . . . . . . . 141
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Change of measure and Girsanov theorem 145
5.1 Absolutely continuous measures . . . . . . . . . . . . . . . . . 145
5.2 Giving drift to a Brownian motion . . . . . . . . . . . . . . . 150
5.3 Girsanov theorem . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4 Black-Scholes formula . . . . . . . . . . . . . . . . . . . . . . . 162
5.5 Martingale approach to Black-Scholes equation . . . . . . . . . 166
5.6 Martingale approach to pricing . . . . . . . . . . . . . . . . . 169
5.7 Martingale representation theorem . . . . . . . . . . . . . . . 178
5.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6 Jump processes 185
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Introductory comments

This is an introduction to stochastic calculus. I will assume that the reader
has had a post-calculus course in probability or statistics. For much of these
notes this is all that is needed, but to have a deep understanding of the
subject, one needs to know measure theory and probability from that per-
spective. My goal is to include discussion for readers with that background
as well. I also assume that the reader can write simple computer programs
either using a language like C++ or by using software such as Matlab or
Mathematica.

More advanced mathematical comments that can be skipped by the
reader will be indented with a different font. Comments here will as-
sume that the reader knows that language of measure-theoretic prob-
ability theory.

We will discuss some of the applications to finance but our main fo-
cus will be on the mathematics. Financial mathematics is a kind of applied
mathematics, and I will start by making some comments about the use of
mathematics in “the real world”. The general paradigm is as follows.

� Amathematical model is made of some real world phenomenon. Usually
this model requires simplification and does not precisely describe the
real situation. One hopes that models are robust in the sense that if the
model is not very far from reality then its predictions will also be close
to accurate.

� The model consists of mathematical assumptions about the real world.

� Given these assumptions, one does mathematical analysis to see what
they imply. The analysis can be of various types:
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– Rigorous derivations of consequences.

– Derivations that are plausible but are not mathematically rigor-
ous.

– Approximations of the mathematical model which lead to
tractable calculations.

– Numerical calculations on a computer.

– For models that include randomness, Monte Carlo simulations us-
ing a (pseudo) random number generator.

� If the mathematical analysis is successful it will make predictions about
the real world. These are then checked.

� If the predictions are bad, there are two possible reasons:

– The mathematical analysis was faulty.

– The model does not sufficiently reflect reality.

The user of mathematics does not always need to know the details of
the mathematical analysis, but it is critical to understand the assumptions
in the model. No matter how precise or sophisticated the analysis is, if the
assumptions are bad, one cannot expect a good answer.



Chapter 1

Martingales in discrete time

A martingale is a mathematical model of a fair game. To understand the def-
inition, we need to define conditional expectation. The concept of conditional
expectation will permeate this book.

1.1 Conditional expectation

If X is a random variable, then its expectation, E[X] can be thought of as
the best guess for X given no information about the result of the trial. A
conditional expectation can be considered as the best guess given some but
not total information.

Let X1, X2, . . . be random variables which we think of as a time series
with the data arriving one at a time. At time n we have viewed the values
X1, . . . , Xn. If Y is another random variable, then E(Y | X1, . . . , Xn) is the
best guess for Y given X1, . . . , Xn. We will assume that Y is an integrable
random variable which means E[|Y |] <∞. To save some space we will write
Fn for “the information contained in X1, . . . , Xn” and E[Y | Fn] for E[Y |
X1, . . . , Xn]. We view F0 as no information. The best guess should satisfy
the following properties.

� If we have no information, then the best guess is the expected value.
In other words, E[Y | F0] = E[Y ].

� The conditional expectation E[Y | Fn] should only use the informa-
tion available at time n. In other words, it should be a function of

3



4 CHAPTER 1. MARTINGALES IN DISCRETE TIME

X1, . . . , Xn,
E[Y | Fn] = ϕ(X1, . . . , Xn).

We say that E[Y | Fn] is Fn-measurable.

The definitions in the last paragraph are certainly vague. We can use
measure theory to be precise. We assume that the random variables
Y,X1, X2, . . . are defined on a probability space (Ω,F ,P). Here F is
a σ-algebra or σ-field of subsets of Ω, that is, a collection of subsets
satisfying

� ∅ ∈ F ;

� A ∈ F implies that Ω \A ∈ F ;

� A1, A2, . . . ∈ F implies that
⋃∞

n=1An ∈ F .

The information Fn is the smallest sub σ-algebra G of F such that

X1, . . . , Xn are G-measurable. The latter statement means that for all

t ∈ R, the event {Xj ≤ t} ∈ Fn. The “no information” σ-algebra F0

is the trivial σ-algebra containing only ∅ and Ω.

The definition of conditional expectation is a little tricky, so let us try
to motivate it by considering an example from undergraduate probability
courses. Suppose that (X, Y ) have a joint density

f(x, y), 0 < x, y <∞,

with marginal densities

f(x) =

∫ ∞

−∞
f(x, y) dy, g(y) =

∫ ∞

−∞
f(x, y) dx.

The conditional density f(y|x) is defined by

f(y|x) = f(x, y)

f(x)
.

This is well defined provided that f(x) > 0, and if f(x) = 0, then x is an
“impossible” value for X to take. We can write

E[Y | X = x] =

∫ ∞

−∞
y f(y | x) dy.
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We can use this as the definition of conditional expectation in this case,

E[Y | X] =

∫ ∞

−∞
y f(y | X) dy =

∫∞
−∞ y f(X, y) dy

f(X)
.

Note that E[Y | X] is a random variable which is determined by the value
of the random variable X. Since it is a random variable, we can take its
expectation

E [E[Y | X]] =

∫ ∞

−∞
E[Y | X = x] f(x) dx

=

∫ ∞

−∞

[∫ ∞

−∞
y f(y | x) dy

]
f(x) dx

=

∫ ∞

−∞

∫ ∞

−∞
y f(x, y) dy dx

= E[Y ].

This calculation illustrates a basic property of conditional expectation.
Suppose we are interested in the value of a random variable Y and we are
going to be given data X1, . . . , Xn. Once we observe the data, we make our
best prediction E[Y | X1, . . . , Xn]. If we average our best prediction given
X1, . . . , Xn over all the possible values of X1, . . . , Xn, we get the best predic-
tion of Y . In other words,

E[Y ] = E [E[Y | Fn]] .

More generally, suppose that A is an Fn-measurable event, that is to say, if we
observe the data X1, . . . , Xn, then we know whether or not A has occurred.
An example of an F4-measurable event would be

A = {X1 ≥ X2, X4 < 4}.

Let 1A denote the indicator function (or indicator random variable) associ-
ated to the event A,

1A =

{
1 if A occurs
0 if A does not occur

.

Using similar reasoning, we can see that if A is Fn-measurable, then

E [Y 1A] = E [E[Y | Fn] 1A] .



6 CHAPTER 1. MARTINGALES IN DISCRETE TIME

At this point, we have not derived this relation mathematically; in fact, we
have not even defined the conditional expectation. Instead, we will use this
reasoning to motivate the following definition.

Definition The conditional expectation E[Y | Fn] is the unique random
variable satisfying the following.

� E[Y | Fn] is Fn-measurable.

� For every Fn-measurable event A,

E [E[Y | Fn] 1A] = E [Y 1A] .

We have used different fonts for the E of conditional expectation and the E
of usual expectation in order to emphasize that the conditional expectation is
a random variable. However, most authors use the same font for both leaving
it up to the reader to determine which is being referred to.

Suppose (Ω,F ,P) is a probability space and Y is an integrable random
variable. Suppose G is a sub σ-algebra of F . Then E[Y | G] is defined to
be the unique (up to an event of measure zero) G-measurable random
variable such that if A ∈ G,

E [Y 1A] = E [E[Y | G] 1A] .

Uniqueness follows from the fact that if Z1, Z2 are G-measurable ran-
dom variables with

E [Z1 1A] = E [Z2 1A]

for all A ∈ G, then P{Z1 ̸= Z2} = 0. Existence of the conditional

expectation can be deduced from the Radon-Nikodym theorem. Let

µ(A) = E [Y 1A]. Then µ is a (signed) measure on (Ω,G,P) with µ ≪ P,
and hence there exists an L1 random variable Z with µ(A) = E [Z1A]

for all A ∈ G.

Although the definition does not give an immediate way to calculate the
conditional expectation, in many cases one can compute it. We will give a
number of properties of the conditional expectation most of which follow
quickly from the definition.
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Proposition 1.1.1. Suppose X1, X2, . . . is a sequence of random variables
and Fn denotes the information at time n. The conditional expectation E[Y |
Fn] satisfies the following properties.

� If Y is Fn-measurable, then E[Y | Fn] = Y .

� If A is an Fn-measurable event, then E [E[Y | Fn] 1A] = E [Y 1A]. In
particular,

E [E[Y | Fn]] = E[Y ].

� Suppose X1, . . . , Xn are independent of Y . Then Fn contains no useful
information about Y and hence

E[Y | Fn] = E[Y ].

� Linearity. If Y, Z are random variables and a, b are constants, then

E[aY + bZ | Fn] = aE[Y | Fn] + bE[Z | Fn]. (1.1)

� Projection or Tower Property. If m < n, then

E [E[Y | Fn] | Fm ] = E[Y | Fm]. (1.2)

� If Z is an Fn-measurable random variable, then when conditioning with
respect to Fn, Z acts like a constant,

E[Y Z | Fn] = Z E[Y | Fn]. (1.3)

The proof of this proposition is not very difficult given our choice of
definition for the conditional expectation. We will discuss only a couple
of cases here, leaving the rest for the reader. To prove the linearity
property, we know that aE[Y | Fn]+ bE[Z | Fn] is an Fn-measurable
random variable. Also if A ∈ Fn, then linearity of expectation implies
that

E [1A (aE[Y | Fn] + bE[Z | Fn])]

= aE [1AE[Y | Fn]] + bE [1AE[Z | Fn]]

= aE [1A Y ] + bE [1A Z]

= E [1A (aY + bZ)] .
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Uniqueness of the conditional expectation then implies (1.1).

We first show the “constants rule” (1.3) for Z = 1A, A ∈ Fn, as follows.
If B ∈ Fn, then A ∩B ∈ Fn and

E [1B E(Y Z | Fn)] = E [1B E(1A Y | Fn)]

= E [1B 1A Y ] = E [1A∩BY ] = E [1A∩BE(Y | Fn)]

= E [1B 1AE(Y | Fn)] = E [1B Z E(Y | Fn)] .

Hence E(Y Z | Fn) = Z E(Y | Fn) by definition. Using linearity, the
rule holds for simple random variables of the form

Z =

n∑
j=1

aj 1Aj , Aj ∈ Fn.

We can then prove it for nonnegative Y by approximating from below

by nonnegative simple random variables and using the monotone con-

vergence theorem, and then for general Y by writing Y = Y + − Y −.

These are standard techniques in Lebesgue integration theory.

Example 1.1.1. Suppose that X1, X2, . . . are independent random variables
with E[Xj] = µ for each j. Let Sn = X1 + · · · + Xn, and let Fn denote the
information contained in X1, . . . , Xn. Then if m < n,

E[Sn | Fm] = E[Sm | Fm] + E[Sn − Sm | Fm]

= Sm + E[Sn − Sm]

= Sm + µ (n−m).

Example 1.1.2. In the same setup as Example 1.1.1 suppose that µ = 0
and E[X2

j ] = σ2 for each j. Then if m < n,

E[S2
n | Fm] = E([Sm + (Sn − Sm)]

2 | Fm)

= E[S2
m | Fm] + 2E[Sm(Sn − Sm) | Fm]

+E[(Sn − Sm)
2 | Fm].

Since Sm is Fm-measurable and Sn − Sm is independent of Fm,

E[S2
m | Fm] = S2

m,
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E[Sm(Sn − Sm) | Fm] = SmE[Sn − Sm | Fm] = Sm E[Sn − Sm] = 0,

E[(Sn − Sm)
2 | Fm] = E[(Sn − Sm)

2] = Var(Sn − Sm) = σ2 (n−m),

and hence,
E[S2

n | Fm] = S2
m + σ2 (n−m).

Example 1.1.3. In the same setup as Example 1.1.1, let us also assume
that X1, X2, . . . are identically distributed. We will compute E[X1 | Sn].
Note that the information contained in the one data point Sn is less than the
information contained in X1, . . . , Xn. However, since the random variables
are identically distributed, it must be the case that

E[X1 | Sn] = E[X2 | Sn] = · · · = E[Xn | Sn].

Linearity implies that

nE[X1 | Sn] =
n∑

j=1

E[Xj | Sn] = E[X1 + · · ·+Xn | Sn] = E[Sn | Sn] = Sn.

Therefore,

E[X1 | Sn] =
Sn

n
.

It may be at first surprising that the answer does not depend on E[X1].

Definition If X1, X2, . . . is a sequence of random variables, then the asso-
ciated (discrete time) filtration is the collection {Fn} where Fn denotes the
information in X1, . . . , Xn.

One assumption in the definition of a filtration, which may sometimes
not reflect reality, is that information is never lost. If m < n, then everything
known at time m is still known at time n. Sometimes a filtration is given
starting at time n = 1 and sometimes starting at n = 0. If it starts at time
n = 1, we define F0 to be “no information”.

More generally, a (discrete time) filtration {Fn} is an increasing se-

quence of σ-algebras.
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1.2 Martingales

A martingale is a model of a fair game. Suppose X1, X2, . . . is a sequence of
random variables to which we associate the filtration {Fn} where Fn is the
information contained in X1, . . . , Xn.

Definition A sequence of random variablesM0,M1, . . . is called amartingale
with respect to the filtration {Fn} if:

� For each n,Mn is an Fn-measurable random variable with E[|Mn|] <∞.

� If m < n, then

E[Mn | Fm] =Mm. (1.4)

We can also write (1.4) as

E[Mn −Mm | Fm] = 0.

If we think ofMn as the winnings of a game, then this implies that no matter
what has happened up to time m, the expected winnings in the next n−m
games is 0. Sometimes one just says “M0,M1, . . . is a martingale” without
reference to the filtration. In this case, the assumed filtration is Fn, the
information in M0, . . . ,Mn. In order to establish (1.4) it suffices to show for
all n,

E[Mn+1 | Fn] =Mn. (1.5)

In order to see this, we can use the tower property (1.2) for conditional
expectation to see that

E[Mn+2 | Fn] = E [E[Mn+2 | Fn+1] | Fn] = E[Mn+1 | Fn] =Mn,

and so forth. Also note that if Mn is a martingale, then

E[Mn] = E [E[Mn | F0]] = E[M0].

Example 1.2.1. Suppose X1, X2, . . . are independent random variables with
E[Xj] = 0 for each j. Let S0 = 0 and Sn = X1 + · · ·+Xn. In the last section
we showed that if m < n, then E[Sn | Fm] = Sm. Hence, Sn is a martingale
with respect to Fn, the information in X1, . . . , Xn.
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Example 1.2.2. SupposeXn, Sn,Fn are as in Example 1.2.1 and also assume
Var[Xj] = E[X2

j ] = σ2
j <∞. Let

An = σ2
1 + · · ·+ σ2

n,

Mn = S2
n − An,

where M0 = 0. Then Mn is a martingale with respect to Fn. To see this, we
compute as in Example 1.1.2,

E[S2
n+1 | Fn] = E[(Sn +Xn+1)

2 | Fn]

= E[S2
n | Fn] + 2E[SnXn+1 | Fn] + E[X2

n+1 | Fn]

= S2
n + 2SnE[Xn+1 | Fn] + E[X2

n+1]

= S2
n + 2Sn E[Xn+1] + E[X2

n+1]

= S2
n + σ2

n+1.

Therefore,

E[Mn+1 | Fn] = E[S2
n+1 − An+1 | Fn]

= S2
n + σ2

n+1 − (An + σ2
n+1) =Mn.

There are various ways to view a martingale. One can consider Mn as
the price of an asset (although we allow negative values of Mn) or as the
winnings in a game. We can also consider

∆Mn =Mn −Mn−1

as either the change in the asset price or as the amount won in the game at
time n. Negative values indicate drops in price or money lost in the game. The
basic idea of stochastic integration is to allow one to change one’s portfolio (in
the asset viewpoint) or change one’s bet (in the game viewpoint). However,
we are not allowed to see the outcome before betting. We make this precise
in the next example.

Example 1.2.3. Discrete stochastic integral. Suppose that M0,M1, . . .
is a martingale with respect to the filtration Fn. For n ≥ 1, let ∆Mn =
Mn −Mn−1. Let Bj denote the “bet” on the jth game. We allow negative
values of Bj which indicate betting that the price will go down or the game
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will be lost. Let Wn denote the winnings in this strategy: W0 = 0 and for
n ≥ 1,

Wn =
n∑

j=1

Bj [Mj −Mj−1] =
n∑

j=1

Bj ∆Mj.

Let us assume that for each n there is a numberKn <∞ such that |Bn| ≤ Kn.
We also assume that we cannot see the result of nth game before betting.
This last assumption can be expressed mathematically by saying that Bn is
Fn−1-measurable. In other words, we can adjust our bet based on how well we
have been doing. We claim that under these assumptions,Wn is a martingale
with respect to Fn. It is clear that Wn is measurable with respect to Fn, and
integrability follows from the estimate

E[|Wn|] ≤
n∑

j=1

E[|Bj||Mj −Mj−1|]

≤
n∑

j=1

Kj (E[|Mj|] + E[|Mj−1|]) <∞.

Also,

E[Wn+1 | Fn] = E[Wn +Bn+1(Mn+1 −Mn) | Fn]

= E[Wn | Fn] + E[Bn+1(Mn+1 −Mn) | Fn].

Since Wn is Fn-measurable, E[Wn | Fn] = Wn. Also, since Bn+1 is Fn-
measurable and M is a martingale,

E[Bn+1(Mn+1 −Mn) | Fn] = Bn+1E[Mn+1 −Mn | Fn] = 0.

Therefore,
E[Wn+1 | Fn] = Wn.

Example 1.2.3 demonstrates an important aspect of martingales. One
cannot change a discrete-time martingale to a game in one’s favor with a
betting strategy in a finite amount of time. However, the next example shows
that if we are allowed an infinite amount of time we can beat a fair game.

Example 1.2.4. Martingale betting strategy. Let X1, X2, . . . be inde-
pendent random variables with

P{Xj = 1} = P{Xj = −1} =
1

2
. (1.6)
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We will refer to such random variables as “coin-tossing” random variables
where 1 corresponds to heads and −1 corresponds to tails. LetM0 = 0,Mn =
X1 + · · · + Xn. We have seen that Mn is a martingale. We will consider
the following betting strategy. We start by betting $1. If we win, we quit;
otherwise, we bet $2 on the next game. If we win the second game, we quit;
otherwise we double our bet to $4 and play. Each time we lose, we double our
bet. At the time that we win, we will be ahead $1. With probability one, we
will eventually win the game, so this strategy is a way to beat a fair game.
The winnings in this game can be written as

Wn =
n∑

j=1

Bj ∆Mj =
n∑

j=1

Bj Xj,

where the bet B1 = 1 and for j > 1,

Bj = 2j−1 if X1 = X2 = · · · = Xj−1 = −1,

and otherwise Bj = 0. This is an example of a discrete stochastic integral as
in the previous example, and hence, we know that Wn must be a martingale.
In particular, for each n, E[Wn] = 0. We can check this directly by noting
that Wn = 1 unless X1 = X2 = · · · = Xn = −1 in which case

Wn = −1− 21 − 22 − · · · − 2n−1 = −[2n − 1].

This last event happens with probability (1/2)n, and hence

E[Wn] = 1 · [1− 2−n]− [2n − 1] · 2−n = 0.

However, we will eventually win which means that with probability one

W∞ = lim
n→∞

Wn = 1,

and
1 = E[W∞] > E[W0] = 0.

We have beaten the game (but it takes an infinite amount of time to guarantee
it).

If the condition (1.4) is replaced with

E[Mn | Fm] ≥Mm,
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then the process is called a submartingale. If it is replaced with

E[Mn | Fm] ≤Mm,

then it is called a supermartingale. In other words, games that are always
in one’s favor are submartingales and games that are always against one are
supermartingales. (At most games in Las Vegas, one’s winnings give a super-
martingale.) Under this definition, a martingale is both a submartingale and
a supermartingale. The terminology may seem backwards at first: submartin-
gales get bigger and supermartingales get smaller. The terminology was set
to be consistent with the related notion of subharmonic and superharmonic
functions. Martingales are related to harmonic functions.

1.3 Optional sampling theorem

Suppose M0,M1,M2, . . . is a martingale with respect to the filtration {Fn}.
In the last section we discussed the discrete stochastic integral. Here we will
consider a particular case of a betting strategy where one bets 1 up to some
time and then one bets 0 afterwards. Let T be the “stopping time” for the
strategy. Then the winnings at time t is

M0 +
n∑

j=1

Bj [Mj −Mj−1],

where Bj = 1 if j ≤ T and Bj = 0 if j > T . We can write this as

Mn∧T ,

where n ∧ T is shorthand for min{n, T}. The time T is random, but it must
satisfy the condition that the betting rule is allowable.

Definition A nonnegative integer-valued random variable T is a stopping
time with respect to the filtration {Fn} if for each n the event {T = n} is
Fn-measurable.

The following theorem is a special case of the discrete stochastic integral.
It restates the fact that one cannot beat a martingale in finite time. We
call this the optional sampling theorem; it is also called the optional stopping
theorem.
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Theorem 1.3.1 (Optional Sampling Theorem I). Suppose T is a stopping
time and Mn is a martingale with respect to {Fn}. Then Yn = Mn∧T is a
martingale. In particular, for each n,

E [Mn∧T ] = E [M0] .

If T is bounded, that is, if there exists k <∞ such that P{T ≤ k} = 1, then

E [MT ] = E [M0] . (1.7)

The final conclusion (1.7) of the theorem holds since E[Mn∧T ] = E[MT ]
for n ≥ k. What if the stopping time T is not bounded but P{T <∞} = 1?
Then, we cannot conclude (1.7) without further assumptions. To see this we
need only consider the martingale betting strategy of the previous section. If
we define

T = min{n : Xn = 1} = min{n : Wn = 1},
then with probability one T <∞ and WT = 1. Hence,

1 = E [WT ] > E [W0] = 0.

Often one does want to conclude (1.7) for unbounded stopping times, so
it is useful to give conditions under which it holds. Let us try to derive the
equality and see what conditions we need to impose. First, we will assume
that we stop, P{T <∞} = 1, so that MT makes sense. For every n <∞, we
know that

E[M0] = E[Mn∧T ] = E[MT ] + E[Mn∧T −MT ].

If we can show that
lim
n→∞

E [|Mn∧T −MT |] = 0,

then we have (1.7). The random variable Mn∧T −MT is zero if n ∧ T = T ,
and

Mn∧T −MT = 1{T > n} [Mn −MT ].

If E[|MT |] <∞, then one can show that

lim
n→∞

E [|MT | 1{T > n}] = 0.

In the martingale betting strategy example, this term did not cause a problem
since WT = 1 and hence E[|WT |] <∞.
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If P{T < ∞} = 1, then the random variables Xn = |MT | 1{T > n}
converge to zero with probability one. If E [|MT |] < ∞, then we can
use the dominated convergence theorem to conclude that

lim
n→∞

E[Xn] = 0.

Finally, in order to conclude (1.7) we will make the hypothesis that the
other term acts nicely.

Theorem 1.3.2 (Optional Sampling Theorem II). Suppose T is a stopping
time andMn is a martingale with respect to {Fn}. Suppose that P{T <∞} =
1,E [|MT |] <∞, and for each n,

lim
n→∞

E [|Mn| 1{T > n}] = 0. (1.8)

Then,

E [MT ] = E [M0] .

Let us check that the martingale betting strategy does not satisfy the
conditions of the theorem (it better not since it does not satisfy the conclu-
sion!) In fact, it does not satisfy (1.8). For this strategy, if T > n, then we
have lost n times and Wn = 1− 2n. Also, P{T > n} = 2−n. Therefore,

lim
n→∞

E [|Wn| 1{T > n}] = lim
n→∞

(2n − 1) 2−n = 1 ̸= 0.

Checking condition (1.8) can be difficult in general. We will give one
criterion which is useful.

Theorem 1.3.3 (Optional Sampling Theorem III). Suppose T is a stopping
time andMn is a martingale with respect to {Fn}. Suppose that P{T <∞} =
1,E [|MT |] <∞, and that there exists C <∞ such that for each n,

E
[
|Mn∧T |2

]
≤ C. (1.9)

Then,

E [MT ] = E [M0] .
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To prove this theorem, first note that with probability one,

|MT |2 = lim
n→∞

|MT∧n|2 1{T ≤ n},

and hence by the Hölder inequality and the monotone convergence
theorem,

E [|MT |]2 ≤ E
[
|MT |2

]
= lim

n→∞
E
[
|MT∧n|2| 1{T ≤ n}

]
≤ C.

We need to show that (1.9) implies (1.8). If b > 0, then for every n,

E [|Mn| 1{|Mn| ≥ b, T > n}] ≤ E[|Mn∧T |2]
b

≤ C

b
.

Therefore,

E [|Mn| 1{T > n}] = E [|Mn| 1{T > n, |Mn| ≥ b}]
+E [|Mn| 1{T > n, |Mn| < b}]

≤ C

b
+ bP{T > n}.

Hence,

lim sup
n→∞

E [|Mn| 1{T > n}] ≤ C

b
+ b lim

n→∞
P{T > n} =

C

b
.

Since this holds for every b > 0 we get (1.8).

Example 1.3.1. Gambler’s ruin for random walk. Let X1, X2, . . . be
independent, coin-tosses as in (1.6) and let

Sn = 1 +X1 + · · ·+Xn.

Sn is called simple (symmetric) random walk starting at 1. We have shown
that Sn is a martingale. Let K > 1 be a positive integer and let T denote the
first time n such that Sn = 0 or Sn = K. Then Mn = Sn∧T is a martingale.
Also 0 ≤ Mn ≤ K for all n, so (1.9) is satisfied. We can apply the optional
sampling theorem to deduce that

1 =M0 = E[MT ] = 0 · P{MT = 0}+K · P{MT = K}.
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By solving, we get

P{MT = K} =
1

K
.

This relation is sometimes called the gambler’s ruin estimate for the random
walk. Note that

lim
K→∞

P{MT = K} = 0.

If we consider 1 to be the starting stake of a gambler and K to be the amount
held by a casino, this shows that with a fair game, the gambler will almost
surely lose. If τ = min{n : Sn = 0}, then the last equality implies that
P{τ < ∞} = 1. The property that the walk always returns to the origin is
called recurrence.

Example 1.3.2. Let Sn = X1+ · · ·+Xn be simple random walk starting at
0. We have seen that

Mn = S2
n − n

is a martingale. Let J,K be positive integers and let

T = min{n : Sn = −J or Sn = K}.

As in Example 1.3.1, we have

0 = E[S0] = E[ST ] = [1− P{ST = K}] · (−J) + P{ST = K} ·K,

and solving gives

P{ST = K} =
J

J +K
.

In Exercise 1.13 it is shown that there exists C < ∞ such that for all n
E[M2

n∧T ] ≤ C. Hence we can use Theorem 1.3.3 to conclude that

0 = E[M0] = E [MT ] = E
[
S2
T

]
− E [T ] .

Moreover,

E
[
S2
T

]
= J2 P{ST = −J}+K2 P{ST = K}

= J2 K

J +K
+K2 J

J +K
= JK.

Therefore,
E[T ] = E

[
S2
T

]
= JK.

In particular, the expected amount of time for the random walker starting
at the origin to get distance K from the origin is K2.
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Example 1.3.3. As in Example 1.3.2, let Sn = X1 + · · · + Xn be simple
random walk starting at 0. Let

T = min{n : Sn = 1}, TJ = min{n : Sn = 1 or Sn = −J}.

Note that T = limJ→∞ TJ and

P{T = ∞} = lim
J→∞

P {STJ
= −J} = lim

J→∞

1

J + 1
= 0.

Therefore, P{T <∞} = 1, although Example 1.3.2 shows that for every J ,

E[T ] ≥ E [TJ ] = J,

and hence E[T ] = ∞. Also, ST = 1, so we do not have E[S0] = E[ST ]. From
this we can see that (1.8) and (1.9) are not satisfied by this example.

1.4 Martingale convergence theorem

The martingale convergence theorem describes the behavior of a martingale
Mn as n→ ∞.

Theorem 1.4.1 (Martingale Convergence Theorem). Suppose Mn is a mar-
tingale with respect to {Fn} and there exists C < ∞ such that E [|Mn|] ≤ C
for all n. Then there exists a random variable M∞ such that with probability
one

lim
n→∞

Mn =M∞.

It does not follow from the theorem that E[M∞] = E[M0]. For example,
the martingale betting strategy satisfies the conditions of the theorem since

E [|Wn|] = (1− 2−n) · 1 + (2n − 1) · 2−n ≤ 2.

However, W∞ = 1 and W0 = 0.

We will prove the martingale convergence theorem. The proof uses
a well-known financial strategy — buy low, sell high. Suppose
M0,M1, . . . is a martingale such that

E [|Mn|] ≤ C < ∞,
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for all n. Suppose a < b are real numbers. We will show that it is
impossible for the martingale to fluctuate infinitely often below a and
above b. Define a sequence of stopping times by

S1 = min{n : Mn ≤ a}, T1 = min{n > S1 : Mn ≥ b},

and for j > 1,
Sj = min{n > Tj−1 : Mn ≤ a},

Tj = min{n > Sj : Mn ≥ b}.

We set up the discrete stochastic integral

Wn =
n∑

k=0

Bk [Mk −Mk−1] ,

with Bn = 0 if n− 1 < S1 and

Bn = 1 if Sj ≤ n− 1 < Tj ,

Bn = 0 if Tj ≤ n− 1 < Sj+1.

In other words, every time the “price” drops below a we buy a unit of
the asset and hold onto it until the price goes above b at which time
we sell. Let Un denote the number of times by time n that we have
seen a fluctuation; that is,

Un = j if Tj < n ≤ Tj+1.

We call Un the number of upcrossings by time n. Every upcrossing
results in a profit of at least b− a. From this we see that

Wn ≥ Un (b− a) + (Mn − a).

The term a−Mn represents a possible loss caused by holding a share
of the asset at the current time. Since Wn is a martingale, we know
that E[Wn] = E[W0] = 0, and hence

E[Un] ≤
E[a−Mn]

b− a
≤ |a|+ E[|Mn|]

b− a
≤ |a|+ C

b− a
.

This holds for every n, and hence

E[U∞] ≤ |a|+ C

b− a
< ∞.



1.4. MARTINGALE CONVERGENCE THEOREM 21

In particular with probability one, U∞ < ∞, and hence there are
only a finite number of fluctuations. We now allow a, b to run over all
rational numbers to see that with probability one,

lim inf
n→∞

Mn = lim sup
n→∞

Mn.

Therefore, the limit
M∞ = lim

n→∞
Mn

exists. We have not yet ruled out the possibility that M∞ is ±∞, but

it is not difficult to see that if this occurred with positive probability,

then E[|Mn|] would not be uniformly bounded.

To illustrate the martingale convergence theorem, we will consider an-
other example of a martingale called Polya’s urn. Suppose we have an urn
with red and green balls. At time n = 0, we start with one red ball and one
green ball. At each positive integer time we choose a ball at random from
the urn (with each ball equally likely to be chosen), look at the color of the
ball, and then put the ball back in with another ball of the same color. Let
Rn, Gn denote the number of red and green balls in the urn after the draw
at time n so that

R0 = G0 = 1, Rn +Gn = n+ 2,

and let

Mn =
Rn

Rn +Gn

=
Rn

n+ 2

be the fraction of red balls at this time. Let Fn denote the information in
the data M1, . . . ,Mn, which one can check is the same as the information in
R1, R2, . . . , Rn. Note that the probability that a red ball is chosen at time
n depends only on the number (or fraction) of red balls in the urn before
choosing. It does not depend on what order the red and green balls were put
in. This is an example of the Markov property. This concept will appear a
number of times for us, so let us define it.

Definition A discrete time process Y0, Y1, Y2, . . . is called Markov if for each
n, the conditional distribution of

Yn+1, Yn+2, . . .
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given Y0, Y1, . . . , Yn is the same as the conditional distribution given Yn. In
other words, the only thing about the past and present that is useful for
predicting the future is the current value of the process.

We can describe the rule of Polya’s urn by

P{Rn+1 = Rn + 1 | Fn} = 1− P{Rn+1 = Rn | Fn} =

P{Rn+1 = Rn + 1 |Mn} =
Rn

n+ 2
=Mn.

We claim that Mn is a martingale with respect to Fn. To check this,

E [Mn+1 | Fn] = E [Mn+1 |Mn]

= Mn
Rn + 1

n+ 3
+ [1−Mn]

Rn

n+ 3

=
Rn(Rn + 1)

(n+ 2)(n+ 3)
+

(n+ 2−Rn)Rn

(n+ 2)(n+ 3)

=
Rn(n+ 3)

(n+ 2)(n+ 3)
=Mn.

Since E[|Mn|] = E[Mn] = E[M0] = 1/2, this martingale satisfies the condi-
tions of the martingale convergence theorem. (In fact, the same argument
shows that every martingale that stays nonnegative satisfies the conditions.)
Hence, there exists a random variable M∞ such that with probability one,

lim
n→∞

Mn =M∞.

It turns out that the random variable Mn is really random in the sense
that it has a nontrivial distribution. In Exercise 1.11 you will show that for
each n, the distribution of Mn is uniform on{

1

n+ 2
,

2

n+ 2
, . . . ,

n+ 1

n+ 2

}
,

and from this it is not hard to see that M∞ has a uniform distribution on
[0, 1]. You will also be asked to simulate this process to see what happens.
There is a lot of randomness in the first few draws to see what fraction of
red balls the urn will settle down to. However, for large n this ratio changes
very little; for example, the ratio after 2000 draws is very close to the ratio
after 4000 draws.
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While Polya’s urn seems like a toy model, it arises in a number of places.
We will give an example from Bayesian statistics. Suppose that we perform
independent trials of an experiment where the probability of success for each
experiment is θ (such trials are called Bernoulli trials). Suppose that we do
not know the value of θ, but want to try to deduce it by observing trials. Let
X1, X2, . . . be independent random variables with

P{Xj = 1} = 1− P{Xj = 0} = θ.

The (strong) law of large numbers implies that with probability one,

lim
n→∞

X1 + · · ·+Xn

n
= θ. (1.10)

Hence, if were able to observe infinitely many trials, we could deduce θ ex-
actly.

Clearly, we cannot deduce θ with 100% assurance if we see only a finite
number of trials. Indeed, if 0 < θ < 1, there is always a chance that the first
n trials will all be failures and there is a chance they will all be successes.
The Bayesian approach to statistics is to assume that θ is a random variable
with a certain prior distribution. As we observe the data we update to a
posterior distribution. We will assume we know nothing initially about the
value and choose the prior distribution to the uniform distribution on [0, 1]
with density

f0(θ) = 1, 0 < θ < 1.

Suppose that after observing n trials, we have had Sn = X1 + · · · + Xn

successes. If we know θ, then the distribution of Sn is binomial,

P{Sn = k | θ} =

(
n

k

)
θk (1− θ)n−k.

We use a form of the Bayes rule to update the density

fn,k(θ) := fn(θ | Sn = k) =
P{Sn = k | θ}∫ 1

0
P{Sn = k | x} dx

= Cn,k θ
k (1− θ)n−k,

where Cn,k is the appropriate constant so that fn,k is a probability density.
This is the beta density with parameters k+1 and n−k+1. The probability of
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a success on the (n+1)st trial given that Sn = k is the conditional expectation
of θ given Sn = k. A little computation which we omit shows that

E[θ | Sn = k] =

∫ 1

0

θ fn,k(θ) dθ =
k + 1

n+ 2
=
Sn + 1

n+ 2
.

These are exactly the transition probabilities for Polya’s urn if we view Sn+1
as the number of red balls in the urn (Sn is the number of red balls added to
the urn). The martingale convergence theorem can now be viewed as the law
of large numbers (1.10) for θ. Even though we do not initially know the value
of θ (and hence treat it as a random variable) we know that the conditional
value of θ given Fn approaches θ.

Example 1.4.1. We end with a simple example where the conditions of
the martingale convergence theorem do not apply. Let Sn = X1 + · · · + Xn

be simple symmetric random walk starting at the origin as in the previous
section. Then one can easily see that E[|Sn|] → ∞. For this example, with
probability one

lim sup
n→∞

Sn = ∞,

lim inf
n→∞

Sn = −∞.

1.5 Square integrable martingales

Definition A martingale Mn is called square integrable if for each n,
E [M2

n] <∞.

Note that this condition is not as strong as (1.9). We do not require that
there exists a C < ∞ such that E [M2

n] ≤ C for each n. Random variables
X, Y are orthogonal if E[XY ] = E[X]E[Y ]. Independent random variables
are orthogonal, but orthogonal random variables need not be independent. If
X1, . . . , Xn are pairwise orthogonal random variables with mean zero, then
E[XjXk] = 0 for j ̸= k and by expanding the square we can see that

E
[
(X1 + · · ·+Xn)

2
]
=

n∑
j=1

E[X2
j ].

This can be thought of as a generalization of the Pythagorean theorem a2 +
b2 = c2 for right triangles. The increments of a martingale are not necessarily
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independent, but for square integrable martingales they are orthogonal as we
now show.

Proposition 1.5.1. Suppose that Mn is a square integrable martingale with
respect to {Fn}. Then if m < n,

E [(Mn+1 −Mn) (Mm+1 −Mm)] = 0.

Moreover, for all n,

E[M2
n] = E[M2

0 ] +
n∑

j=1

E
[
(Mj −Mj−1)

2
]
.

Proof. If m < n, then Mm+1 −Mm is Fn-measurable, and hence

E [(Mn+1 −Mn) (Mm+1 −Mm) | Fn]

= (Mm+1 −Mm)E[Mn+1 −Mn | Fn] = 0.

Hence
E [(Mn+1 −Mn) (Mm+1 −Mm)]

= E [E [(Mn+1 −Mn) (Mm+1 −Mm) | Fn]] = 0.

Also, if we set M−1 = 0,

M2
n =

[
M0 +

n∑
j=1

(Mj −Mj−1)

]2

= M2
0 +

n∑
j=1

(Mj −Mj−1)
2 +

∑
j ̸=k

(Mj −Mj−1)(Mk −Mk−1).

Taking expectations of both sides gives the second conclusion.

The natural place to discuss the role of orthogonality in the study of
square integrable martingales is L2 = L2(Ω,F ,P), the space of square
integrable random variables. This is a (real) Hilbert space under the
inner product

(X,Y ) = E[XY ].
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Two mean zero random variables are orthogonal if and only if (X,Y ) =
0. The conditional expectation has a nice interpretation in L2. Suppose
Y is a square integrable random variable and G is a sub- σ-algebra.
Then L2(Ω,G,P) is a closed subspace of L2(Ω,F ,P) and the condi-
tional expectation E[Y | G] is the same as the Hilbert space projection
onto the subspace. It can also be characterized as the G-measurable
random variable Z that minimizes the mean-squared error

E[(Y − Z)2].

The reason L2 rather than Lp for other values of p is so useful is

because of the inner product which gives the idea of orthogonality.

1.6 Integrals with respect to random walk

Suppose that X1, X2, . . . are independent, identically distributed random
variables with mean zero and variance σ2. The two main examples we will
use are:

� Binomial or coin-tossing random variables,

P{Xj = 1} = P{Xj = −1} =
1

2
,

in which case σ2 = 1.

� Normal increments where Xj ∼ N(0, σ2). We write Z ∼ N(µ, σ2) if Z
has a normal distribution with mean µ and variance σ2.

Let Sn = X1 + · · · + Xn and let {Fn} denote the filtration generated by
X1, . . . , Xn. A sequence of random variables J1, J2, . . . is called predictable
(with respect to {Fn}) if for each n, Jn is Fn−1-measurable. Recall that this
is the condition that makes Jn allowable “bets” on the martingale in the
sense of the discrete stochastic integral.

Suppose J1, J2, . . . is a predictable sequence with E[J2
n] < ∞ for each n.

The integral of Jn with respect to Sn is defined by

Zn =
n∑

j=1

Jj Xj =
n∑

j=1

Jj ∆Sj.

There are three important properties that the integral satisfies.
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� Martingale property. The integral Zn is a martingale with respect
to {Fn}. We showed this in Section 1.2.

� Linearity. If Jn, Kn are predictable sequences and a, b constants, then
aJn + bKn is a predictable sequence and

n∑
j=1

(aJj + bKj)∆Sj = a

n∑
j=1

Jj ∆Sj + b

n∑
j=1

Kj ∆Sj.

This is immediate.

� Variance rule

Var

[
n∑

j=1

Jj ∆Sj

]
= E

[
(

n∑
j=1

Jj ∆Sj)
2

]
= σ2

n∑
j=1

E
[
J2
j

]
.

To see this we first use the orthogonality of martingale increments to
write

E

[
(

n∑
j=1

Jj ∆Sj)
2

]
=

n∑
j=1

E
[
J2
jX

2
j

]
.

Since Jj is Fj−1-measurable and Xj is independent of Fj−1, we can see
that

E
[
J2
jX

2
j

]
= E

[
E[J2

jX
2
j | Fj−1]

]
= E

[
J2
j E[X

2
j | Fj−1]

]
= E

[
J2
j E[X2

j ]
]
= σ2 E[J2

j ].

1.7 A maximal inequality

There is another result about martingales that we will use.

Theorem 1.7.1. Suppose Yn is a nonnegative submartingale with re-
spect to {Fn}, and

Y n = max{Y0, Y1, . . . , Yn}.

Then for every a > 0,

P{Y n ≥ a} ≤ a−1 E[Yn].
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Proof. Let T denote the smallest integer k such that Yk ≥ a. Then

{Y n ≥ a} =

n⋃
k=0

Ak, Ak = {T = k}.

Note that Ak is Fk-measurable. Since Yn is a submartingale,

E [Yn1Ak
] = E [E(Yn | Fk) 1Ak

] ≥ E [Yk 1Ak
] .

By summing over k, we see that

E [Yn] ≥ E
[
Yn 1{Y n ≥ a}

]
=

n∑
k=0

E [Yn 1Ak
]

≥
n∑

k=0

E [Yk 1Ak
] = E

[
YT 1{Y n ≥ a}

]
≥ aP{Y n ≥ a}.

Corollary 1.7.2. If Mn is a square integrable martingale with respect
to {Fn} and

Mn = max {|M0|, . . . , |Mn|} ,

then for every a > 0,

P
{
Mn ≥ a

}
≤ a−2 E

[
M2

n

]
.

Proof. In Exercise 1.15, it is shown that M2
n is a submartingale, and

we can use the previous theorem.

1.8 Exercises

Exercise 1.1. Suppose we roll two dice, a red and a green one, and let X
be the value on the red die and Y the value on the green die. Let Z = XY .

1. Let W = E(Z | X). What are the possible values for W? Give the
distribution of W .

2. Do the same exercise for U = E(X | Z).

3. Do the same exercise for V = E(Y | X,Z)
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Exercise 1.2. Suppose we roll two dice, a red and a green one, and let X
be the value on the red die and Y the value on the green die. Let Z = X/Y .

1. Find E[(X + 2Y )2 | X].

2. Find E[(X + 2Y )2 | X,Z].

3. Find E[X + 2Y | Z].

4. Let W = E[Z | X]. What are the possible values for W? Give the
distribution of W .

Exercise 1.3. Suppose X1, X2, . . . are independent random variables with

P{Xj = 2} = 1− P{Xj = −1} =
1

3
.

Let Sn = X1 + · · ·+Xn and let Fn denote the information in X1, . . . , Xn.

1. Find E[Sn],E[S2
n],E[S3

n].

2. If m < n, find

E[Sn | Fm], E[S2
n | Fm], E[S3

n | Fm].

3. If m < n, find E[Xm | Sn].

Exercise 1.4. Repeat Exercise 1.3 assuming that

P{Xj = 3} = P{Xj = −1} =
1

2
.

Exercise 1.5. Suppose X1, X2, . . . are independent random variables with

P{Xj = 1} = P{Xj = −1} =
1

2
.

Let Sn = X1 + · · ·+Xn. Find

E
(
sinSn | S2

n

)
.

Exercise 1.6. In this exercise, we consider simple, nonsymmetric random
walk. Suppose 1/2 < q < 1 and X1, X2, . . . are independent random variables
with

P{Xj = 1} = 1− P{Xj = −1} = q.

Let S0 = 0 and Sn = X1+ · · ·+Xn. Let Fn denote the information contained
in X1, . . . , Xn.
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1. Which of these is Sn: martingale, submartingale, supermartingale (more
than one answer is possible)?

2. For which values of r is Mn = Sn − rn a martingale?

3. Let θ = (1− q)/q and let
Mn = θSn .

Show that Mn is a martingale.

4. Let a, b be positive integers, and

Ta,b = min{j : Sj = b or Sj = −a}.

Use the optional sampling theorem to determine

P
{
STa,b

= b
}
.

5. Let Ta = Ta,∞. Find
P{Ta <∞}.

Exercise 1.7. Suppose two people want to play a game in which person A
has probability 2/3 of winning. However, the only thing that they have is a
fair coin which they can flip as many times as they want. They wish to find
a method that requires only a finite number of coin flips.

1. Give one method to use the coins to simulate an experiment with prob-
ability 2/3 of success. The number of flips needed can be random, but
it must be finite with probability one.

2. Suppose K < ∞. Explain why there is no method such that with
probability one we flip the coin at most K times.

Exercise 1.8. Repeat the last exercise with 2/3 replaced by 1/π.

Exercise 1.9. LetX1, X2, . . . be independent, identically distributed random
variables with

P{Xj = 2} =
1

3
, P{Xj =

1

2
} =

2

3
.

Let M0 = 1 and for n ≥ 1, Mn = X1X2 · · ·Xn.

1. Show that Mn is a martingale.
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2. Explain why Mn satisfies the conditions of the martingale convergence
theorem.

3. Let M∞ = limn→∞Mn. Explain why M∞ = 0. (Hint: there are at least
two ways to show this. One is to consider logMn and use the law of
large numbers. Another is to note that with probability one Mn+1/Mn

does not converge.)

4. Use the optional sampling theorem to determine the probability that
Mn ever attains a value as large as 64.

5. Does there exist a C <∞ such that E[M2
n] ≤ C for all n?

Exercise 1.10. Let X1, X2, . . . be independent, identically distributed ran-
dom variables with

P{Xj = 1} = q, P{Xj = −1} = 1− q.

Let S0 = 0 and for n ≥ 1, Sn = X1 +X2 + · · ·+Xn. Let Yn = eSn .

1. For which value of q is Yn a martingale?

2. For the remaining parts of this exercise assume q takes the value from
part 1. Explain why Yn satisfies the conditions of the martingale con-
vergence theorem.

3. Let Y∞ = limn Yn. Explain why Y∞ = 0. (Hint: there are at least two
ways to show this. One is to consider log Yn and use the law of large
numbers. Another is to note that with probability one Yn+1/Yn does
not converge.)

4. Use the optional sampling theorem to determine the probability that
Yn ever attains a value greater than 100.

5. Does there exist a C <∞ such that E[Y 2
n ] ≤ C for all n?

Exercise 1.11. This exercise concerns Polya’s urn and has a comput-
ing/simulation component. Let us start with one red and one green ball
as in the lecture and let Mn be the fraction of red balls at the nth stage.
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1. Show that the distribution of Mn is uniform on the set{
1

n+ 2
,

2

n+ 2
, . . . ,

n+ 1

n+ 2

}
.

(Use mathematical induction, that is, note that it is obviously true for
n = 0 and show that if it is true for n then it is true for n+ 1.)

2. Write a short program that will simulate this urn. Each time you run
the program note the fraction of red balls after 600 draws and after 1200
draws. Compare the two fractions. Then, repeat this twenty times.

Exercise 1.12. Consider the martingale betting strategy as discussed in
Section 1.2. Let Wn be the “winnings” at time n, which for positive n equals
either 1 or 1− 2n.

1. Is Wn a square integrable martingale?

2. If ∆n = Wn −Wn−1 what is E[∆2
n]?

3. What is E[W 2
n ]?

4. What is E(∆2
n | Fn−1)?

Exercise 1.13. Suppose Sn = X1+ · · ·+Xn is simple random walk starting
at 0. For any K, let

T = min{n : |Sn| = K}.

� Explain why for every j,

P{T ≤ j +K | T > j} ≥ 2−K .

� Show that there exists c <∞, α > 0 such that for all j,

P{T > j} ≤ c e−αj.

Conclude that E[T r] <∞ for every r > 0.

� Let Mn = S2
n − n. Show there exists C <∞ such that for all n,

E
[
M2

n∧T
]
≤ C.
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Exercise 1.14. Suppose that X1, X2, . . . are independent random variables
with E[Xj] = 0, Var[Xj] = σ2

j , and suppose that

∞∑
n=1

σ2
n <∞.

Let S0 = 0 and Sn = X1+ · · ·+Xn for n > 0. Let Fn denote the information
contained in X1, . . . , Xn.

� Show that Sn is a martingale with respect to {Fn}.

� Show that there exists C <∞ such that for all n, E[S2
n] ≤ C.

� Show that with probability one the limit

S∞ = lim
n→∞

Sn,

exists.

� Show that

E[S∞] = 0, Var[S∞] =
∞∑
n=1

σ2
n.

Exercise 1.15.

� Suppose Y is a random variable and ϕ is a convex function, that
is, if 0 ≤ λ ≤ 1,

ϕ(λx+ (1− λ) y) ≤ λϕ(x) + (1− λ)ϕ(y).

Suppose that E[|ϕ(Y )|] < ∞. Show that E(ϕ(Y ) | X) ≥ ϕ(E(Y |
X)). (Hint: you will need to review Jensen’s inequality.)

� Show that if Mn is a martingale with respect to {Fn} and r ≥ 1,
then Yn = |Mn|r is a submartingale.
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Chapter 2

Brownian motion

2.1 Limits of sums of independent variables

We will discuss two major results about sums of random variables that we
hope the reader has seen. They both discuss the limit distribution of

X1 +X2 + · · ·+Xn

where X1, X2, . . . , Xn are independent, identically distributed random vari-
ables.

Suppose X1, X2, . . . have mean µ and variance σ2 <∞. Let

Zn =
(X1 + · · ·+Xn)− nµ

σ
√
n

.

We let Φ denote the standard normal distribution function,

Φ(b) =

∫ b

−∞

1√
2π

e−x2/2 dx.

While this function cannot be written down explicitly, the numerical values
are easily accessible in tables and computer software packages.

Theorem 2.1.1 (Central Limit Theorem). As n → ∞, the distribution of
Zn approaches a standard normal distribution. More precisely, if a < b, then

lim
n→∞

P{a ≤ Zn ≤ b} = Φ(b)− Φ(a).

35
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This amazing theorem states that no matter what distribution we choose
for the Xj, then as long as the distribution has a finite variance, the scaled
random variables approach a normal distribution. This is what is referred to
in physics literature as a universality result and in the mathematics literature
as an invariance principle. The assumption that the random variables are
identically distributed can be relaxed somewhat. We will not go into details
here, but whenever a quantity can be written as a sum of independent (or
at least not too dependent) increments, all of which are small compared to
the sum, then the limiting distribution is normal. This is why it is often
reasonable to assume normal distributions in nature.

To see a complete proof of Theorem 2.1.1, consult any book on
measure-theoretic probability. We will sketch part of the proof which
shows how the normal distribution arises. Without loss of general-
ity, we can assume that µ = 0, σ2 = 1 for otherwise we consider
Yj = (Xj − µ)/σ. Let ϕ(t) = E[eitXj ] denote the characteristic func-
tion of the increments. Then, ϕ can be expanded near the origin,

ϕ(t) = 1 + iE [Xj ] t+
(i)2

2
E
[
X2

j

]
t2 + o(t2)

= 1− t2

2
+ o(t2),

where o(t2) denotes a function such that |o(t2)|/t2 → 0 as t → 0. Using
the independence of the Xj , we see that the characteristic function of
Zn is

ϕZn(t) = ϕ(t/
√
n)n =

[
1− t2

2n
+ o

(
t2

n

)]n
−→ e−t2/2.

The right-hand side is the characteristic function of a standard normal

random variable.

When one considers sums of independent random variables where a few
terms contribute the bulk of the sum, then one does not expect to get normal
limits. The prototypical example of a nonnormal limit is the Poisson distri-
bution. Suppose λ > 0 and X

(n)
1 , X

(n)
2 , . . . , X

(n)
n are independent random

variables each with

P
{
X

(n)
j = 1

}
= 1− P

{
X

(n)
j = 0

}
=
λ

n
.
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Let
Yn = X

(n)
1 + · · ·+X(n)

n ,

and note that for each n, E[Yn] = λ. Recall that a random variable Y has a
Poisson distribution with mean λ if for each nonnegative integer k,

P{Y = k} = e−λ λ
k

k!
.

Theorem 2.1.2 (Convergence to the Poisson distribution). As n → ∞,
the distribution of Yn approaches a Poisson distribution with mean λ. More
precisely, for every nonnegative integer k,

lim
n→∞

P {Yn = k} = e−λ λ
k

k!
.

Proof. For each n, Yn has a binomial distribution with parameters n and
λ/n, and hence

lim
n→∞

P {Yn = k}

= lim
n→∞

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

=
λk

k!
lim
n→∞

n(n− 1) · · · (n− k + 1)

nk

(
1− λ

n

)−k (
1− λ

n

)n

Since we are fixing k and letting n→ ∞, one can see that

lim
n→∞

n(n− 1) · · · (n− k + 1)

nk

(
1− λ

n

)−k

= 1,

and in calculus one learns the limit

lim
n→∞

(
1− λ

n

)n

= e−λ.

We will be taking limits of processes as the time increment goes to zero.
The kind of limit we expect will depend on the assumptions. When we take
limits of random walks with finite variance, then we are in the regime of the
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central limit theorem, and we will expect normal distributions. Also, because
all of the increments are small with respect to the sum, the limit process will
have paths that are continuous. Here the limit is Brownian motion which we
discuss in this section.

In the Poisson case, the limit distribution will not have continuous paths
but rather will be a jump process. The prototypical case is the Poisson process
with intensity λ. In this case, Nt denotes the number of occurrences of an
event by time t. The function t 7→ Nt takes on nonnegative integer values
and the jumps are always of size +1. It satisfies the following conditions.

� For each s < t, the random variable Nt−Ns has a Poisson distribution
with parameter λ(t− s).

� For each s < t, the random variable Nt − Ns is independent of the
random variables {Nr : 0 ≤ r ≤ s}.

We discuss this further in Section 6.2.

2.2 Multivariate normal distribution

Although the normal or Gaussian distribution is a little inconvenient in the
sense that the distribution function cannot be computed exactly, there are
many other aspects that make the distribution very convenient. In partic-
ular, when dealing with many variables, assuming a joint or multivariate
normal distribution makes computations tractable. In this section we will
give the basic definitions. Roughly speaking, the basic assumption is that
if (X1, . . . , Xn, Y ) have a joint normal distribution then not only does each
variable have a normal distribution but also, the conditional distribution of
Y given X1, . . . , Xn is normal with mean E[Y |X1, . . . , Xn] and a variance
that depends on the joint distribution but not on the observed data points.
There are a number of equivalent ways to define a joint normal distribution.
We will use the following.

Definition A finite sequence of random variables (X1, . . . , Xn) has a joint
(or multivariate) normal (or Gaussian) distribution if they are linear com-
binations of independent standard normal random variables. In other words,
if there exist independent random variables (Z1, . . . , Zm), each N(0, 1), and
constants mj, ajk such that for j = 1, . . . , n,

Xj = mj + aj1 Z1 + aj2 Z2 + · · ·+ ajm Zm.
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Clearly E[Xj] = mj. Let us consider the case of mean-zero (also called
centered) joint normals, in which case the equation above can be written in
matrix form

X = AZ,

where

X =


X1

X2
...
Xn

 , Z =


Z1

Z2
...
Zm

 ,

and A is the n × m matrix with entries ajk. Each Xj is a normal random
variable with mean zero and variance

E[X2
j ] = a2j1 + · · ·+ a2jm.

More generally, the covariance of Xj and Xk is given by

Cov(Xj, Xk) = E[XjXk] =
m∑
l=1

ajlakl.

Let Γ = AAT be the n× n matrix whose entries are

Γjk = E[XjXk].

Then Γ is called the covariance matrix.
We list some important properties. Assume (X1, . . . , Xn) has a joint nor-

mal distribution with mean zero and covariance matrix Γ.

� Each Xj has a normal distribution. In fact, if b1, . . . , bn are constants,
then

b1X1 + · · ·+ bnXn,

has a normal distribution. We can see this easily since we can write
the sum above as a linear combination of the independent normals
Z1, . . . , Zm.

� The matrix Γ is symmetric, Γjk = Γkj. Moreover, it is positive semi-
definite which means that if b = (b1, . . . , bn) is a vector in Rn, then

b · Γb =
n∑

j=1

n∑
k=1

Γjkbjbk ≥ 0. (2.1)
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(If the ≥ is replaced with > 0 for all b = (b1, . . . , bn) ̸= (0, . . . , 0),
then the matrix is called positive definite.) The inequality (2.1) can be
derived by noting that the left-hand side is the same as

E
[
(b1X1 + · · ·+ bnXn)

2
]
,

which is clearly nonnegative.

� If Γ is a positive semidefinite, symmetric matrix, then it is the co-
variance matrix for a joint normal distribution. The proof of this fact,
which we omit, uses linear algebra to deduce that there exists an n×n
matrix A with AAT = Γ. (The A is not unique.)

� The distribution of a mean-zero joint normal is determined by the co-
variance matrix Γ.

In order to show that the covariance matrix Γ determines the dis-
tribution of a mean-zero joint normal, we compute the characteristic
function. Suppose that Γ = AAT where A is n×n. Using the indepen-
dence of Z1, . . . , Zn and the characteristic function of the standard
normal, E[eitZk ] = e−t2/2, we see that the characteristic function of
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(X1, . . . , Xn) is

ϕ(θ1, . . . , θn) = E [exp {i(θ1X1 + . . .+ θnXn)}]

= E

exp
i

n∑
j=1

θj

n∑
k=1

ajkZk




= E

exp
i

n∑
k=1

Zk(

n∑
j=1

θjajk)




=

n∏
k=1

E

exp
iZk(

n∑
j=1

θjajk)




= exp

−1

2

n∑
k=1

 n∑
j=1

θjajk

2
= exp

−1

2

n∑
k=1

n∑
j=1

n∑
l=1

θjθiajkalk


= exp

{
−1

2
θAAT θT

}
= exp

{
−1

2
θΓθT

}
where we write θ = (θ1, . . . , θn). Even though we used A, which is
not unique, in our computation, the answer only involves Γ. Since the
characteristic function determines the distribution, the distribution
depends only on the covariance matrix.

� If Γ is invertible, then (X1, . . . , Xn) has a density. We write it in the
case that the random variables have mean m = (m1, . . . ,mn),

f(x1, . . . , xn) = f(x) =

1

(2π)n/2
√
det Γ

exp

{
−(x−m) · Γ−1(x−m)T

2

}
.

Sometimes this density is used as a definition of a joint normal. The
formula for the density looks messy, but note that if n = 1, m =
m,Γ = [σ2], then the right-hand side is the density of a N(m,σ2)
random variable.
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� If (X1, X2) have a mean-zero joint normal density, and E(X1X2) = 0,
then X1, X2 are independent random variables. To see this let σ2

j =
E[X2

j ]. Then the covariance matrix of (X1, X2) is the diagonal matrix
with diagonal entries σ2

j . If (Z1, Z2) are independent N(0, 1) random
variables and Y1 = σ1Z1, Y2 = σ2Z2, then by our definition (Y1, Y2)
are joint normal with the same covariance matrix. Since the covariance
matrix determines the distribution, X1, X2 must be independent,

It is a special property about joint normal random variables that orthog-
onality implies independence. In our construction of Brownian motion, we
will use a particular case, that we state as a lemma.

Proposition 2.2.1. Suppose X, Y are independent N(0, 1) random variables
and

Z =
X + Y√

2
, W =

X − Y√
2

.

Then Z and W are independent N(0, 1) random variables.

Proof. By definition (Z,W ) has a joint normal distribution and Z,W clearly
have mean 0. Using E[X2] = E[Y 2] = 1 and E[XY ] = 0, we get

E[Z2] = 1, E[W 2] = 1, E[ZW ] = 0.

Hence the covariance matrix for (Z,W ) is the identity matrix and this is the
covariance matrix for independent N(0, 1) random variables.

2.3 Limits of random walks

Brownian motion can be viewed as the limit of random walk as the time and
space increments tend to zero. It is necessary to be careful about how the
limit is taken. Suppose X1, X2, . . . are independent random variables with
P{Xj = 1} = P{Xj = −1} = 1/2 and let

Sn = X1 + · · ·+Xn

be the corresponding random walk. Here we have chosen time increment
∆t = 1 and space increment ∆x = 1. Suppose we choose ∆t = 1/N where
N is a large integer. Hence, we view the process at times

∆t, 2∆t, 3∆t, · · · ,
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and at each time we have a jump of ±∆x. At time 1 = N∆t, the value of
the process is

W
(N)
1 = ∆x (X1 + · · ·+XN) .

We would like to choose ∆x so that Var[W
(N)
1 ] = 1, and since

Var [∆x (X1 + · · ·+XN)] = (∆x)2 [Var(X1) + · · ·+Var(XN)]

= (∆x)2N,

we see that we need to choose

∆x =
√

1/N =
√
∆t.

We also know from the central limit theorem, that if N is large, then the
distribution of

X1 + · · ·+XN√
N

,

is approximately N(0, 1).
Brownian motion could be defined formally as the limit of random walks,

but there are subtleties in describing the kind of limit. In the next section,
we define it directly using the idea of “continuous random motion”. However,
the random walk intuition is useful to retain.

2.4 Brownian motion

Brownian motion or the Wiener process is a model of random continuous
motion. We will start by making the assumptions that underlie the phrase
“random continuous motion”. Let Bt = B(t) be the value at time t. For each
t, Bt is a random variable.1 A collection of random variables indexed by time
is called a stochastic process. We can view the process in two different ways:

� For each t, there is a random variable Bt, and there are correlations
between the values at different times.

1In this book and usually in the financial world, the terms Brownian motion and Wiener
process are synonymous. However, in the scientific world, the word Brownian motion is
often used for a physical process for which what we will describe is one possible mathemat-
ical model. The term Wiener process always refers to the model we define. The letter Wt

is another standard notation for Brownian motion/Wiener process and is more commonly
used in financial literature. We will use both Bt and Wt later in the book when we need
two notations.
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� The function t 7→ B(t) is a random function. In other words, it is a
random variable whose value is a function.

There are three major assumptions about the random variables Bt.

� Stationary increments. If s < t, then the distribution of Bt − Bs is
the same as that of Bt−s −B0.

� Independent increments. If s < t, the random variable Bt − Bs is
independent of the values Br for r ≤ s.

� Continuous paths. The function t 7→ Bt is a continuous function of
t.

We often assume B0 = 0 for convenience, but we can also take other initial
conditions. All of the assumptions above are very reasonable for a model of
random continuous motion. However, it is not obvious that these are enough
assumptions to characterize our process uniquely. It turns out that they do
up to two parameters. One can prove (see Theorem 6.8.4), that if Bt is a
process satisfying the three conditions above, then the distribution of Bt for
each t must be normal. Suppose Bt is such a process, and let m,σ2 be the
mean and variance of B1. If s < t, then independent, identically distributed
increments imply that

E[Bt] = E[Bs] + E[Bt −Bs] = E[Bs] + E[Bt−s],

Var[Bt] = Var[Bs] + Var[Bt −Bs] = Var[Bs] + Var[Bt−s].

Using this relation, we can see that E[Bt] = tm,Var[Bt] = tσ2. At this point,
we have only shown that if a process exists, then the increments must have
a normal distribution. We will show that such a process exists. It will be
convenient to put the normal distribution in the definition.

Definition A stochastic process Bt is called a (one-dimensional) Brownian
motion with drift m and variance (parameter) σ2 starting at the origin if it
satisfies the following.

� B0 = 0.

� For s < t, the distribution of Bt − Bs is normal with mean m(t − s)
and variance σ2(t− s).
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� If s < t, the random variable Bt − Bs is independent of the values Br

for r ≤ s.

� With probability one, the function t 7→ Bt is a continuous function of
t.

If m = 0, σ2 = 1, then Bt is called a standard Brownian motion.

Recall that if Z has a N(0, 1) distribution and Y = σZ +m, then Y has
a N(m,σ2) distribution. Given that it is easy to show the following.

� If Bt is a standard Brownian motion and

Yt = σ Bt +mt,

then Yt is a Brownian motion with drift m and variance σ2.

Indeed, one just checks that it satisfies the conditions above. Hence, in or-
der to establish the existence of Brownian motion, it suffices to construct a
standard Brownian motion.

There is a mathematical challenge in studying stochastic processes in-
dexed by continuous time. The problem is that the set of positive real num-
bers is uncountable, that is, the elements cannot be enumerated t1, t2, . . .. The
major axiom of probability theory is the fact that if A1, A2, . . . is a countable
sequence of disjoint events, then

P

[
∞⋃
n=1

An

]
=

∞∑
n=1

P[An].

This rule does not hold for uncountable unions. An example that we have
all had to deal with arises with continuous random variables. Suppose, for
instance, that Z has a N(0, 1) distribution. Then for each x ∈ R,

P{Z = x} = 0.

However,

1 = P{Z ∈ R} = P

[⋃
x∈R

Ax

]
,
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where Ax denotes the event {Z = x}. The events Ax are disjoint, each with
probability zero, but it is not the case that

P

[⋃
x∈R

Ax

]
=
∑
x∈R

P(Ax) = 0.

In constructing Brownian motion, we use the fact that if g : [0,∞) → R
is a continuous function and we know the value of g on a countable, dense
set, such as the dyadic rationals{

k

2n
: k = 0, 1, . . . ;n = 0, 1, . . .

}
,

then we know the value at every t. Indeed, we need only find a sequence of
dyadic rationals tn that converge to t, and let

g(t) = lim
tn→t

g(tn).

This is fine if a priori we know the function g is continuous. Our strategy for
constructing Brownian motion will be:

� First define the process Bt when t is a dyadic rational.

� Prove that with probability one, the function t 7→ Bt is continuous on
the dyadics (this is the hardest step, and we need some care in the
definition of continuity).

� Extend Bt to other t by continuity.

The next section shows that one can construct a Brownian motion. The
reader can skip this section and just have faith that such a process exists.

2.5 Construction of Brownian motion

We will show how to construct Brownian motion. For ease, we will
consider Bt, 0 ≤ t ≤ 1. Once we know how to construct this, we can
take a countable collection of such processes and connect them ap-
propriately to get Bt, 0 ≤ t < ∞. We start with a probability space
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(Ω,F ,P) which is large enough so that it contains a countable collec-
tion of independent standard normal random variables. Let

Dn =

{
k

2n
: k = 0, 1, . . . , 2n

}
,

denote the dyadic rationals in [0, 1] with denominator 2n and let D =
∪nD. Since D is a countable set, we can assume that our collection of
N(0, 1) random variables

{Zq : q ∈ D}

is indexed by D.

We will use the independent random variables {Zq} to define the Brow-
nian motion Bq, q ∈ D. We start by defining B0, B1, and then B1/2,
and then B1/4 and B3/4, and so forth, by always subdividing our in-
tervals. We start with B0 = 0 and we let B1 = Z1 which is clearly
N(0, 1). We then define

B1/2 =
B1

2
+

Z1/2

2
,

and hence

B1 −B1/2 =
B1

2
−

Z1/2

2
.

We think of the definition of B1/2 as being E[B1/2 | B1] plus some
independent randomness. Using Proposition 2.2.1, we can see that
B1/2 and B1−B1/2 are independent random variables, each N(0, 1/2).
We continue this splitting. If q = (2k+1)/2n+1 ∈ Dn+1\Dn, we define

Bq = Bk2−n +
B(k+1)2−n −Bk2−n

2
+

Zq

2(n+2)/2
.

This formula looks a little complicated, but we can again view this as

Bq = E[Bq | Bk2−n , B(k+1)2−n ] + (independent randomness),

where the variance of the new randomness is chosen appropriately.
By repeated use of Proposition 2.2.1, we can see that for each n, the
random variables{

Bk2−n −B(k−1)2−n : k = 1, . . . , 2n
}
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are independent, each with N(0, 2−n) distribution. From this we can
see that {Bq : q ∈ D} satisfies the first three properties in the defini-
tion of a Brownian motion.

We will define Bt for other t by continuity. To do this we prove a
theorem that states that the Brownian motion restricted to D has
uniformly continuous paths. In other words, we show that with prob-
ability one, for every ϵ > 0, there exists δ > 0 such that if |s− t| ≤ δ
and s, t ∈ D, then |Bs−Bt| < ϵ. Equivalently, if we define the random
variable

Kn = sup
{
|Bs −Bt| : s, t ∈ D, |s− t| ≤ 2−n

}
,

then with probability one, Kn → 0 as n → ∞. Note that Kn is the
supremum of a countable number of random variables and hence is a
well-defined random variable (perhaps taking the value ∞).

Proposition 2.5.1. With probability one, for all α < 1/2,

lim
n→∞

2αnKn = 0. (2.2)

In particular, Kn → 0.

In order to prove this proposition, it is easier to consider another
sequence of random variables

Jn = max
j=1,...,2n

Y (j, n)

where Y (j, n) equals

sup
{
|Bq −B(j−1)2−n | : q ∈ D, (j − 1)2−n ≤ q ≤ j2−n

}
.

A simple argument using the triangle inequality shows that Kn ≤ 3Jn.
It turns out Jn is easier to analyze. For any ϵ > 0,

P{Jn ≥ ϵ} ≤
2n∑
j=1

P{Y (j, n) ≥ ϵ} = 2n P{Y (1, n) ≥ ϵ}.

Also the distribution of

Y (1, n) = sup
{
|Bq| : q ∈ D, q ≤ 2−n

}
.

is the same as that of 2−n/2Y where

Y = Y (1, 0) = sup {|Bq| : q ∈ D} .
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Using this we see that

P{Jn ≥ C
√
n 2−n/2} ≤ 2n P{Y ≥ C

√
n}.

We will show below that if C >
√
2 log 2, then

∞∑
n=1

2n P{Y ≥ C
√
n} < ∞. (2.3)

The Borel-Cantelli lemma then implies that with probability one, the
event {Jn ≥ 2−n/2n} happens for only finitely many values of n. In
particular,

lim
n→∞

2n/2 n−1 Jn = 0,

which implies (2.2). To get our estimate, we will need the following
lemma which is a form of the “reflection principle” for Brownian mo-
tion.

Lemma 2.5.2. For every a ≥ 4,

P{Y > a} ≤ 4P{B1 ≥ a} ≤ e−a2/2.

To prove this lemma, let

Yn = max {|Bq| : q ∈ Dn} .

Then

P{Y > a} = lim
n→∞

P{Yn > a},

and hence it suffices to prove the inequality for each n. Fix n and let
Ak be the event that

|Bk2−n | > a, |Bj2−n | ≤ a, j = 1, . . . , k − 1.

Then the event {Yn > a} can be written as a disjoint union

{Yn > a} =
2n⋃
k=1

Ak.

The important observation is that if |Bk2−n | > a, then with probability
at least 1/2, we have |B1| > a. Indeed, if Bk2−n and B1 − Bk2−n
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have the same sign, which happens with probability 1/2, then |B1| ≥
|Bk2−n |. Therefore,

P [Ak ∩ {|B1| > a}] ≥ 1

2
P(Ak),

and hence

P{|B1| > a} =

2n∑
k=1

P [Ak ∩ {|B1| > a}]

≥ 1

2

2n∑
k=1

P [Ak]

=
1

2
P{Yn > a}.

Here we use the fact that the events Ak are disjoint. Therefore, since
B1 has a N(0, 1) distribution,

P{Yn > a} ≤ 2P{|B1| > a} = 4P{B1 > a} =
4√
2π

∫ ∞

a
e−x2/2 dx.

To estimate the integral for a ≥ 4, we write

4√
2π

∫ ∞

a
e−x2/2 dx ≤ 2

∫ ∞

a
e−ax/2 dx

=
4

a
e−a2/2 ≤ e−a2/2.

This proves Lemma 2.5.2. If we apply the estimate with a = C
√
n,

then we see that for large n,

P{Y > C
√
n} ≤ e−C2n/2 = 2−nβ, β =

C2

2 log 2
.

In particular, if β > 1, then (2.3) holds and this gives (2.2) with
probability one.

The hard work is finished, with the proposition, we can now define Bt

for t ∈ [0, 1] by
Bt = lim

tn→∞
Btn

where tn → t, tn ∈ D. One needs to check that this satisfies the con-

ditions for a Brownian motion. This is relatively straightforward and

we omit it.
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2.6 Understanding Brownian motion

Let Bt be a standard Brownian motion starting at the origin. By doing
simulations, one can see that although the paths of the process are continuous
they are very rough. To do simulations, we must discretize time. If we let ∆t
be chosen, then we will sample the values

B0, B∆t, B2∆t, B3∆t, . . .

The increment B(k+1)∆t−Bk∆t is a normal random variable with mean 0 and
variance ∆t. If N0, N1, N2, . . . denote independent N(0, 1) random variables
(which can be generated on a computer), we set

B(k+1)∆t = Bk∆t +
√
∆tNk,

which we can write as

∆Bk∆t = B(k+1)∆t −Bk∆t =
√
∆tNk.

The relationship |∆Bt| = |Bt+∆t − Bt| ≈
√
∆t is fundamental for under-

standing Brownian motion. As ∆t → 0,
√
∆t → 0, which is consistent with

the continuity of the paths. However, we claim that the paths do not have
derivatives. To see why this should be true, recall that the definition of the
derivative at time t would be

lim
∆t→0

Bt+∆t −Bt

∆t
.

As ∆t → 0, the absolute value of the numerator is of order
√
∆t which is

much larger than ∆t for small ∆t. Hence, we do not expect the limit to exist.
In fact, the following stronger statement is true.

Theorem 2.6.1. With probability one, the function t 7→ Bt is nowhere dif-
ferentiable.

Note carefully the statement of this theorem. It is a stronger statement
than the similar statement: “for every t, with probability one, the derivative
does not exists at t”. As a comparison, consider the following two statements:

� With probability one, for every t, Bt ̸= 1.

� For every t, with probability one, Bt ̸= 1.
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SinceBt has aN(0, t) distribution, the second of these statements is obviously
true. However, the first statement is false. To see this, note that P{B1 > 1}
is greater than 0, and if B0 = 0, B1 > 1, then continuity implies that there
exists t ∈ (0, 1) such that Bt = 1. Here again we have the challenge of
dealing with uncountably many events of probability 0. Even though for
each t, P{Bt = 1} = 0,

P

 ⋃
t∈[0,1]

{Bt = 1}

 > 0.

While nondifferentiable paths may seem surprising, a little thought about
our assumptions will show why we could not expect to have differentiable
paths. Suppose that Bt were differentiable at t. Then, we could determine
the derivative by observing Bs, 0 ≤ s ≤ t. This would then tell us something
about the increment Bt+∆t − Bt for ∆t > 0. However, our assumptions tell
us that Bt+∆t −Bt is independent of Bs, 0 ≤ s ≤ t.

We will make a more precise statement about the relationship |∆Bt| =
|Bt+∆t − Bt| ≈

√
∆t. If α > 0, then a function f : [0, 1] → R is Hölder

continuous of order α if there exists C <∞ such that for all 0 ≤ s, t ≤ 1,

|f(s)− f(t)| ≤ C |s− t|α.

The smaller α is the easier it is to be Hölder continuous of order α. Note that
differentiable functions are Hölder continuous of order 1 since

|f(s)− f(t)| ≈ |f ′(t)| |s− t|.

Theorem 2.6.2. With probability one, for all α < 1/2, Bt is Hölder contin-
uous of order α but it is not Hölder continuous of order 1/2.

We will be using Brownian motion and functions of Brownian motions to
model prices of assets. In all of the Brownian models, the functions will have
Hölder exponent 1/2.

We will prove Theorem 2.6.1 for 0 ≤ t ≤ 1. We start by making an
observation about differentiable functions. Suppose Bt were differen-
tiable at some 0 ≤ t ≤ 1 with derivative r. Then there would exist δ
such that for |t− s| ≤ δ,

|Bt −Bs| ≤ 2|r(t− s)|.
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Hence, we could find a positive integer M < ∞ such that for all
sufficiently large integers n, there exists k ≤ n such that Yk,n ≤ M/n,
where Yk,n is

max

{∣∣∣∣B(k + 1

n

)
−B

(
k

n

)∣∣∣∣ ,
∣∣∣∣B(k + 2

n

)
−B

(
k + 1

n

)∣∣∣∣ , ∣∣∣∣B(k + 3

n

)
−B

(
k + 2

n

)∣∣∣∣} .

Let Yn = min{Yk,n : k = 0, 1, . . . , n− 1} and let AM be the event that
for all n sufficiently large, Yn ≤ M/n. For each positive integer M ,

P{Yk,n ≤ M/n} = [P{|B(1/n)| ≤ M/n}]3

=
[
P{n−1/2 |B1| ≤ M/n}

]3
=

[∫
|x|≤M/

√
n

1√
2π

e−y2/2 dy

]3

≤
[
2M√
n

1√
2π

]3
≤ M3

n3/2
,

and hence,

P{Yn ≤ M/n} ≤
n−1∑
k=0

P{Yk,n ≤ M/n} ≤ M3

n1/2
−→ 0.

This shows that P(AM ) = 0 for each M , and hence

P

[ ∞⋃
M=1

AM

]
= 0.

But our first remark shows that the event that Bt is differentiable at
some point is contained in ∪MAM .

Theorem 2.6.2 is a restatement of (2.2).
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2.6.1 Brownian motion as a continuous martingale

The definition of a martingale in continuous time is essentially the same as in
discrete time. Suppose we have an increasing filtration {Ft} of information
and integrable random variablesMt such that for each t,Mt is Ft-measurable.
(We say that Mt is adapted to the filtration if Mt is Ft-measurable for each
t.) Then, Mt is a martingale with respect to {Ft} if for each s < t,

E [Mt | Fs] =Ms.

When one writes an equality as above there is an implicit “up to an event of
probability zero”. In discrete time this presents no problem because there are
only a countable number of pairs of times (s, t) and hence there can be only
a countable number of sets of measure zero. For continuous time, there are
instances where some care is needed but we will not worry about this at the
moment. As in the discrete case, if the filtration is not mentioned explicitly
then one assumes that Ft is the information contained in {Ms : s ≤ t}. In
that case, if Bt is a standard Brownian motion and s < t,

E[Bt | Fs] = E[Bs | Fs] + E[Bt −Bs | Fs] = Bs + E[Bt −Bs] = Bs. (2.4)

Often we will have more information at time t than the values of the
Brownian motion so it is useful to extend our definition of Brownian motion.
We say that Bt is Brownian motion with respect to the filtration {Ft} if each
Bt is Ft-measurable and Bt satisfies the conditions to be a Brownian motion
with the third condition being replaced by

� If s < t, the random variable Bt −Bs is independent of Fs.

In other words, although we may have more information at time s than the
value of the Brownian motion, there is nothing useful for predicting the future
increments. Under these conditions, (2.4) holds and Bt is a martingale with
respect to {Ft}.

If Ms, 0 ≤ s ≤ t is a martingale, then by definition, for each s ≤ t,

E(Y | Fs) =Ms

where Y = Mt. Conversely, if Y is an integrable random variable that is
measurable with respect to Ft, we can define a martingale Ms, 0 ≤ s ≤ t by

Ms = E(Y | Fs).
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Indeed, if we define Ms as above and r < s, then the tower property for
conditional expectation implies that

E(Ms | Fr) = E(E(Y | Fs) | Fr) = E(Y | Fr) =Mr.

A martingale Mt is called a continuous martingale if with probability
one the function t 7→ Mt is a continuous function. The word continuous in
continuous martingale refers not just to the fact that time is continuous but
also to the fact that the paths are continuous functions of t. One can have
martingales in continuous time that are not continuous martingales. One
example is to let Nt be a Poisson process with rate λ as in Section 2.1 and

Mt = Nt − λ t.

Then using the fact that the increments are independent we see that for
s < t,

E[Mt | Fs] = E[Ms | Fs] + E[Nt −Ns | Fs]− λ(t− s)

= Ms + E [Nt −Ns]− λ(t− s) =Ms.

Brownian motion with zero drift (m = 0) is a continuous martingale
with one parameter σ. As we will see, the only continuous martingales are
essentially Brownian motion where one allows the σ to vary with time. The
factor σ will be the analogue of the “bet” from the discrete stochastic integral.

A continuous time filtration on a probability space (Ω,F ,P) is a col-
lection of sub-σ-algebras {Ft} of F such that if s < t, then Fs ⊂ Ft.
It has been found that it is useful to make some additional technical
assumptions. First, we assume that F is complete under P, that is,
it contains all the nulls sets. A set A′ ⊂ Ω is a null set (for P) if
A′ ⊂ A for some A ∈ F with P(A) = 0. This is convenient for then
one can prove that an event has probability zero by showing that it
is contained in an event of probability zero. If F is not complete, one
can complete it by considering the collection of subsets A ∪ A′ where
A ∈ F and A′ is a null set. In the case of Lebesgue measure on the
Borel subsets of R, the completion is the set of Lebesgue measurable
sets.

When using filtrations {Ft} one often makes further assumptions:
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� Right continuity. For each t

Ft =
⋂
s>t

Fs.

It is easy to check that the right-hand side is a σ-algebra contain-
ing Ft. and it is often denoted by Ft+. Right continuity states
that Ft = Ft+. If the original filtration was not right continuous,
we can replace it with the filtration {Ft+}.

� (Strong) completeness. We assume that Ft contains all the null
sets of F (note that this is stronger than saying that Ft is com-
plete). If this does not hold initially, we enlarge our σ-algebra to
include all events of the form A ∪ A′ where A ∈ Ft and A′ is a
null set.

If we start with Brownian motion and let Ft be the σ-algebra generated
by {Bs : s ≤ t}, then it is not true that Ft = Ft+. However, it is almost
true in the sense that every set in Ft+ can be written as A∪A′ where
A ∈ Ft and A′ is a null set. This is a consequence of the Blumenthal
0 − 1 law that states that the σ-algebra F0+ contains only events of
probability zero or one. We will not prove this here but it is related
to the Kolmogorov 0− 1 law.

At this point one may not appreciate why one wants to make these
assumptions, but we will not try to motivate them further.

2.6.2 Brownian motion as a Markov process

A continuous time process Xt is called Markov if for every t, the conditional
distribution of {Xs : s ≥ t} given {Xr : r ≤ t} is the same as the conditional
distribution givenXt. In other words, the future of the process is conditionally
independent of the past given the present value.

Brownian motion is a Markov process. Indeed, if Bt is a Brownian motion
with parameters (m,σ2), and

Ys = Bt+s, 0 ≤ s <∞,

then the conditional distribution of {Ys} given Ft is that of a Brownian
motion with initial condition Y0 = Bt. Indeed, if

B̂s = Bt+s −Bt,
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then B̂s is a Brownian motion that is independent of Ft. There is a stronger
notion of this called the strong Markov property that we will discuss in Section
2.7.

2.6.3 Brownian motion as a Gaussian process

A process {Xt} is called a Gaussian process if each finite subcollection

(Xt1 , . . . , Xtn)

has a joint normal distribution. Recall that to describe a joint normal distri-
bution one needs only give the means and the covariances. Hence the finite-
dimensional distributions of a Gaussian process are determined by the num-
bers

mt = E[Xt], Γst = Cov(Xs, Xt).

If Bt is a standard Brownian motion and t1 < t2 < · · · < tn, then we
can write Bt1 , . . . , Btn as linear combinations of the independent standard
normal random variables

Zj =
Btj −Btj−1√
tj − tj−1

, j = 1, . . . , n.

Hence Bt is a Gaussian process with mean zero. If s < t,

E[BsBt] = E [Bs (Bs +Bt −Bs)]

= E[B2
s ] + E[Bs(Bt −Bs)]

= s+ E[Bs]E[Bt −Bs] = s,

which gives the general rule

Cov(Bs, Bt) = min{s, t}.

The description of Brownian motion as a Gaussian process describes only
the finite-dimensional distributions but our definition includes some aspects
that depend on more than finite-dimensional distributions. In particular, one
cannot tell from the finite-dimensional distributions alone whether or not the
paths are continuous.
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2.6.4 Brownian motion as a self-similar process

If one looks at a small piece of a Brownian motion and blows it up, then the
blown-up picture looks like a Brownian motion provided that the dilation
uses the appropriate scaling. We leave the derivation as Exercise 2.12.

Theorem 2.6.3. Suppose Bt is a standard Brownian motion and a > 0. Let

Yt =
Bat√
a
.

Then Yt is a standard Brownian motion.

The key here is that if time is scaled by a factor of a, then space must
be scaled by a factor of 1/

√
a. The proof of this theorem is not difficult; one

needs only show that Yt satisfies the conditions to be a standard Brownian
motion. One can check that the scaling is right by computing

Var[Yt] = Var[Bat/
√
a] = a−1Var[Bat] = a−1 (at) = t.

2.7 Computations for Brownian motion

We will discuss some methods for computing probabilities for Brownian mo-
tions. For ease, we will assume that Bt is a standard Brownian motion start-
ing at the origin with respect to a filtration {Ft}. If we are interested in
probabilities about the Brownian motion at one time t, we need only use the
normal distribution. Often, it is easier to scale to the standard normal. For
example,

E [|Bt|] = E
[
t1/2|B1|

]
=

t1/2√
2π

∫ ∞

−∞
|x| e−x2/2 dx

=

√
2t

π

∫ ∞

0

x e−x2/2 dx

=

√
2t

π
,

and

P{Bt ≥ r} = P{
√
t B1 ≥ r} = P{B1 ≥ r/

√
t}

= 1− Φ(r/
√
t)

=

∫ ∞

r/
√
t

1√
2π
e−x2/2 dx,
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where Φ denotes the distribution function for a standard normal.
If we are considering probabilities for a finite number of times, we can use

the joint normal distribution. Often it is easier to use the Markov property
as we now illustrate. We will compute

P{B1 > 0, B2 > 0}.

The events {B1 > 0} and {B2 > 0} are not independent; we would expect
them to be positively correlated. We compute by considering the possibilities
at time 1,

P{B1 > 0, B2 > 0} =

∫ ∞

0

P{B2 > 0 | B1 = x} dP{B1 = x}

=

∫ ∞

0

P{B2 −B1 > −x} 1√
2π
e−x2/2 dx

=

∫ ∞

0

∫ ∞

−x

1

2π
e−(x2+y2)/2 dy dx

=

∫ ∞

0

∫ π/2

−π/4

e−r2/2

2π
dθ r dr =

3

8
.

One needs to review polar coordinates to do the fourth equality. Note that

P{B2 > 0 | B1 > 0} =
P{B1 > 0, B2 > 0}

P{B1 > 0}
=

3

4
,

which confirms our intuition that the events are positively correlated.
For more complicated calculations, we need to use the strong Markov

property. We say that a random variable T taking values in [0,∞] is a stopping
time (with respect to the filtration {Ft}) if for each t, the event P{T ≤ t} is Ft-
measurable. In other words, the decision to stop can use the information up
to time t but cannot use information about the future values of the Brownian
motion.

� If x ∈ R and

T = min{t : Bt = x},

then T is a stopping time.

� Constants are stopping times.
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� If S, T are stopping times then

S ∧ T = min{S, T}

and
S ∨ T = max{S, T}

are stopping times.

Theorem 2.7.1 (Strong Markov Property). If T is a stopping time with
P{T <∞} = 1 and

Yt = BT+t −BT ,

then Yt is a standard Brownian motion. Moreover, Y is independent of

{Bt : 0 ≤ t ≤ T}.

Let us apply this theorem, to prove a very useful tool for computing
probabilities.

Proposition 2.7.2 (Reflection Principle). If Bt is a standard Brownian mo-
tion with B0 = 0, then for every a > 0,

P
{
max
0≤s≤t

Bs ≥ a

}
= 2P{Bt > a} = 2

[
1− Φ(a/

√
t)
]
.

To derive the reflection principle, let

Ta = min {s : Bs ≥ a} = min {s : Bs = a} .

The second equality holds because Bs is a continuous function of s. Then

P
{
max
0≤s≤t

Bs ≥ a

}
= P{Ta ≤ t} = P{Ta < t}.

The second equality uses the fact that P{Ta = t} ≤ P{Bt = a} = 0. Since
BTa = a,

P{Bt > a} = P{Ta < t,Bt > a}
= P{Ta < t}P{Bt −BTa > 0 | Ta < t}.

We now appeal to the Strong Markov Property to say that

P{Bt −BTa > 0 | Ta < t} = 1/2.

This gives the first equality of the proposition and the second follows from

P{Bt > a} = P{B1 > a/
√
t} = 1− Φ(a/

√
t).
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Example 2.7.1. Let a > 0 and let Ta = inf{t : Bt = a}. The random
variable Ta is called a passage time. We will find the density of Ta. To do
this, we first find its distribution function

F (t) = P{Ta ≤ t} = P
{
max
0≤s≤t

Bs ≥ a

}
= 2

[
1− Φ(a/

√
t)
]
.

The density is obtained by differentiating

f(t) = F ′(t) = −2Φ′
(
a√
t

) (
− a

2t3/2

)
=

a

t3/2
√
2π

e−
a2

2t , 0 < t <∞.

Example 2.7.2. We will compute

q(r, t) = P {Bs = 0 for some r ≤ s ≤ t} .

The scaling rule for Brownian motion (Theorem 2.6.3) shows that q(r, t) =
q(1, t/r), so it suffices to compute q(t) = q(1, 1 + t). Let A be the event that
Bs = 0 for some 1 ≤ s ≤ 1 + t. The Markov property for Brownian motion
and symmetry imply that

q(t) =

∫ ∞

−∞
P[A | B1 = r] dP{B1 = r}

=

∫ ∞

−∞
P[A | B1 = r]

[
1√
2π

e−r2/2 dr

]
=

√
2

π

∫ ∞

0

P[A | B1 = r] e−r2/2 dr.

The reflection principle and symmetry imply that

P[A | B1 = r] = P
{

min
1≤s≤1+t

Bs ≤ 0 | B1 = r

}
=

P
{
max
0≤s≤t

Bs ≥ r

}
= 2P{Bt ≥ r} = 2 [1− Φ(r/

√
t)].

Combining this we get

q(t) =

∫ ∞

−∞
2 [1− Φ(r/

√
t)]

1√
2π
e−r2/2 dr.

This integral can be computed with polar coordinates. We just give the an-
swer

q(t) = 1− 2

π
arctan

1√
t
.
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If the filtration {Ft} is right continuous then the condition {T ≤ t} ∈
Ft for all t is equivalent to the condition that {T < t} ∈ Ft for all t.
Indeed,

{T ≤ t} =
∞⋂
n=1

{
T < t+

1

n

}
∈ Ft+,

{T < t} =
∞⋃
n=1

{
T ≤ t− 1

n

}
∈ Ft.

If T is a stopping time, the σ-algebra FT is defined to be the set of
events A ∈ F such that for each t, A ∩ {T ≤ t} ∈ Ft. (It is not hard
to show that this is a σ-algebra.) We think of FT as the information
available up to time T . If {T < ∞} let

Yt = BT+t −BT ,

and let GT denote the σ-algebra generated by {Yt : t ≥ 0}. We can
state the strong Markov property as:

� {Yt : t ≥ 0} is a standard Brownian motion.

� The σ-algebras FT and GT are independent, that is, if A ∈
FT , A

′ ∈ GT , then P(A ∩A′) = P(A)P(A′).

To prove this, one first considers the case where T takes values in
{k2−n : k = 0, 1, 2, . . .}. By splitting up separately into the events
{T = k2−n}, one can use the usual Markov property to prove the
result. For more general stopping times T we approximate T by Tn

where Tn = k2−n on the event {(k− 1)2−n < T ≤ k2−n}. It is impor-
tant that we approximate “from above” in order to guarantee that the
Tn are stopping times. The continuity of the Brownian paths implies
that

Yt = lim
n→∞

[BTn+t −BTn ] ,

and this can be used to conclude the independence of FT and GT .
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2.8 Quadratic variation

In the next chapter we will come across quantities such as

Qn =
n∑

j=1

[
B

(
j

n

)
−B

(
j − 1

n

)]2
,

where Bt is a standard Brownian motion. We can write Qn as

1

n

n∑
j=1

Yj,

where

Yj = Yj,n =

[
B
(
j
n

)
−B

(
j−1
n

)
1/
√
n

]2
.

The random variables Y1, . . . , Yn are independent, each with the distribution
of Z2 where Z is a standard normal. In particular,

E [Yj] = E
[
Z2
]
= 1, E

[
Y 2
j

]
= E

[
Z4
]
= 3.

(One can use integration by parts to calculate E [Z4] or one could just look
it up somewhere.) Hence Var[Yj] = E

[
Y 2
j

]
− E [Yj]

2 = 2, and

E [Qn] =
1

n

n∑
j=1

E [Yj] = 1, Var [Qn] =
1

n2

n∑
j=1

Var [Yj] =
2

n
.

As n → ∞, the variance of Qn tends to zero and the random variable ap-
proaches a constant random variable of 1.

Similarly, for any time t, we let

Qn(t) =
∑
j≤tn

[
B

(
j

n

)
−B

(
j − 1

n

)]2
.

As n → ∞, the variance of Qn(t) goes to zero and it approaches a constant
random variable with value t.

Definition If Xt is a process, the quadratic variation is defined by

⟨X⟩t = lim
n→∞

∑
j≤tn

[
X

(
j

n

)
−X

(
j − 1

n

)]2
,

where the sum is over all j with j/n ≤ t.
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The calculation above shows that the quadratic variation of a standard
Brownian motion is the constant process ⟨B⟩t = t. SupposeWt is a Brownian
motion with driftm and variance σ2. Then we can writeWt = σBt+mt where
Bt is a standard Brownian motion. Fix t and write∑[

W

(
j

n

)
−W

(
j − 1

n

)]2
= σ2

∑[
B

(
j

n

)
−B

(
j − 1

n

)]2
+
2σm

n

∑[
B

(
j

n

)
−B

(
j − 1

n

)]
+
∑ m2

n2
,

where in each case the sum is over j ≤ tn. As n→ ∞,

σ2
∑[

B

(
j

n

)
−B

(
j − 1

n

)]2
−→ σ2 ⟨B⟩t = σ2 t,

2σm

n

∑[
B

(
j

n

)
−B

(
j − 1

n

)]
∼ 2σm

n
Bt −→ 0,

∑ m2

n2
∼ tnm2

n2
−→ 0.

We have established the following.

Theorem 2.8.1. If Wt is a Brownian motion with drift m and variance σ2,
then ⟨W ⟩t = σ2 t.

The important facts are that the quadratic variation is not random and
that it depends on the variance but not on the mean. It may seem silly at
this point to give a name and notation to a quantity which is almost trivial
for Brownian motion, but in the next chapter we will deal with processes for
which the quadratic variation is not just a linear function of time.

If 0 = t0 < t1 < · · · < tn = t, we call the times a partition of [0, t]. We
will write Π for partitions and write

∥Π∥ = max
j=1,...,n

{tj − tj−1}.

For any partition of [0, t], we define

Q(t; Π) =

n∑
j=1

[B(tj)−B(tj−1)]
2 .
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Computing as above, we see that

E[Q(t; Π)] =

n∑
j=1

(tj − tj−1) = t,

Var[Q(t; Π)] =
n∑

j=1

Var
(
[B(tj)−B(tj−1)]

2
)

= 2
n∑

j=1

(tj − tj−1)
2

≤ 2∥Π∥
n∑

j=1

(tj − tj−1) = 2∥Π∥t.

Theorem 2.8.2. Suppose B is a standard Brownian motion, t > 0,
and Πn is a sequence of partitions of the form

0 = t0,n < t1,n < · · · < tln,n = t,

with ∥Πn∥ → 0. Then Q(t; Πn) → t in probability. Moreover, if

∞∑
n=1

∥Πn∥ < ∞, (2.5)

then with probability one Q(t; Πn) → t.

Proof. Using Chebyshev’s inequality, we see that for each integer k,

P
{
|Q(t; Πn)− t| > 1

k

}
≤ Var[Q(t; Πn)]

(1/k)2
≤ 2k2∥Πn∥t,

and the right-hand side goes to zero as n → ∞. This gives convergence
in probability. If (2.5) holds as well, then

∞∑
n=1

P
{
|Q(t; Πn)− t| > 1

k

}
< ∞,

and hence by the Borel-Cantelli lemma, with probability one, for all
n sufficiently large,

|Q(t; Πn)− t| ≤ 1

k
.
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It is important to note the order of the quantifiers in this theorem.
Let t = 1. The theorem states that for every sequence {Πn} satisfying
(2.5), Q(1; Πn) → 1. The event of measure zero on which convergence
does not hold depends on the sequence of partitions. Because there are
an uncountable number of such sequences we cannot conclude from the
theorem that with probability one, for all sequences {Πn} satisfying
(2.5), that Q(1; Πn) → 1. In fact, the latter statement is false. Let us
give an example. Let us start with the dyadic partition Πn of [0, 1]
with 2n intervals of length 2−n. We will now subdivide some, but not
all, of these intervals into two equal pieces. Suppose [s, t] is one of
these intervals and let r denote the midpoint. We will subdivide [s, t]
into [s, r] and [r, t] if

(Br −Bs)
2 + (Bt −Bs)

2 > (Bt −Bs)
2,

and we will retain the interval [s, t] otherwise. This defines a parti-
tion Π̃n with ∥Π̃n∥ ≤ ∥Πn∥. It has been chosen so that Q(1; Π̃n) ≥
Q(1; Πn), and one can show (see Exercise 2.5) that

lim
n→∞

Q(1; Π̃n) = E
[
max{B2

1/2 + (B1 −B1/2)
2, B2

1}
]
> 1.

This does not contradict the theorem because the partitions Π̃n de-
pend on the realization of the Brownian motion.

Sometimes it is convenient to fix a sequence of partitions, say parti-
tions with dyadic intervals. Let

Qn(t) =
∑
j<t2n

[
B

(
j + 1

2n

)
−B

(
j

2n

)]2
.

Since the dyadic rationals are countable, the theorem implies that with
probability one for every dyadic rational t, Qn(t) → t. However, since
t 7→ Qn(t) is increasing, we can conclude that with probability one,
for every t0, Qn(t) → t.

2.9 Multidimensional Brownian motion

In finance one is often interested in considering the value of many assets at
the same time. Multidimensional Brownian motion Bt is random continu-
ous motion in d-dimensional space. It can be viewed as d one-dimensional
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Brownian motions
Bt =

(
B1

t , . . . , B
d
t

)
,

with perhaps some correlations. If we make the same assumptions that we
made in the one-dimensional case (independent, identically distributed incre-
ments and continuous paths), then one can show that the increments must
be multivariate normal random variables. We use this fact in our definition.

Definition The d-dimensional process

Bt =
(
B1

t , . . . , B
d
t

)
,

is called a d-dimensional Brownian motion starting at the origin with drift
m = (m1, . . . ,md) ∈ Rd and d × d covariance matrix Γ with respect to the
filtration {Ft} if each Bt is Ft-measurable and the following holds.

� B0 = 0.

� If s < t, the distribution of Bt−Bs is joint normal with mean (t− s)m
and covariance matrix (t− s)Γ.

� If s < t, the random vector Bt −Bs is independent of Fs.

� With probability one, the function t 7→ Bt is continuous.

In particular, each Bk
t is a Brownian motion with drift mk and variance

Γkk with respect to the filtration {Ft}. If m = 0 and Γ = I, then B1
t , . . . , B

d
t

are independent standard Brownian motions and Bt is called standard d-
dimensional Brownian motion.

Definition If Xt, Yt are processes defined on the same probability space, the
covariation (process) is defined by

⟨X, Y ⟩t = lim
n→∞

∑
j≤tn

[
X

(
j

n

)
−X

(
j − 1

n

)] [
Y

(
j

n

)
− Y

(
j − 1

n

)]
,

where the sum is over all j with j/n ≤ t.

If X = Y , then the covariation is the same as the quadratic variation,
that is

⟨X,X⟩t = ⟨X⟩t.
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If Bt = (B1
t , . . . , B

d
t ) is a Brownian motion with drift 0 and covariance matrix

Γ, then
E
[
(Bi

t −Bi
s)(B

k
t −Bk

s )
]
= (t− s) Γik.

As in the quadratic variation, the drift does not contribute to the covariation.
We state the following result which is proved in the same way as for quadratic
variation.

Theorem 2.9.1. If Bt is a d-dimensional Brownian motion with drift m
and covariance matrix Γ, then

⟨Bi, Bk⟩t = Γik t.

In particular, if Bt = (B1
t , . . . , B

d
t ) is a standard Brownian motion in Rd,

then the components are independent and

⟨Bi, Bk⟩t = 0, i ̸= k.

2.10 Heat equation and generator

Even if one’s interest in Brownian motion comes from other applications, it
is useful to consider the diffusion of heat. Heat flow can be viewed by con-
sidering a large number of independent “heat particles” each doing random
continuous motion. This viewpoint leads to a deterministic partial differential
equation (PDE) that describes the evolution of the temperature. Imagine for
the moment that the temperature on the line is determined by the density
of heat particles. Let pt(x) denote the temperature at x at time t. If the heat
particles are moving independently and randomly then we can assume that
they are doing Brownian motions. If we also assume that∫

R

pt(x) dx = 1,

then reasonable to see pt(x) as the probability density for Brownian motion.

2.10.1 One dimension

We start by taking advantage of what we already know. Assume Bt is a
standard Brownian motion starting at the origin and let pt(x) denote the
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density of Bt. Since Bt ∼ N(0, t), we know that

pt(x) =
1√
2πt

e−
x2

2t . (2.6)

We view this as a function of two variables t, x. If we are interested in the
position at time s+ t, we can use the Markovian nature of Brownian motion
to first observe the position at time s and then to consider what happens in
the next time interval of length t. This leads to the Chapman-Kolmogorov
equation

ps+t(x) =

∫ ∞

−∞
ps(y) pt(x− y) dy. (2.7)

A straightforward calculation, which we omit, shows that if pt(x) is given by
(2.6), then pt(x) satisfies (2.7). We emphasize that (2.7) uses the Markovian
property: if we are interested in the position at time t+ s and are given the
information up to time s, the only information that is relevant is the position
at time s.

We will give a heuristic derivation of the PDE that describes the evolution
of pt(x). For a number of our heuristic derivations we will use a binomial
approximation where we view the Brownian motion as satisfying

P {Bt+∆t = Bt +∆x} = P {Bt+∆t = Bt −∆x} =
1

2
,

where ∆x =
√
∆t. In the approximation, to be at x at time t+∆t one must

be at x±∆x at time t which gives

pt+∆t(x) ≈
1

2
pt(x−∆x) +

1

2
pt(x+∆x).

Using ∆t = (∆x)2, this implies

pt+∆t(x)− pt(x)

∆t
=
pt(x+∆x) + pt(x−∆x)− 2 pt(x)

2 (∆x)2
. (2.8)

We now let ∆t → 0 in (2.8). The definition of the partial derivative implies
that

lim
∆t→0

pt+∆t(x)− pt(x)

∆t
= ∂tpt(x).
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The right-hand side of (2.8) is a little more complicated. Since such limits
are fundamental in our study, let us give two ways to compute the limit. One
way is to write the right-hand side as

1

2∆x

[
pt(x+∆x)− pt(x)

∆x
− pt(x)− pt(x−∆x)

∆x

]
.

Waving our hands, we say this is about

1

2

∂xpt(x)− ∂xpt(x−∆x)

∆x
,

and now we have a difference quotient for the first derivatives in which case
the limit should be

1

2
∂xxpt(x).

Another, essentially equivalent, method to evaluate the limit is to write
f(x) = pt(x) and expand in a Taylor series about x,

f(x+ ϵ) = f(x) + f ′(x) ϵ+
1

2
f ′′(x) ϵ2 + o(ϵ2),

where o(ϵ2) denotes a term such that

lim
ϵ→0

o(ϵ2)

ϵ2
= 0.

Then we see that

f(x+ ϵ) + f(x− ϵ)− 2f(x) = f ′′(x) ϵ2 + o(ϵ2),

and hence the limit of the right-hand side of (2.8) is ∂xxpt(x)/2. We have
derived the heat equation

∂tpt(x) =
1

2
∂xx pt(x).

While we have been a bit sketchy on details, one could start with this equation
and note that pt as defined in (2.6) satisfies this. This is the solution given that
B0 = 0, that is, when the “initial density” p0(x) is the “delta function at 0”.
(The delta function, written δ(·) is the probability density of the probability



2.10. HEAT EQUATION AND GENERATOR 71

distribution that gives measure one to the point 0. This is not really a density,
but informally we write

δ(0) = ∞, δ(x) = 0, x ̸= 0,∫
δ(x) dx = 1.

These last equations do not make mathematical sense, but they give a work-
able heuristic definition.)

If the Brownian motion has variance σ2, one binomial approximation is

P {Bt+∆t = Bt + σ∆x} = P {Bt+∆t = Bt − σ∆x} =
1

2
,

where ∆x =
√
∆t. The factor σ is put in so that

Var [B(t+∆t)−B(t)] = σ2∆t.

We can use the same argument to derive that this density should satisfy the
heat equation

∂tpt(x) =
σ2

2
∂xxpt(x).

The coefficient σ2 (or in some texts (σ2/2)) is referred to as the diffusion
coefficient. One can check that a solution to this equation is given by

pt(x) =
1√

2πσ2t
exp

{
− x2

2σ2t

}
.

When the Brownian motion has drift m, the equation gets another term.
To see what the term should look like, let us first consider the case of deter-
ministic linear motion, that is, motion with drift m but no variance. Then if
pt(x) denotes the density at x at time t, we get the relationship

pt+∆t(x) = pt(x−m∆t),

since particles at x at time t+∆t must have been at x−m∆t at time t. This
gives

pt+∆t(x)− pt(x)

∆t
=

pt(x−m∆t)− pt(x)

∆t

= −m pt(x)− pt(x−m∆t)

m∆t
.
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Letting ∆t→ 0, we get the equation for linear motion at rate m,

∂tpt(x) = −m∂xpt(x).

This is a first-order equation which means it contains only first derivatives.
If Bt is Brownian motion with drift m and variance σ2, then we can do a

similar argument and show that the density pt(x) satisfies the second order
PDE

∂tpt(x) = −m∂xpt(x) +
σ2

2
∂xxpt(x).

As a check, one can consider the appropriate density,

pt(x) =
1√

2πσ2t
exp

{
−(x−mt)2

2σ2t

}
,

and show that it satisfies this equation.
Before summarizing, we will change the notation slightly. Let pt(x, y)

denote the density of Bt given B0 = x. Under this notation pt(x) = pt(0, x).
We will define an operator on functions. A (linear) operator is a function L
from (a linear subspace of) functions to functions satisfying L(af + bg) =
aL(f) + bL(g) where a, b are constants and f, g are functions. We say that
a function f : R → R is C2 if it is twice differentiable and the derivatives
are continuous functions of x. For any m,σ2, we define an operator on C2

functions by

L∗f(x) = −mf ′(x) +
σ2

2
f ′′(x).

If f is a function of more variables, such as ft(x, y) we write L∗
x to indicate

the operator acting on the variable x,

L∗
xft(x, y) = −m∂xft(x, y) +

σ2

2
∂xxft(x, y).

Theorem 2.10.1. Suppose Bt is a Brownian motion with drift m and vari-
ance σ2. Then the transition density pt(x, y) satisfies the heat equation

∂tpt(x, y) = L∗
ypt(x, y)

with initial condition p0(x, ·) = δx(·). Here L∗ is the operator on functions

L∗f(y) = −mf ′(y) +
σ2

2
f ′′(y).



2.10. HEAT EQUATION AND GENERATOR 73

We think of pt(x, y) as “the probability of being at y at time t given that
B0 = x”. For driftless Brownian motion, this is the same as the probability
of being at x given that one was at y. However, the reversal of a Brownian
motion with drift m should be a Brownian motion with drift −m. This gives
the following.

Theorem 2.10.2. Suppose Bt is a Brownian motion with drift m and vari-
ance σ2. Then the transition density pt(x, y) satisfies the heat equation

∂tpt(x, y) = Lxpt(x, y)

with initial condition p0(·, y) = δy(·). Here L is the operator on functions

Lf(x) = mf ′(x) +
σ2

2
f ′′(x).

The operator L will be more important to us than the operator L∗ which
is why we give it the simpler notation.

Let H denote the real Hilbert space L2(R) with inner product

(f, g) =

∫ ∞

−∞
f(x) g(x)dx.

The operators L,L∗ are not defined on all ofH but they can be defined
on a dense subspace, for example, the set of C2 functions all of whose
derivatives decay rapidly at infinity. The operator L∗ is the adjoint of
L which means,

(L∗f, g) = (f, Lg).

One can verify this using the following relations that are obtained by
integration by parts:∫ ∞

−∞
f(x) g′(x) dx = −

∫ ∞

−∞
f ′(x) g(x) dx,

∫ ∞

−∞
f(x) g′′(x) dx =

∫ ∞

−∞
f ′′(x) g(x) dx.

Suppose B0 has an initial density f . Then the density of Bt is given
by

ft(y) = P ∗
t f(y) :=

∫ ∞

−∞
f(x) pt(x, y) dx.
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This is the solution to the equation

∂tft(y) = L∗
yft(y)

with initial condition f0(y) = f(y). We can write the heat equation as
a derivative for operators,

∂tP
∗
t = L∗P ∗

t .

2.10.2 Expected value at a future time

Suppose Bt is a Brownian motion with drift m and variance σ2, and let f
be a function on R. For example, if we consider Bt to be the price of a stock
and f to be the worth of a call option at strike price S at time t, then

f(x) = (x− S)+ =

{
x− S if x ≥ S
0 if x < S

. (2.9)

Let ϕ(t, x) be the expected value of f(Bt) given that B0 = x. We will write
this as

ϕ(t, x) = Ex [f(Bt)] = E [f(Bt) | B0 = x] .

Then

ϕ(t, x) =

∫ ∞

−∞
f(y) pt(x, y) dy.

The time derivative can be computed by interchanging differentiation and
integration and using the rule from the previous section.

∂tϕ(t, x) = ∂t

∫ ∞

−∞
f(y) pt(x, y) dy

=

∫ ∞

−∞
f(y) ∂tpt(x, y) dy

=

∫ ∞

−∞
f(y)Lxpt(x, y) dy

= Lx

∫ ∞

−∞
f(y) pt(x, y) dy = Lxϕ(t, x).
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We will give another derivation of this equation, and while we are at it we
will do the multivariate case. Suppose Bt = (B1

t , . . . , B
d
t ) is a d-dimensional

Brownian motion with drift m = (m1, . . . ,md) and covariance matrix Γ. We
assume that the Brownian motion is truly d-dimensional, or, in other words,
that Γ is a nonsingular matrix. Let pt(x, y) be the transition probability. If
f : Rd → R is a bounded function, define Ptf by

Ptf(x) = Ex [f(Bt)] =

∫
f(y) pt(x, y) dy.

Here x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd and dy = dy1 · · · dyd.

Definition The (infinitesimal) generator of a Markov process Xt is the op-
erator L on functions defined by

Lf(x) = lim
t→0

Ptf(x)− f(x)

t
,

where
Ptf(x) = Ex [f(Xt)] .

Theorem 2.10.3. If Bt is a d-dimensional Brownian motion with drift m =
(m1, . . . ,md) and covariance matrix Γ, then the infinitesimal generator is
given by

Lf(x) = m · ∇f(x) + 1

2

d∑
j=1

d∑
k=1

Γjk ∂jkf(x).

In particular, if f is a function and

ϕ(t, x) = Ptf(x) = Ex[f(Bt)],

then ϕ satisfies
∂tϕ(t, x) = Lxϕ(t, x), t > 0,

with initial condition ϕ(0, x) = f(x).

We will give a quick derivation, assuming f is C2 and t = x = 0. The
second-order Taylor approximation of f around the origin is

f(ϵ) = f(0) +
d∑

j=1

bj ϵj +
1

2

d∑
j=1

d∑
k=1

ajk ϵj ϵk + o(|ϵ|2),
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where ϵ = (ϵ1, . . . , ϵd) and

bj = ∂jf(0), ajk = ∂jkf(0).

In particular,

f(Bt)− f(B0) =
d∑

j=1

bj B
j
t +

1

2

d∑
j=1

d∑
k=1

ajk B
j
t B

k
t + o(|Bt|2).

We know that
E
[
Bj

t

]
= mj t, E

(
Bj

t B
k
t

)
= Γjk t,

and the expectation of the “error” term o(|Bt|2) is o(t). Hence,

d

dt
E [f(Bt)] |t=0+ = lim

t↓0

E[f(Bt)− f(B0)]

t
= Lf(0).

Suppose f is a measurable function that does not grow too fast at
infinity. For example, we assume that

e−α|x|2 f(x) → 0, |x| → ∞,

for every α > 0. Then∫ ∞

−∞
|f(y)| pt(x, y) dy < ∞,

and hence

ϕ(t, x) := Ptf(x) =

∫ ∞

−∞
f(y) pt(x, y) dy < ∞

is well defined for all t. Moreover, for t > 0, the interchange of inte-
gration

∂t

∫ ∞

−∞
f(y) pt(x, y) dy =

∫ ∞

−∞
f(y) ∂tpt(x, y) dy

can be justified (say by the dominated convergence theorem). Simi-
larly, integrals with respect to x can be taken to show that ϕ(t, ·) is
C∞ in x and

Lxϕ(t, x) =

∫ ∞

−∞
f(y)Lxpt(x, y) dy
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Therefore, for t > 0, x 7→ ϕ(t, x) is C2 and we can take the right
derivative with respect to time,

lim
s↓0

ϕ(t+ s, x)− ϕ(t, x)

s
= Lxϕ(t, x),

using the argument as above. Although this argument only computes
the right derivative, since for fixed x, ϕ(t, x) and Lxϕ(t, x) are contin-
uous functions of t, we can conclude that

∂tϕ(t, x) = Lxϕ(t, x), t > 0.

We cannot expect this to hold at t = 0, but we can state that if f is
continuous at x, then

lim
t↓0

ϕ(t, x) = f(x).

A simple call option works a little differently. Suppose that Bt is a one-
dimensional Brownian motion with parameters m,σ2. A simple call option
at time T > 0 with strike price S allows the owner to buy a share of the
stock at time T for price S. If the price at time T is BT , then the value of the
option is f(BT ) = (BT − S)+ as in (2.9). We are specifying the value of the
function at time T rather than at time 0. However, we can use our work to
give a PDE for the expected value of the option. If t < T , then the expected
value of this option, given that Bt = x is

F (t, x) = E [F (BT ) | Bt = x] = Ex [F (BT−t)] = ϕ(T − t, x).

Since

∂tF (t, x) = −∂tϕ(T − t, x) = −Lxϕ(T − t, x) = −LxF (t, x),

we get the following.

� If f is a function, T > 0 and

F (t, x) = E[f(BT ) | Bt = x],

then for t < T , F satisfies the backwards heat equation

∂tF (t, x) = −LxF (t, x),

with terminal condition F (T, x) = f(x).
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As in the one-dimensional case, we can find the operator associated to the
transition density. If we run a Brownian motion with drift m and covariance
matrix Γ backwards, we get the same covariance matrix but the drift becomes
−m. Therefore

� For t > 0, the transition probability pt(x, y) satisfies the equation

∂tpt(x, y) = L∗
ypt(x, y),

where

L∗f(y) = −m · ∇f(y) + 1

2

d∑
j=1

d∑
k=1

Γjk ∂jkf(y).

The equations

∂tpt(x, y) = Lxpt(x, y), ∂tpt(x, y) = L∗
ypt(x, y)

are sometimes called the Kolmogorov backwards and forwards equations, re-
spectively. The name comes from the fact that they can be derived from the
Chapman-Kolmogorov equations by writing

pt+∆t(x, y) =

∫
p∆t(x, z) pt(z, y) dz,

pt+∆t(x, y) =

∫
pt(x, z) p∆t(z, y) dz,

respectively. The forward equation is also known as the Fokker-Planck equa-
tion. We will make more use of the backwards equation.

2.11 Exercises

Exercise 2.1. Let Z1, Z2, Z3 be independent N(0, 1) random variables. Let

X1 = Z1 + Z3, X2 = Z2 + 4Z3, X3 = 2Z1 − 2Z2 + rZ3

where r is a real number.

1. Explain why X = (X1, X2, X3) has a joint normal distribution.

2. Find the covariance matrix for X (in terms of r).
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3. For what values of r are X1 and X3 independent random variables?

4. For what values of r does the random vector X have a density in R3?

Exercise 2.2. Let Bt be a standard Brownian motion. Find the following
probabilities. If you cannot give the answer precisely give it up to at least
three decimal places using a table of the normal distribution.

1. P{B3 ≥ 1/2}

2. P{B1 ≤ 1/2, B3 > B1 + 2}

3. P(E) where E is the event that the path stays below the line y = 6 up
to time t = 10.

4. P{B4 ≤ 0 | B2 ≥ 0}.

Exercise 2.3. Let Bt be a standard Brownian motion. For each positive
integer n, let

Jn =
n∑

j=1

[
B

(
j

n

)
−B

(
j − 1

n

)]2
.

1. Find the mean and variance of the random variable Jn.

2. Prove the following “weak law of large numbers”: if ϵ > 0, then

lim
n→∞

P {|Jn − 1| > ϵ} = 0.

Hint: this uses Chebyshev’s inequality — look it up if this is not familiar
to you.

In the next exercise, you can use the following computation. If X ∼
N(0, 1), then the moment generating function of X is given by

m(t) = E
[
etX
]
= et

2/2.

Exercise 2.4. Suppose Bt is a standard Brownian motion and let Ft be its
corresponding filtration. Let

Mt = eσBt−σ2t
2 .

Show that Mt is a martingale with respect to Ft. In other words, show that
if s < t, then

E(Mt | Fs) =Ms.
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Exercise 2.5. Let Bt be a standard Brownian motion and let

Y = max
{
B2

1 + (B2 −B1)
2, B2

2

}
.

� Show that

Y = B2
2 + 2B1 (B1 −B2) 1{B1(B1 −B2) ≥ 0}.

� Find E[Y ].

� Show that for every k <∞, E
[
Y k
]
<∞.

Exercise 2.6. Let Bt be a standard Brownian motion and let {Ft} denote
the usual filtration. Suppose s < t. Compute the following.

1. E[B2
t | Fs]

2. E[B3
t | Fs]

3. E[B4
t | Fs]

4. E[e4Bt−2 | Fs]

Exercise 2.7. Let Bt be a standard Brownian motion and let

Y (t) = t B(1/t).

1. Is Y (t) a Gaussian process?

2. Compute Cov(Y (s), Y (t)).

3. Does Y (t) have the distribution of a standard Brownian motion?

Exercise 2.8. If f(t), 0 ≤ t ≤ 1 is a continuous function, define the (3/2)-
variation up to time one to be

Q = lim
n→∞

n∑
j=1

∣∣∣∣f ( jn
)
− f

(
j − 1

n

)∣∣∣∣3/2 .
What is Q if

1. f is a nonconstant, continuously differentiable function on R?
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2. f is a Brownian motion?

Exercise 2.9. Suppose Bt is a standard Brownian motion. For the functions
ϕ(t, x), 0 < t < 1,−∞ < x < ∞, defined below, give a PDE satisfied by the
function.

1. ϕ(t, x) = P{Bt ≥ 0 | B0 = x}.

2. ϕ(t, x) = E[B2
1 | Bt = x].

3. Repeat the two examples above if Bt is a Brownian motion with drift
m and variance σ2.

Exercise 2.10. Suppose Bt is a standard Brownian motion and

Mt = max
0≤s≤t

Bs.

1. Explain why Mt has the same distribution as
√
tM1.

2. Find the density of M1.

3. Find E[Mt].

4. If a > 0, find E[M1 1{M1 ≥ a}].

5. Let Ft be the information in {Bs : 0 ≤ s ≤ t}. Find E[M2 | F1].

Exercise 2.11. Write a program that will simulate a standard Brownian
motion using step size ∆t = .01.

1. Graph at least one realization of the Brownian motion to produce a
“pretty picture” of a Brownian path.

2. Use simulations to estimate the following probability:

P{Bt ≤ 2 for all t ≤ 1}.

Run the simulation enough times to get a good estimate for the prob-
ability. Use the reflection principle to calculate the actual probability
and compare the result.

Exercise 2.12. Prove Theorem 2.6.3.
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Chapter 3

Stochastic integration

3.1 What is stochastic calculus?

Before venturing into stochastic calculus, it will be useful to review the basic
ideas behind the usual differential and integral calculus. The main deep idea
of calculus is that one can find values of a function knowing the rate of
change of the function. For example, suppose f(t) denotes the position of a
(one-dimensional) particle at time t, and we are given the rate of change

df(t) = C(t, f(t)) dt,

or as it is usually written,

df

dt
= f ′(t) = C(t, f(t)).

In other words, at time t the graph of f moves for an infinitesimal amount
of time along a straight line with slope C(t, f(t)). This is an example of a
differential equation, where the rate depends both on time and position. If
we are given an initial condition f(0) = x0, then (under some hypotheses on
the rate function C, see the end of Section 3.5), the function is defined and
can be given by

f(t) = x0 +

∫ t

0

C(s, f(s)) ds.

If one is lucky, then one can do the integration and find the function exactly. If
one cannot do this, one can still use a computer to approximate the solution.

83
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The simplest, but still useful, technique is Euler’s method where one chooses
a small increment ∆t and then writes

f((k + 1)∆t) = f(k∆t) + ∆t C(k∆t, f(k∆t)).

Stochastic calculus is similar, except that one adds randomness to the
change. We will make sense of equations such as

dXt = m(t,Xt) dt+ σ(t,Xt) dBt, (3.1)

where Bt is a standard Brownian motion. This is an example of a stochastic
differential equation (SDE). We should read this equation as stating that at
time t, Xt is evolving like a Brownian motion with drift m(t,Xt) and vari-
ance σ(t,Xt)

2. Solving such equations exactly is much harder than for usual
calculus, and we often have to resort to numerical methods. One technique is
the stochastic Euler method which allows us to do Monte Carlo simulations
of the process. This is easy enough to describe so we give the formula now

X((k + 1)∆t) =

X(k∆t) + ∆tm(k∆t,X(k∆t)) +
√
∆t σ(k∆t, X(k∆t))Nk,

where Nk is a N(0, 1) random variable.
The standard approach to calculus is to define the derivative, then define

the integral, and then give the relationship between the two. One could also
define the integral first. In stochastic calculus, the derivative is not so easily
defined, so in order to give a mathematical formulation we concentrate on
defining the stochastic integral. We will say that Xt is a solution to (3.1) if

Xt = X0 +

∫ t

0

m(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs.

The ds integral is the usual integral from calculus; the integrand m(s,Xs)
is random, but that does not give any problem in defining the integral. The
main task will be to give precise meaning to the second term, and more
generally to ∫ t

0

As dBs.

There are several approaches to stochastic integration. The approach we give,
which is most commonly used in mathematical finance, is that of the Itô
integral.
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3.2 Stochastic integral

Let Bt be a standard (one-dimensional) Brownian motion with respect to a
filtration {Ft}. We want to define the process

Zt =

∫ t

0

As dBs.

We think of Zt as a Brownian motion which at time s has variance A2
s. In

analogy to the discrete stochastic integral, we think of As as the amount
“bet” or “invested” at time s with negative bets indicating bets that the
process will go down. Also, as in the discrete case, we want to restrict our
betting strategies to those that cannot look into the future. For continuous
time processes for which changes are happening infinitesimally it is somewhat
trickier to make the last condition precise. We will start by doing some easy
cases and then define more complicated cases by taking limits.

3.2.1 Review of Riemann integration

Let us review the definition of the usual Riemann integral from calculus.
Suppose f(t) is a continuous function and we wish to define∫ 1

0

f(t) dt.

We partition [0, 1] into small intervals, say

0 = t0 < t1 < · · · < tn = 1,

and approximate f(t) by a step function

fn(t) = f(sj), tj−1 < t ≤ tj,

where sj is some point chosen in [tj−1, tj]. We define∫ 1

0

fn(t) dt =
n∑

j=1

f(sj) (tj − tj−1).

It is a theorem that if we take a sequence of partitions such that the maximum
length of the intervals [tj−1, tj] goes to zero, then the limit∫ 1

0

f(t) dt = lim
n→∞

∫ 1

0

fn(t) dt
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exists and is independent of the choice of sequence of partitions or the choice
of sj. This is the definition of the left-hand side. One later proves the impor-
tant facts, for example, the fundamental theorem of calculus,∫ b

a

f ′(t) dt = f(b)− f(a).

3.2.2 Integration of simple processes

The analogue of a step function for the stochastic integral is a simple process.
This corresponds to a betting strategy that allows one to change bets only at
a prescribed finite set of times. To be more precise, a process At is a simple
process if there exist times

0 = t0 < t1 < · · · < tn <∞

and random variables Yj, j = 0, 1, . . . , n that are Ftj -measurable such that

At = Yj, tj ≤ t < tj+1.

Here we set tn+1 = ∞. Since Yj is Ftj -measurable, At is Ft-measurable. We
also assume that E[Y 2

j ] <∞ for each j. If At is a simple process we define

Zt =

∫ t

0

As dBs,

by

Ztj =

j−1∑
i=0

Yi [Bti+1
−Bti ],

and, more generally,

Zt = Ztj + Yj [Bt −Btj ] if tj ≤ t ≤ tj+1,∫ t

r

As dBs = Zt − Zr.

There are four important properties of the stochastic integral of simple
processes which we give in the next proposition. The reader should com-
pare these with the properties of integration with respect to random walk in
Section 1.6.
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Proposition 3.2.1. Suppose Bt is a standard Brownian motion with respect
to a filtration {Ft}, and At, Ct are simple processes.

� Linearity. If a, b are constants, then aAt+ bCt is also a simple process
and ∫ t

0

(aAs + bCs) dBs = a

∫ t

0

As dBs + b

∫ t

0

Cs dBs.

Moreover, if 0 < r < t,∫ t

0

As dBs =

∫ r

0

As dBs +

∫ t

r

As dBs.

� Martingale property. The process

Zt =

∫ t

0

As dBs

is a martingale with respect to {Ft}.

� Variance rule. Zt is square integrable and

Var[Zt] = E
[
Z2

t

]
=

∫ t

0

E[A2
s] ds.

� Continuity. With probability one, the function t 7→ Zt is a continuous
function.

Let us discuss the proof of the proposition. Linearity follows immediately
from the definition, and continuity follows from the continuity of Brownian
motion. To show that Zt is a martingale, we need to show that

E(Zt | Fs) = Zs if s < t. (3.2)

We will do this in the case t = tj, s = tk for some j > k and leave the other
cases for the reader. In this case

Zs =
k−1∑
i=0

Yi [Bti+1
−Bti ],

and

Zt = Zs +

j−1∑
i=k

Yi [Bti+1
−Bti ].
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Since E(Zs | Fs) = Zs, we see that

E(Zt | Fs) = Zs +

j−1∑
i=k

E
[
Yi [Bti+1

−Bti ] | Fs

]
.

For k ≤ i ≤ j − 1, we have ti ≥ s and hence

E
[
Yi [Bti+1

−Bti ] | Fs

]
= E

[
E
(
Yi [Bti+1

−Bti ] | Fti

)
| Fs

]
.

Since Yi is Fti-measurable and Bti+1
−Bti is independent of Fti ,

E
(
Yi [Bti+1

−Bti ] | Fti

)
= YiE

(
Bti+1

−Bti | Fti

)
= Yi E[Bti+1

−Bti ] = 0.

This gives (3.2).
We will prove the variance rule for t = tj in which case

Z2
t =

j−1∑
i=0

j−1∑
k=0

Yi [Bti+1
−Bti ]Yk [Btk+1

−Btk ].

If i < k,
E
[
Yi [Bti+1

−Bti ]Yk [Btk+1
−Btk ]

]
= E

[
E
(
Yi [Bti+1

−Bti ]Yk [Btk+1
−Btk ] | Ftk

)]
.

The random variables Yi, Yk, Bti+1
−Bti are all Ftk-measurable while Btk+1

−
Btk is independent of Ftk , and hence

E
(
Yi [Bti+1

−Bti ]Yk [Btk+1
−Btk ] | Ftk

)
= Yi [Bti+1

−Bti ]Yk E
(
Btk+1

−Btk | Ftk

)
= Yi [Bti+1

−Bti ]Yk E
[
Btk+1

−Btk

]
= 0.

Arguing similarly for i > k, we see that

E[Z2
t ] =

j−1∑
i=0

E
[
Y 2
i (Bti+1

−Bti)
2
]
.

(We have just reproduced the argument showing orthogonality of martingale
increments.) Since Y 2

i is Fti-measurable and (Bti+1
−Bti)

2 is independent of
Fti , we get

E
[
Y 2
i (Bti+1

−Bti)
2 | Fti

]
= Y 2

i E
[
(Bti+1

−Bti)
2 | Fti

]
= Y 2

i E
[
(Bti+1

−Bti)
2
]

= Y 2
i (ti+1 − ti),
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and hence,

E
[
Y 2
i (Bti+1

−Bti)
2
]

= E
[
E
(
Y 2
i (Bti+1

−Bti)
2 | Fti

)]
= E[Y 2

i ] (ti+1 − ti).

The function s 7→ E[A2
s] is a step function that takes on the value E[Y 2

i ] for
ti ≤ s < ti+1. Therefore,

E[Z2
t ] =

j−1∑
i=0

E[Y 2
i ] (ti+1 − ti) =

∫ t

0

E[A2
s] ds.

3.2.3 Integration of continuous processes

In this section we will assume that At is a process with continuous paths that
is adapted to the filtration {Ft}. Recall that this implies that each At is Ft-
measurable. To integrate these processes we use the following approximation
result.

Lemma 3.2.2. Suppose At is a process with continuous paths, adapted to
the filtration {Ft}. Suppose also that there exists C < ∞ such that with
probability one |At| ≤ C for all t. Then there exists a sequence of simple

processes A
(n)
t such that for all t,

lim
n→∞

∫ t

0

E
[
|As − A(n)

s |2
]
ds = 0. (3.3)

Moreover, for all n, t, |A(n)
t | ≤ C.

We will prove this lemma for t = 1. let

A
(n)
t = A(j, n),

j

n
≤ t <

j + 1

n
,

where A(0, n) = A0 and for j ≥ 1,

A(j, n) = n

∫ j/n

(j−1)/n
As ds.
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It suffices to prove (3.3) for each fixed value of t and for ease we will

choose t = 1. By construction, the A
(n)
t are simple processes satisfy-

ing |A(n)
t | ≤ C. Since (with probability one) the function t 7→ At is

continuous, we have

A
(n)
t → At,

and hence by the bounded convergence theorem applied to Lebesgue
measure,

lim
n→∞

Yn = 0,

where

Yn =

∫ 1

0
[A

(n)
t −At]

2 dt. (3.4)

Since the random variables {Yn} are uniformly bounded, this implies

lim
n→∞

E
[∫ 1

0
[A

(n)
t −At]

2 dt

]
= lim

n→∞
E[Yn] = 0.

Given the lemma, we can define∫ t

0

As dBs,

for a bounded, continuous process As as follows. Find a sequence of simple
process A

(n)
s satisfying (3.3). Then it can be shown that for each t there is

an square integrable random variable Zt such that

Zt = lim
n→∞

∫ t

0

A(n)
s dBs.

We define ∫ t

0

As dBs = Zt.

The integral satisfies four properties which should start becoming familiar.

Proposition 3.2.3. Suppose Bt is a standard Brownian motion with respect
to a filtration {Ft}, and At, Ct are bounded, adapted processes with continuous
paths.
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� Linearity. If a, b are constants, then∫ t

0

(aAs + bCs) dBs = a

∫ t

0

As dBs + b

∫ t

0

Cs dBs.

Also, if r < t, ∫ t

0

As dBs =

∫ r

0

As dBs +

∫ t

r

As dBs.

� Martingale property. The process

Zt =

∫ t

0

As dBs

is a martingale with respect to {Ft}.

� Variance rule. Zt is square integrable and

Var[Zt] = E
[
Z2

t

]
=

∫ t

0

E[A2
s] ds.

� Continuity. With probability one, t 7→ Zt is a continuous function.

For fixed t, the existence of Zt follows from the estimate (3.3) and the
completeness of L2. In this case, the convergence is in L2. However,
there are issues dealing with the fact that there are an uncountable
number of times. This can be handled similarly to the construction of
Brownian motion. For convenience, we restrict to 0 ≤ t ≤ 1.

We first consider t ∈ D and define Zt, t ∈ D as the L2 limit which is
defined for t ∈ D up to a single event of probability zero. Suppose At

is a simple process with |At| ≤ C. Then (Exercise 3.1) one can show
that

E[(Zt − Zs)
4] ≤ 4C4 |t− s|2.

By Fatou’s lemma, this bound will also hold for the limit process.
This estimate and an argument first due to Kolmogorov suffice to give
continuity. We leave the argument as Exercise 3.11.
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Let A
(n)
t be a sequence of simple processes and let Z

(n)
t , Zt denote the

corresponding stochastic integrals. Let

∥A(n) −A∥2 = E
[
(Z

(n)
1 − Z1)

2
]
=

∫ 1

0
E
[
(A

(n)
t −At)

2
]
dt,

and let
Qn = max

0≤t≤1
|Z(n)

t − Zt|.

If we view Z(n), Z as random variables taking values in C[0, 1], the set
of continuous functions on [0, 1] with the supremum norm, then Qn

is the distance between Z(n) and Z. The next proposition establishes
convergence with probability one in this space.

Proposition 3.2.4. If

∞∑
n=1

∥A(n) −A∥2 < ∞, (3.5)

then with probability one, Qn → 0.

Proof. By the Borel-Cantelli lemma, it suffices to show that for every
ϵ > 0,

∞∑
n=1

P{Qn > ϵ} < ∞.

Continuity of Z
(n)
t and Zt implies that

P{Qn > ϵ} = lim
m→∞

P
{
max
t∈Dm

|Z(n)
t − Zt| > ϵ

}
.

For fixed m, the process Mt = Z
(n)
t − Zt, t ∈ Dm, is a discrete time

martingale and Corollary 1.7.2 implies that

P
{
max
t∈Dm

|Mt| > ϵ

}
≤ E[M2

1 ]

ϵ2
.

Therefore,

P{Qn > ϵ} ≤ E[M2
1 ]

ϵ2
= ϵ−2 ∥A(n) −At∥2.

Let us emphasize the order of quantifiers in the proposition. Given a
sequence A(n) of approximating simple processes satisfying (3.5), we
get convergence with probability one. It is not true that with prob-
ability one, we get convergence for every sequence. See an analogous
discussion in Section 2.8 about the quadratic variation.
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If At is adapted with continuous paths, but not necessarily bounded, we
can still define

Zt =

∫ t

0

As dBs

as follows. For each n <∞, let Tn = min{t : |At| = n} and let A
(n)
s = As∧Tn .

Then A
(n)
s is a bounded, continuous process and

Z
(n)
t =

∫ t

0

A(n)
s dBs.

is well defined. We define

Zt = lim
n→∞

Z
(n)
t .

The existence of this limit is easy to establish. Indeed, let

Kt = max
0≤s≤t

|As|.

Then for n ≥ Kt, A
(n)
s = As for 0 ≤ s ≤ t, and hence

Z
(n)
t = Zt, t ≥ Kt.

There is a subtlety here. Since Kt is a random variable, the n that one
needs to choose may depend on the path. Although Zt is well defined in the
limit and satisfies linearity and continuity, we will see in Section 4.1 that it
might not satisfy the martingale property. Let us not worry about this at the
moment. We will state the following.

Proposition 3.2.5. Suppose Bt is a standard Brownian motion with respect
to a filtration {Ft}, and At, Ct are adapted processes with continuous paths.

� Linearity. If a, b are constants and r < t, then∫ t

0

(aAs + bCs) dBs = a

∫ t

0

As dBs + b

∫ t

0

Cs dBs,

∫ t

0

As dBs =

∫ r

0

As dBs +

∫ t

r

As dBs.
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� Variance rule. The variance of Zt satisfies

Var[Zt] = E
[
Z2

t

]
=

∫ t

0

E[A2
s] ds.

It is possible for both sides to equal infinity. However, if Var[Zt] < ∞
for all t, then Zt is a square integrable martingale.

� Continuity With probability one, t 7→ Zt is a continuous function.

We can relax the condition of continuous paths. We say that the paths are
piecewise continuous if with probability one on each finite interval the paths
are continuous except a finite number of points, say 0 < t1 < t2 < · · · < tn =
t. For a piecewise continuous function with discontinuities at times t1, t2, . . .,
we define ∫ t

0

As dBs =

∫ t1

0

As dBs + · · ·+
∫ tn

tn−1

As dBs. (3.6)

The value of this integral does not depend on how we define At at the dis-
continuity. In this book, the process At will have continuous or piecewise
continuous paths although the integral can be extended to more general pro-
cesses. Note that the simple processes have piecewise continuous paths. One
important case that arises comes from a stopping time. Suppose T is a stop-
ping time with respect to {Ft}. Then if At is a continuous, adapted process
and

Zt =

∫ t

0

As dBs,

then

Zt∧T =

∫ t∧T

0

As dBs =

∫ t

0

As,T dBs,

where As,T denotes the piecewise continuous process,

As,T =

{
As s < T
0 s ≥ T

.

In other words, stopping a stochastic integral is the same as changing the
bet to zero.



3.2. STOCHASTIC INTEGRAL 95

Continuity of paths is much more than is needed for the stochastic
integral to exist. If At is a uniformly bounded, adapted process, and
we let

A
(n)
t = n

∫ t

t− 1
n

As ds, (3.7)

then A
(n)
t is an adapted continuous process. This requires some as-

sumptions on the process At so that integrals as in (3.4) and (3.7)
exists, at least as Lebesgue integrals, and so that we can use Fubini’s
theorem to interchange expectation and integrals on the line. The
condition to guarantee this is called progressive measurablility, but we
will not go into details here. If the At are uniformly bounded, then the

Lebesgue density theory implies that A
(n)
t → At for Lebesgue almost

every t. Hence, with probability one,∫ 1

0
[A

(n)
t −At]

2 dt −→ 0,

and since the processes are bounded the convergence is also in L2. For
such processes we can define the stochastic integral as above as an
L2-limit.

We will write the stochastic differential

dXt = At dBt,

to mean that Xt satisfies

Xt = X0 +

∫ t

0

As dBs.

This has been made mathematically precise by the definition of the integral.
Intuitively, we think of Xt as a process that at time t evolves like a Brownian
motion with zero drift and variance A2

t . This is well defined for any adapted,
continuous process At, and Xt is a continuous function of t. In particular, if
ϕ is a bounded continuous function, then we can hope to solve the equation

dXt = ϕ(Xt) dBt.

Solving such an equation can be difficult (see the end of Section 3.5), but
simulating such a process is straightforward using the stochastic Euler rule:

Xt+∆t = Xt + ϕ(Xt)
√
∆tN,
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where N ∼ N(0, 1).
The rules of stochastic calculus are not the same as those of usual calculus.

As an example, consider the integral

Zt =

∫ t

0

Bs dBs.

Although Bt is not a bounded process, it is continuous, adapted and∫ t

0

E[B2
s ] ds =

∫ t

0

s ds =
t2

2
<∞,

so Zt is a square integrable martingale. If one naively followed the rules of
calculus, one might hope that

Zt =
1

2

[
B2

t −B2
0

]
=
B2

t

2
.

However, a quick check shows that this cannot be correct. The left-hand side
is a martingale with Z0 = 0 and hence

E[Zt] = 0.

However,

E
[
B2

t /2
]
= t/2 ̸= 0.

In the next section we will derive the main tool for calculating integrals, Itô’s
formula or lemma. Using this we will show that, in fact,

Zt =
1

2
[B2

t − t]. (3.8)

This is a very special case. In general, one must do more than just subtract the
expectation. One thing to note about the solution — for t > 0, the random
variable on the right-hand side of (3.8) does not have a normal distribution.
Even though stochastic integrals are defined as limits of normal increments,
the “betting” factor At can depend on the past and this allows one to get
non-normal random variables. If the integrand At = f(t) is nonrandom, then
the integral ∫ t

0

f(s) dBs,
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is really a limit of normal random variables and hence has a normal distri-
bution (see Exercise 3.8).

If

Zt =

∫ t

0

As dBs,

then the quadratic variation of Z is defined by

⟨Z⟩t = lim
n→∞

∑
j≤nt

[
Z

(
j

n

)
− Z

(
j − 1

n

)]2
.

Theorem 3.2.6. If At is an adapted process with continuous or piecewise
continuous paths and

Zt =

∫ t

0

As dBs,

then

⟨Z⟩t =
∫ t

0

A2
s ds.

Note that if σ > 0 is a constant and Zt =
∫ t

0
σ dBs, then Z is a Brownian

motion with variance parameter σ2 for which we have already seen that
⟨Z⟩t = σ2t. The quadratic variation ⟨Z⟩t should be viewed as the “total
amount of randomness” or the “total amount of betting” that has been done
up to time t. For Brownian motion, the betting rate stays constant and hence
the quadratic variation grows linearly. For more general stochastic integrals,
the current bet depends on the results of the games up to that point and
hence is a random variable. The quadratic variation at time t is a random
variable with mean

E [⟨Z⟩t] = E
[∫ t

0

A2
s ds

]
=

∫ t

0

E
[
A2

s

]
ds.

An alternative way to define the quadratic variation ⟨Z⟩t for square
integrable martingales is as the unique increasing process such that

Mt = Z2
t − ⟨Z⟩t

is a martingale. If At is a simple process, it is not hard (Exercise 3.4)
to show that Mt as defined above is a martingale. More generally, one
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can establish this by taking limits. To show that this characterization
defines ⟨Z⟩ uniquely, we need the following proposition. The total
variation of a function f : [0,∞) → R is defined as

Vt(f) = sup
n∑

j=1

|f(tj−1)− f(tj)| ≤ K,

where the supremum is over all partitions

0 = t0 < t1 < t2 < · · · < tn = t.

We say f has bounded variation (locally) if Vt(f) < ∞ for all t. In-
creasing functions clearly have bounded variation, and it is not too
hard to see that the difference of increasing functions has bounded
variation. Also, if f is continuous with bounded variation,

lim
t↓0

Vt(f) = 0.

The next proposition shows that nontrivial continuous martingales
never have paths of bounded variation.

Proposition 3.2.7. Suppose Mt is a square integrable martingale with
respect to {Ft} with M0 = 0 such that with probability one, the paths
of Mt are continuous with bounded variation. Then Mt = 0 for every
t.

Proof. Since Mt has continuous paths, it suffices to show that P{Mt =
0} = 1 for every rational t. The argument is the same for all t, so
let us assume t = 1. We first make the stronger assumption that
V1(M) ≤ K < ∞. Let

Qn =

n∑
j=1

[
M

(
j

n

)
−M

(
j − 1

n

)]2
,

δn = max
j=1,...,n

{∣∣∣∣M (
j

n

)
−M

(
j − 1

n

)∣∣∣∣} ,

and note that

Qn ≤ δn

n∑
j=1

∣∣∣∣M (
j

n

)
−M

(
j − 1

n

)∣∣∣∣ ≤ δnK.
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Orthogonality of martingale increments implies that E[M2
1 ] = E[Qn].

Continuity of the paths implies that with probability one δn ↓ 0 and
hence Qn → 0. Since Qn ≤ δnK ≤ K2, we can use the bounded
convergence theorem to conclude that

E
[
M2

1

]
= lim

n→∞
E[Qn] = 0.

If V1(M) is not bounded, we can consider the stopping times

TK = inf{t : Vt(M) = K}.

The argument above gives E
[
M2

1∧TK

]
= 0 for each K, and hence with

probability one for each K, M1∧TK
= 0. But M1 = limK→∞M1∧TK

.

Using the proposition, we see that if Yt is an increasing adapted process
such that Z2

t − Yt is a martingale, then

Mt − (Z2
t − Yt) = Yt − ⟨Z⟩t,

is a continuous martingale with paths of bounded variation. Therefore,
Yt = ⟨Z⟩t.

3.3 Itô’s formula

Itô’s formula is the fundamental theorem of stochastic calculus. Before stating
it, let us review the fundamental theorem of ordinary calculus. Suppose f
is a C1 function. (We recall that a function if Ck if it has k continuous
derivatives.) Then we can expand f in a Taylor approximation,

f(t+ s) = f(t) + f ′(t) s+ o(s),

where o(s) denotes a term such that o(s)/s → 0 as s → 0. We write f as a
telescoping sum:

f(1) = f(0) +
n∑

j=1

[
f

(
j

n

)
− f

(
j − 1

n

)]
.



100 CHAPTER 3. STOCHASTIC INTEGRATION

The Taylor approximation gives

f

(
j

n

)
− f

(
j − 1

n

)
= f ′

(
j − 1

n

)
1

n
+ o

(
1

n

)
.

Hence,

f(1) = f(0) + lim
n→∞

n∑
j=1

f ′
(
j − 1

n

)
1

n
+ lim

n→∞

n∑
j=1

o

(
1

n

)
.

The first limit on the right-hand side is the Riemann sum approximation of
the definite integral and the second limit equals zero since n o(1/n) → 0.
Therefore,

f(1) = f(0) +

∫ 1

0

f ′(t) dt.

Itô’s formula is similar but it requires considering both first and second
derivatives.

Theorem 3.3.1 (Itô’s formula I). Suppose f is a C2 function and Bt is a
standard Brownian motion. Then for every t,

f(Bt) = f(B0) +

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds.

The theorem is often written in the differential form

df(Bt) = f ′(Bt) dBt +
1

2
f ′′(Bt) dt.

In other words, the process Yt = f(Bt) at time t evolves like a Brownian
motion with drift f ′′(Bt)/2 and variance f ′(Bt)

2. Note that f ′(Bt) is a con-
tinuous adapted process so the stochastic integral is well defined.

To see where the formula comes from, let us assume for ease that t = 1.
Let us expand f in a second-order Taylor approximation,

f(x+ y) = f(x) + f ′(x) y +
1

2
f ′′(x) y2 + o(y2),

where o(y2)/y2 → 0 as y → 0. Similarly to above, we write

f(B1)− f(B0) =
n∑

j=1

[
f
(
Bj/n

)
− f

(
B(j−1)/n

)]
.
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Using the Taylor approximation, we write

f
(
Bj/n

)
− f

(
B(j−1)/n

)
= f ′ (B(j−1)/n

)
∆j,n +

1

2
f ′′ (B(j−1)/n

)
∆2

j,n + o(∆2
j,n),

where
∆j,n = Bj/n −B(j−1)/n.

Hence f(B1)− f(B0) is equal to the sum of the following three limits:

lim
n→∞

n∑
j=1

f ′ (B(j−1)/n

) [
Bj/n −B(j−1)/n

]
, (3.9)

lim
n→∞

1

2

n∑
j=1

f ′′ (B(j−1)/n

) [
Bj/n −B(j−1)/n

]2
, (3.10)

lim
n→∞

n∑
j=1

o(
[
Bj/n −B(j−1)/n

]2
). (3.11)

The increment of the Brownian motion satisfies
[
Bj/n −B(j−1)/n

]2 ≈ 1/n.
Since the sum in (3.11) looks like n terms of smaller order than 1/n the
limit equals zero. The limit in (3.9) is a simple process approximation to a
stochastic integral and hence we see that the limit is∫ 1

0

f ′(Bt) dBt.

If f ′′ were constant, say b, then the limit in (3.10) would be

lim
n→∞

b

2

n∑
j=1

[
Bj/n −B(j−1)/n

]2
=
b

2
⟨B⟩1 =

b

2
.

This tells us what the limit should be in general. Let h(t) = f ′′(Bt) which is
a continuous function. For every ϵ > 0, there exists a step function hϵ(t) such
that |h(t)− hϵ(t)| < ϵ for every t. For fixed ϵ, we can consider each interval
on which hϵ is constant to see that

lim
n→∞

n∑
j=1

hϵ(t)
[
Bj/n −B(j−1)/n

]2
=

∫ 1

0

hϵ(t) dt.



102 CHAPTER 3. STOCHASTIC INTEGRATION

Also,∣∣∣∣∣
n∑

j=1

[h(t)− hϵ(t)]
[
Bj/n −B(j−1)/n

]2∣∣∣∣∣ ≤ ϵ
n∑

j=1

[
Bj/n −B(j−1)/n

]2 → ϵ.

Therefore, the limit in (3.10) is the same as

lim
ϵ→0

1

2

∫ 1

0

hϵ(t) dt =
1

2

∫ 1

0

h(t) dt =
1

2

∫ 1

0

f ′′(Bt) dt.

Example 3.3.1. Let f(x) = x2. Then f ′(x) = 2x, f ′′(x) = 2, and hence

B2
t = B2

0 +

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds = 2

∫ t

0

Bs dBs + t.

This gives the equation ∫ t

0

Bs dBs =
1

2
[B2

t − t],

which we mentioned in the last section. This example is particularly easy
because f ′′ is constant. If f ′′ is not constant, then f ′′(Bt) is a random variable,
and the dt integral is not so easy to compute.

Example 3.3.2. Let f(x) = eσx where σ > 0. Then f ′(x) = σeσx =
σ f(x), f ′′(x) = σ2eσx = σ2 f(x). Let Xt = f(Bt) = eσBt . Then

dXt = f ′(Bt) dBt +
1

2
f ′′(Bt) dt = σXt dBt +

σ2

2
Xt dt.

The processXt is an example of geometric Brownian motion which we discuss
in more detail in the next section.

The derivation of Itô’s formula given above is essentially correct but
ignores some technical details. For ease assume t = 1 and assume we
have a partition Π of the form

0 = t0 < t1 < · · · < tn = 1,
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with mesh ∥Π∥ = max{tj − tj−1}. Then we write

f(B1) = f(B0) +

n∑
j=1

[
f(Btj )− f(Btj−1)

]
.

Taylor’s theorem implies that

m(j, n)

2

[
Btj −Btj−1

]2
≤ f(Btj )− f(Btj−1)− f ′(Btj−1)

[
Btj −Btj−1

]
≤ M(j, n)

2

[
Btj −Btj−1

]2
,

where m(j, n),M(j, n) denote the minimum and maximum of f ′′(x)
for x on the interval with endpoints Btj−1 and Btj . Hence if we let

Q1(Π) =
n∑

j=1

f ′(Btj−1)
[
Btj −Btj−1

]
,

Q2
+(Π) =

n∑
j=1

M(j, n)

2

[
Btj −Btj−1

]2
,

Q2
−(Π) =

n∑
j=1

m(j, n)

2

[
Btj −Btj−1

]2
,

we have
Q2

−(Π) ≤ f(B1)− f(B0)−Q1(Π) ≤ Q2
+(Π).

We now suppose that we have a sequence of partitions Πn of the form

0 = t0,n < t1,n < · · · < tkn,n = 1,

with
∑

∥Πn∥ < ∞. Then we have seen that with probability one, for
all 0 < s < t < 1,

lim
n→∞

∑
s≤tj,n<t

[
Btj,n −Btj−1,n

]2
= t− s.

Using the continuity of Bt and f ′′, we can see that on the event that
this is true, we also have

lim
n→∞

Q2
−(Πn) = lim

n→∞
Q2

+(Πn) =
1

2

∫ 1

0
f ′′(Bs) ds.
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We now assume for the moment that there exists K < ∞ such that
|f ′′(x)| ≤ K for all x. This happens, for example, if f has compact
support. Then

|f ′(Bs)− f ′(Btj−1,n)| ≤ K |Bs −Btj−1,n |.

Let At = f ′(Bt) and let A
(n)
t be the simple process that equals

f ′(Btj−1,n) for tj−1,n ≤ t < tj,n. For tj−1,n ≤ s < tj,n,

E([At −A
(n)
t ]2) ≤ K2 E([Bs −Btj−1,n ]

2) = K2 [s− tj−1,n] ≤ K2 ∥Πn∥.

Therefore, ∫ 1

0
E([At −A

(n)
t ]2) dt ≤ K2 ∥Πn∥.

In particular, we get the following.

Proposition 3.3.2. Suppose that f ′′ is bounded and {Πn} is a se-
quence of partitions with

∑
∥Πn∥ < ∞. Let

Y
(n)
t = f(B0) +

kn∑
j=1

f ′(Btj−1,n) [Btj,n −Btj−1,n ]

+

kn∑
j=1

f ′′(Btj−1,n)

2
[Btj,n −Btj−1,n ]

2.

Then with probability one

lim
n→∞

max
0≤t≤1

|f(Bt)− Y
(n)
t | = 0.

If f ′′ is not bounded, we can still prove Itô’s formula by using stopping
times. This general procedure is often called localization. For each K,
let

TK = inf{t : |f ′′(Bt)| ≥ K}.

Then, our argument shows that with probability one for each K,

f (Bt∧TK
) =

∫ t∧TK

0
f ′(Bs) dBs +

1

2

∫ t∧TK

0
f ′′(Bs) ds.

However, with probability one TK → ∞ as K → ∞, and hence this
gives us a formula for f(Bt).
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Suppose that f is defined only on an interval I = (a, b) and B0 ∈ I.
Let

Tϵ = inf{t : Bt ≤ a+ ϵ or Bt ≥ b− ϵ}, T = T0.

We can apply Itô’s formula to conclude for all t and all ϵ > 0.

f(Bt∧Tϵ) = f(B0) +

∫ t∧Tϵ

0
f ′(Bs) dBs +

1

2

∫ t∧Tϵ

0
f ′′(s) ds.

This is sometimes written shorthand as

df(Bt) = f ′(Bt) dBt +
1

2
f ′′(Bt) dt, 0 ≤ t < T.

The general strategy for proving the generalizations of Itô’s formula

that we give in the next couple of sections is the same, and we will

not give the details.

3.4 More versions of Itô’s formula

We first extend Itô’s formula to functions that depend on time as well as
position.

Theorem 3.4.1 (Itô’s Formula II). Suppose f(t, x) is a function that is C1

in t and C2 in x. If Bt is a standard Brownian motion, then

f(t, Bt) = f(0, B0) +

∫ t

0

∂xf(s, Bs) dBs

+

∫ t

0

[
∂sf(s, Bs) +

1

2
∂xxf(s, Bs)

]
ds,

or in differential form,

df(t, Bt) = ∂xf(t, Bt) dBt +

[
∂tf(t, Bt) +

1

2
∂xxf(t, Bt)

]
dt.

This is derived similarly to the first version except when we expand with
a Taylor polynomial around x we get another term:

f(t+∆t, x+∆x)− f(t, x) =
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∂tf(t, x)∆t+ o(∆t) + ∂xf(t, x)∆x+
1

2
∂xxf(t, x) (∆x)

2 + o((∆x)2).

If we set ∆t = 1/n and write a telescoping sum for f(1, B1) − f(0, B0) we
get terms as (3.9)– (3.11) as well as two more terms:

lim
n→∞

n∑
j=1

∂tf((j − 1)/n,B(j−1)/n) (1/n), (3.12)

lim
n→∞

n∑
j=1

o(1/n). (3.13)

The limit in (3.13) equals zero, and the sum in (3.12) is a Riemann sum
approximation of a integral and hence the limit is∫ 1

0

∂tf(t, Bt) dt.

Example 3.4.1. Let f(t, x) = eat+bx. Then

∂tf(t, x) = a f(t, x), ∂xf(t, x) = b f(t, x), ∂xxf(t, x) = b2 f(t, x).

Therefore, if Xt = f(t, Bt) = exp {at+ bBt},

dXt =

[
∂tf(t, Bt) +

1

2
∂xxf(t, Bt)

]
dt+ ∂xf(t, Bt) dBt

=

(
a+

b2

2

)
Xt dt+ bXt dBt.

Definition A process Xt is a geometric Brownian motion with drift m and
volatility σ if it satisfies the SDE

dXt = mXt dt+ σXt dBt = Xt [mdt+ σ dBt] , (3.14)

where Bt is a standard Brownian motion.

Example 3.4.1 shows that if Bt is a standard Brownian motion and

Xt = X0 exp

{(
m− σ2

2

)
t+ σ Bt

}
, (3.15)
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thenXt is a geometric Brownian motion with parameters (m,σ). Even though
we have an exact expression (3.15) for geometric Brownian motion, it is
generally more useful to think of it in terms of its SDE (3.14).

Geometric Brownian motion is more natural than usual Brownian mo-
tion for modeling prices of assets such as stock. It measures changes in terms
of fractions or percentages of the current price rather than the listed price
per share. In particular, the latter quantity includes a rather arbitrary unit
“share” which does not appear if one models with geometric Brownian mo-
tion.

The geometric Brownian motion (3.15) is what is sometimes called a
“strong” solution to the SDE (3.14). (All of the solutions to SDEs that we
discuss in this book are strong solutions.) We will not give the exact defini-
tion, but roughly speaking, if one uses the same Brownian motion Bt in both
places, one gets the same function. Let us explain this in terms of simulation.
Suppose a small ∆t is chosen. Then we can define Bk∆t by B0 = 0 and

Bk∆t = B(k−1)∆t +
√
∆tNk, (3.16)

where N1, N2, . . . is a sequence of independent N(0, 1) random variables.
Using the same sequence, we could define an approximate solution to (3.14)
by choosing X0 = e0 = 1 and

Xk∆t = X(k−1)∆t +X(k−1)∆t

[
m∆t+ σ

√
∆tNj

]
. (3.17)

If ∆t is small, this should be very close to

Yk∆t = exp

{(
m− σ2

2

)
(k∆t) + σ Bk∆t

}
. (3.18)

In Exercise 3.9 you are asked to do a simulation to compare (3.17) and (3.18).
To do formal1 calculations in usual calculus, one writes down differentials

and throws away all terms that are of smaller order than dt. In stochastic
calculus, one can go far computing similarly using the rules

(dBt)
2 = dt, (dBt) (dt) = 0, (dt)2 = 0.

1Mathematicians use the word formal to refer to calculations that look correct “in
form”, but for which not all the steps have been justified. When they construct proofs,
they often start with formal calculations and then go back and justify the steps.



108 CHAPTER 3. STOCHASTIC INTEGRATION

In some of our derivations below, we will use this kind of argument. For
example, a formal derivation of Itô’s formula II can be given as

df(t, Bt) = ∂tf(t, Bt) dt+∂xf(t, Bt) dBt+
1

2
∂xxf(t, Bt) (dBt)

2

+o(dt) + o((dt)(dBt)) + o((dBt)
2).

By setting (dBt)
2 = dt and setting the last three terms equal to zero we get

the formula.
Suppose that Xt satisfies

dXt = Rt dt+ At dBt, (3.19)

which we recall is equivalent to

Xt = X0 +

∫ t

0

Rs ds+

∫ t

0

As dBs.

Whenever we write such equations we will assume implicitly that Rt, At are
adapted processes with piecewise continuous paths. As before, we define the
quadratic variation by

⟨X⟩t = lim
n→∞

∑
j≤tn

[
X

(
j

n

)
−X

(
j − 1

n

)]2
.

As in the case for Brownian motion, the drift term does not contribute to
the quadratic variation,

⟨X⟩t = ⟨
∫
AdB⟩t =

∫ t

0

A2
s ds.

This is often written in the differential form

d ⟨X⟩t = A2
t dt.

To see that Rt does not appear, we can do the formal calculation

(dXt)
2 = (Rt dt+ At dBt)

2

= R2
t (dt)

2 + 2RtAt (dt) (dBt) + A2
t (dBt)

2 = A2
t dt.
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If Xt satisfies (3.19) and Ht is another adapted process we define∫ t

0

Hs dXs =

∫ t

0

HsRs ds+

∫ t

0

HsAs dBs.

If we view this in terms of simulation then

Yt =

∫ t

0

Hs dXs

can be simulated by

∆Yt = Ht ∆Xt = Ht [Xt+∆t −Xt] = Ht

[
Rt ∆t+ At

√
∆tN

]
,

where N ∼ N(0, 1).

Theorem 3.4.2 (Itô’s formula III). Suppose Xt satisfies (3.19) and f(t, x)
is C1 in t and C2 in x. Then

df(t,Xt) = ∂tf(t,Xt) dt+ ∂xf(t,Xt) dXt +
1

2
∂xxf(t,Xt) d⟨X⟩t

=

[
∂tf(t,Xt) +Rt ∂xf(t,Xt) +

A2
t

2
∂xxf(t,Xt)

]
dt

+At ∂xf(t,Xt) dBt.

Example 3.4.2. Suppose X is a geometric Brownian motion satisfying

dXt = mXt dt+ σXt dBt.

Let f(t, x) = e−tx3. Then

∂tf(t, x) = −e−t x3 = −f(t, x),

∂xf(t, x) = 3x2 e−t =
3

x
f(t, x), ∂xxf(t, x) = 6x e−t =

6

x2
f(t, x),

and

df(t,Xt) = ∂tf(t,Xt) dt+ ∂xf(t,Xt) dXt +
1

2
∂xxf(t,Xt) d⟨X⟩t

=

[
∂tf(t,Xt) +mXt ∂xf(t,Xt) +

σ2X2
t

2
∂xxf(t,Xt)

]
dt

+σXt ∂xf(t,Xt) dBt

=

(
−1 + 3m+

6σ2

2

)
f(t,Xt) dt+ 3σ f(t,Xt) dBt.

d[e−tX3
t ] = 3e−tX3

t

[(
−1

3
+m+ σ2

)
dt+ σ dBt

]
.
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Example 3.4.3. The exponential SDE is

dXt = AtXt dBt X0 = x0.

We claim that the solution is

Xt = x0 exp

{∫ t

0

As dBs −
1

2

∫ t

0

A2
s ds

}
. (3.20)

To see this, let

Yt =

∫ t

0

As dBs −
1

2

∫ t

0

A2
s ds,

which satisfies

dYt = −A
2
t

2
dt+ At dBt, d⟨Y ⟩t = A2

t dt.

If f(x) = x0 e
x, then f(x) = f ′(x) = f ′′(x) and

df(Yt) = f ′(Yt) dYt +
1

2
f ′′(Yt) d⟨Y ⟩t = AtXt dBt.

We can compare (3.20) to the solution to the deterministic exponential equa-
tion

f ′(t) = r(t) f(t) dt, f(0) = x0,

which is

f(t) = x0 exp

{∫ t

0

r(s) ds

}
.

Itô’s formula requires that the function f(t, x) be C1 in t and C2 in x. In
applications, one often has functions that are C2 only for x in an interval of
the reals. In this case, we can use Itô’s formula until the (random) time that
the process leave the interval.

Theorem 3.4.3 (Itô’s formula III, local form). Suppose Xt satisfies (3.19)
with a < X0 < b, and f(t, x) is C1 in t and C2 in x for a < x < b. Let
T = inf{t : Xt = a or Xt = b}. Then if t < T ,

f(t,Xt) = f(0, X0) +

∫ t

0

As ∂xf(s,Xs) dBs

+

∫ t

0

[
∂sf(s,Xs) +Rs ∂xf(s,Xs) +

A2
s

2
∂xxf(s,Xs)

]
ds.
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We write the conclusion of the theorem in differential form by

df(t,Xt) = ḟ(t,Xt) dt+ f ′(t,Xt) dXt +
1

2
f ′′(t,Xt) d⟨X⟩t t < T.

Example 3.4.4. Suppose that Bt is a standard Brownian motion, and Yt =
t/B2

t . Let T = inf{t : Bt = 0}. Then we can use Itô’s formula to see that for
t < T ,

dYt = ḟ(t, Bt) dt+ f ′(t, Bt) dBt +
1

2
f ′′(t, Bt) dt

= [B−2
t + 3tB−4

t ] dt− 2tB−3
t dBt.

To prove the local form of Itô’s formula, we let ϵ > 0 and Tϵ = inf{t :
Xt ≤ a + 2ϵ or Xt ≥ b − 2ϵ}. We can find a C∞ function ϕϵ such
that ϕϵ(x) = 0 if x < a + ϵ or x > b − ϵ and such that ϕ(x) = 1 for
a + 2ϵ ≤ x ≤ b − 2ϵ. Let fϵ(t, x) = ϕϵ(x) f(t, x). Then fϵ satisfies the
conditions of Itô’s formula and

fϵ(t,Xt)− fϵ(0, X0) =

∫ t

0
As f

′
ϵ(s,Xs) dBs

+

∫ t

0

[
ḟϵ(s,Xs) +Rs f ′

ϵ(s,Xs) +
A2

s

2
f ′′
ϵ (s,Xs)

]
ds.

If t < Tϵ, then both sides of this equation are not changed if we replace
fϵ with f .

3.5 Diffusions

Geometric Brownian motion is an example of a time-homogeneous diffusion.
We say that Xt is a diffusion (process) if it is a solution to an SDE of the
form

dXt = m(t,Xt) dt+ σ(t,Xt) dBt, (3.21)

where m(t, x), σ(t, x) are functions. It is called time-homogeneous if the func-
tions do not depend on t,

dXt = m(Xt) dt+ σ(Xt) dBt.
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Diffusion processes are Markov processes. Given all the information in Ft,
the only important information needed to give the conditional distribution
of Xs, s ≥ t is Xt. Simulations of diffusions can be done using the stochastic
Euler rule:

Xt+∆t = Xt +m(t,Xt)∆t+ σ(t,Xt)
√
∆tN,

where N ∼ N(0, 1). The study of diffusions leads to partial differential equa-
tions.

We define the generator L = L0 of a (time homogeneous) Markov process
Xt by

Lf(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t
.

We will use Itô’s formula to understand the generator of the diffusion Xt.
For ease, we will assume that m and σ are bounded continuous functions. If
f : R → R is a C2 function with bounded first and second derivatives, then
Itô’s formula gives

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt) d⟨X⟩t

=

[
m(t,Xt) f

′(Xt) +
σ2(t,Xt)

2
f ′′(Xt)

]
dt

+f ′(Xt)σ(t,Xt) dBt.

That is,

f(Xt)− f(X0) =

∫ t

0

[
m(s,Xs) f

′(Xs) +
σ2(s,Xs)

2
f ′′(Xs)

]
ds

+

∫ t

0

f ′(Xs)σ(s,Xs) dBs.

The second term on the right-hand side is a martingale (since the integrand
is bounded) and has expectation zero, so the expectation of the right-hand
side is

tE[Yt],

where

Yt =
1

t

∫ t

0

[
m(s,Xs) f

′(Xs) +
σ2(s,Xs)

2
f ′′(Xs)

]
ds.
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The fundamental theorem of calculus implies that

lim
t↓0

Yt = m(0, X0) f
′(X0) +

σ2(0, X0)

2
f ′′(X0).

Moreover, the random variables Yt are uniformly bounded which allows us
to take the limit inside the expectation,

Lf(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t
= m(0, x) f ′(x) +

σ2(0, x)

2
f ′′(x).

Similarly, if we define

Ltf(x) = lim
s↓0

E[f(Xt+s)− f(Xt) | Xt = x]

s
,

we get

Ltf(x) = m(t, x) f ′(x) +
σ2(t, x)

2
f ′′(x).

The assumption that m,σ are bounded is stronger than we would like (for
example, the differential equation (3.14) for geometric Brownian motion does
not satisfy this), but one can ease this by stopping the path before it gets
too large. We will not worry about this now.

In this section we assumed we had a solution to the SDE (3.21). This
leads naturally to the question: given functions m(t, x), σ(t, x), can we
find a process Xt satisfying (3.21)?

Consider first the deterministic equation

y′(t) = F (t, y(t)), y(0) = y0. (3.22)

We will assume that F is uniformly Lipschitz, that is, there exists
β < ∞ such that for all t, x, y,

|F (t, x)− F (t, y)| ≤ β |x− y|. (3.23)

We can construct a solution to (3.22) valid for 0 ≤ t ≤ t0 by using
the following method called Picard iteration. We start with the initial
function

y0(t) = y0,
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and recursively define

yk(t) = y0 +

∫ t

0
F (s, yk−1(s)) ds.

Note that

|y1(t)− y0(t)| ≤
∫ t

0
|F (s, y0)| ds ≤ Ct,

where C = C(y0, t0) = max0≤s≤t0 |F (s, y0)|, and for k ≥ 1,

|yk+1(t)− yk(t)| ≤
∫ t

0
|F (s, yk(s))− F (s, yk−1(s))| ds

≤ β

∫ t

0
|yk(s)− yk−1(s)| ds

Using this estimate and induction, we see that

|yk+1(t)− yk(t)| ≤
βk C tk+1

(k + 1)!
, 0 ≤ t ≤ t0.

In particular, the limit

y(t) = lim
k→∞

yk(t),

exists and

|yk(t)− y(t)| ≤ C
∞∑
j=k

βj tj+1

(j + 1)!
.

If we let

ỹ(t) = y0 +

∫ t

0
F (s, y(s)) ds,

then for each k,

|ỹ(t)− yk+1(t)| ≤
∫ t

0
|F (s, y(s))− F (s, yk(s))| ds

≤ β

∫ t

0
|y(s)− yk(s)| ds,

and hence ỹ = y, and y satisfies (3.22). This argument assumed that
(3.23) holds for all s, t, x, y, and we put no restriction on t0. If instead
we had such an estimate only for times near zero and x, y near y0,
we could establish the same result for some (but not necessarily all)
positive values of t0.
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Let us now consider (3.21) where the functions m(t, x) and σ(t, x)
both satisfy (3.23). For ease, choose t0 = 1 and define recursively

X0
t = y0, 0 ≤ t ≤ 1,

X
(k+1)
t = y0 +

∫ t

0
m(s,X(k)

s ) ds+

∫ t

0
σ(s,X(k)

s ) dBs,

so that

E
[
|X(k+1)

t −Xk
t |2
]
≤ 2E

[(∫ t

0
β |X(k)

s −X(k−1)
s | ds

)2
]

+2E

[(∫ t

0
[σ(s,X(k)

s )− σ(s,X(k−1)
s )] dBs

)2
]
.

Using the Hölder inequality on the ds integral we see that for t ≤ 1,

E

[(∫ t

0
β |X(k)

s −X(k−1)
s | ds

)2
]

≤ E
[
β2 t

∫ t

0
|X(k)

s −X(k−1)
s |2 ds

]
≤ β2

∫ t

0
E
[
|X(k)

s −X(k−1)
s |2

]
ds.

The variance rule for the stochastic integral gives

E

[(∫ t

0
[σ(s,X(k)

s )− σ(s,X(k−1)
s )] dBs

)2
]

=

∫ t

0
E
(
[σ(s,X(k)

s )− σ(s,X(k−1)
s )]2

)
ds

≤ β2

∫ t

0
E
[
|X(k)

s −X(k−1)
s |2

]
ds.

Combining these estimates, we see that there exists λ < ∞ such that
for all 0 ≤ t ≤ 1 and positive integers k,

E
[
|X(k+1)

t −Xk
t |2
]
≤ λk+1 tk+1

(k + 1)!
.

We then define Xt = limk X
(k)
t ; as before, we do this for dyadic t as an

L2 limit and extend it to other t by continuity. This gives a solution.
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If the Lipschitz condition holds only locally, then we can use this
argument to show that there exists a stopping time T with P{T >
0} = 1 such that Xt, 0 ≤ t < T satisfies the equation. In the random
case the time T for which the solution is valid is a random variable.

3.6 Covariation and the product rule

Suppose Xt, Yt satisfy

dXt = Ht dt+ At dBt, dYt = Kt dt+ Ct dBt. (3.24)

Here Bt is the same standard Brownian motion in both equations. As before,
the covariation process is defined by

⟨X, Y ⟩t = lim
n→∞

∑
j≤tn

[
X

(
j

n

)
−X

(
j − 1

n

)] [
Y

(
j

n

)
− Y

(
j − 1

n

)]
.

Using the formal rules for stochastic calculus we get

[dXt] [dYt] = [Ht dt+ At dBt] [Kt dt+ Ct dBt]

= AtCt dt+O((dt)2) +O((dt)(dBt)).

This indeed shows what happens and we get

⟨X, Y ⟩t =
∫ t

0

AsCs ds,

or in differential form,
d⟨X, Y ⟩t = AtCt dt.

The product rule for the usual derivative can be written in differential
form as

d(fg) = f dg + g df = fg′ dt+ f ′g dt.

It can be obtained formally by writing

d(fg) = f(t+ dt) g(t+ dt)− f(t) g(t)

= [f(t+ dt)− f(t)] g(t+ dt) + f(t) [g(t+ dt)− g(t)]

= (df)g + (dg)f + (df)(dg).
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Since df = f ′dt, dg = g′dt and dfdg = O((dt)2), we get the usual product
formula.

IfXt, Yt are process as above, then when we take the stochastic differential
d(XtYt) we get in the same way

d(XtYt) = Xt dYt + Yt dXt + (dXt) (dYt).

However, the (dXt) (dYt) term does not vanish, but rather equals d⟨X, Y ⟩t.
This gives the stochastic product rule.

Theorem 3.6.1 (Stochastic product rule). If Xt, Yt satisfy (3.24), then

d(XtYt) = Xt dYt + Yt dXt + d⟨X, Y ⟩t.

In other words,

XtYt = X0 Y0 +

∫ t

0

Xs dYs +

∫ t

0

Ys dXs +

∫ t

0

d⟨XY ⟩s

= X0 Y0 +

∫ t

0

[XsKs + YsHs + AsCs] ds

+

∫ t

0

[XsCs + YsAs] dBs.

Example 3.6.1. Suppose Bt is a standard Brownian motion and Xt is the
geometric Brownian motion satisfying

dXt = mXt dt+ σXt dBt.

Then in the notation of (3.24), Ht = mXt and At = σXt. If we set Yt = Bt,
then Kt = 0, Ct = 1. Therefore,

d(BtXt) = Bt dXt +Xt dBt + d⟨B,X⟩t
= Bt [mXt dt+ σXt dBt] +Xt dBt + σXt dt

= Xt [(mBt + σ) dt+ (σ Bt + 1) dBt] .

3.7 Several Brownian motions

Up to this point, we have integrated with respect to a single Brownian motion.
Extending the definitions to several Brownian motions is straightforward.
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Suppose that B1
t , . . . , B

d
t are independent Brownian motions with respect to

the filtration {Ft}, and that A1
t , . . . , A

d
t are adapted processes. We write

dXt = Ht dt+
d∑

j=1

Aj
t dB

j
t ,

to mean

Xt = X0 +

∫ t

0

Hs ds+
d∑

j=1

∫ t

0

Aj
s dB

j
s .

The covariation process can be computed if we remember the rule

⟨Bi, Bj⟩ = 0, i ̸= j.

In particular, if

Yt = Y0 +

∫ t

0

Ks ds+
d∑

j=1

∫ t

0

Cj
s dB

j
s ,

then

d⟨X, Y ⟩t =
d∑

j=1

Aj
t C

j
t dt.

Itô’s formula for several processes can be obtained by expanding in a Taylor
approximation. As before, we need the first order term in the time variable
and all second order terms in the space variables. We state the theorem; the
proof is essentially the same as for the previous version. The reader may note
that this version includes all the previous versions as special cases, so we call
this the final form. If f : [0,∞)× Rd → R is a function, we write

ḟ(t,x) = ∂tf(t,x), ∂jf(t,x) = ∂xj
f(t,x), ∂jkf(t,x) = ∂xjxk

f(t,x).

If Xt = (X1
t , . . . , X

n
t ) we write

∇f(t,Xt) · dXt =
n∑

k=1

∂kf(t,Xt) dX
k
t .

Theorem 3.7.1 (Itô’s formula, final form). Suppose B1
t , . . . , B

d
t are indepen-

dent standard Brownian motions, and X1
t , . . . , X

n
t are processes satisfying

dXk
t = Hk

t dt+
d∑

i=1

Ai,k
t dBi

t.
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Suppose f(t,x), t ≥ 0,x ∈ Rn, is a function that is C1 in t and C2 in
x = (x1, . . . , xn). Then, if Xt = (X1

t , . . . , X
n
t ),

df(t,Xt) = ḟ(t,Xt) dt+∇f(t,Xt) · dXt

+
1

2

n∑
j=1

n∑
k=1

∂jkf(t,Xt) d⟨Xj, Xk⟩t.

In other words,

f(t,Xt)− f(0,X0) =
d∑

i=1

∫ t

0

[
n∑

k=1

∂kf(s,Xs)A
i,k
s

]
dBi

s

+

∫ t

0

[
ḟ(s,Xs) +

(
n∑

k=1

∂kf(s,Xs)H
k
s

)

+

(
1

2

d∑
i=1

n∑
j=1

n∑
k=1

∂jkf(s,Xs)A
i,j
s Ai,k

s

)]
dt

If f(t, x) is C2 only in an open subset U ⊂ Rn, we can give a local form
of this theorem as in Theorem 3.4.3 to see that the conclusion holds until
the first time that Xt leaves U . Since it comes up often, we state a particular
case of this theorem. The Laplacian of a function f : Rd → R is defined by

∇2f(x) =
d∑

j=1

∂jjf(x).

Other standard notations for ∇2 are ∆ and ∇ · ∇. In the statement below
the gradient ∇ and the Laplacian ∇2 are taken with respect to the x variable
only.

Theorem 3.7.2. Suppose Bt = (B1
t , . . . , B

d
t ) is a standard Brownian motion

in Rd. Then if f : [0,∞)× Rd is C1 in t and C2 in x ∈ Rd, then

df(t, Bt) = ∇f(t, Bt) · dBt +

[
ḟ(t, Bt) +

1

2
∇2f(t, Bt)

]
dt

A function f is harmonic if∇2f = 0. There is a close relationship between
Brownian motion, martingales, and harmonic functions that we discuss in
Chapter 8.
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3.8 Exercises

Exercise 3.1. Suppose At is a simple process with |At| ≤ C for all t. Let

Zt =

∫ t

0

As dBs.

Show that

E
[
Z4

t

]
≤ 4C4 t2.

Hint: We may assume C = 1. By conditioning with respect to Ft show
that if s, t > 0,

E
[
Z4

t+s

]
≤ E

[
Z4

t

]
+ s2 + 2

√
E[Z4

t ] s.

Exercise 3.2. Use Itô’s formula to find the stochastic differential f(t, Bt)
where Bt is a standard Brownian motion and

1. f(t, x) = sinx;

2. f(t, x) = e−t (x/t)2

3. Repeat these exercises for f(t,Xt) where

dXt = Xt [mdt+ σ dBt].

Exercise 3.3. Suppose an asset follows the following geometric SDE,

dXt = 4Xt dt+Xt dBt.

1. Write the exact solution of this equation. In other words, find Xt as a
function of Bt.

2. Suppose X0 = 2. What is the probability that X1 > 8?

3. Suppose X0 = 1. What is the probability that X2 < 6?

4. Suppose X0 = 4.4565. What is the probability that Xt < 0 for some
2 < t < 5?.
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Exercise 3.4. Show that if Bt is a standard Brownian motion, At is a simple
process, and

Zt =

∫ t

0

As dBs,

then
Mt = Z2

t − ⟨Z⟩t
is a martingale.

Exercise 3.5. Suppose that two assets Xt, Yt follow the SDEs

dXt = Xt [µ1 dt+ σ1 dBt],

dYt = Yt [µ2 dt+ σ2 dBt],

where Bt is a standard Brownian motion. Suppose also that X0 = Y0 = 1.

1. Let Zt = XtYt. Give the SDE satisfied by Zt; in other words write an
expression for dZt in terms of Zt, µ1, µ2, σ1, σ1.

2. Does there exist a function f : R → R such that f(Xt) = Bt for all t?

3. Does there exist a function g : R → R such that g(Zt) = Bt for all t?

Exercise 3.6. Suppose Bt is a standard Brownian motion and Xt satisfies

dXt = X2
t dt+Xt dBt.

For each of the following find At, Ct such that

d⟨Y ⟩t = At dt, d⟨Y,X⟩t = Ct dt.

1. Yt = Bt.

2. Yt = X3
t .

3.

Yt = exp

{∫ t

0

(X2
s + 1) ds

}
.

Exercise 3.7. Consider the geometric SDE

dXt = Xt[−2 dt+ 2 dBt].

Use the stochastic Euler’s method to do Monte Carlo simulations for Xt, 0 ≤
t ≤ 2 assuming X0 = 1. Use ∆t = .01.
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1. Graph at least one of your simulations.

2. Use the simulation to estimate the probability that X2 ≥ 3. Do at least
1000 simulations.

3. Compute the exact probability (up to at least three decimal places)
that X2 ≥ 3 and compare this to your simulations.

Exercise 3.8. Suppose f(t) is a (nonrandom) continuously differentiable
function of t and Bt is a standard Brownian motion. Justify the integration
by parts formula∫ s

r

f(t) dBt = f(s)Bs − f(r)Br −
∫ s

r

Bt f
′(t) dt.

(Hint: write the left-hand side as a limit of simple process approximations and
do “summation by parts” on the approximations.) Explain why

∫ s

r
f(t) dBt

has a normal distribution.

Exercise 3.9. Let m = 1, σ = 2,∆t = 1/1000 and simulate geometric
Brownian motion

dXt = Xt dt+ 2Xt dBt, X0 = 1,

using both (3.17) and (3.18). Be sure that the same sequence of normal
random variables N1, N2, . . . is used for (3.17) and (3.16). Run the simulation
at least 20 times and compare the values ofX1/4, X1/2, X3/4, X1 obtained from
the two formulas.

Exercise 3.10. Suppose that Xt satisfies the SDE

dXt = Xt [(1/2) dt+ dBt], X0 = 2

Let
M = max

0≤t≤1
Xt.

1. Find the density of M .

2. Find the probability that M ≥ 4.

Hint: Write Xt = f(Bt) for an appropriate function.
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Exercise 3.11. Suppose Zt, t ∈ D are defined and there exists c < ∞,
α < ∞, β > 0 such that for all s, t ∈ D

E [|Zt − Zs|α] ≤ c |t− s|1+β.

Let ϵ = β/(2α).

� Show that

P{∃s ∈ Dn : |Zs+2−n − Zs| ≥ 2−nϵ} ≤ c 2−nβ/2.

� Show that with probability one, for all n sufficiently large and
all s ∈ Dn,

|Zs+2−n − Zs| ≤ 2−nϵ.

� Show that with probability one, there exists C such that for all
s, t ∈ D,

|Zs − Zt| ≤ C |s− t|ϵ.
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Chapter 4

More stochastic calculus

4.1 Martingales and local martingales

In the last chapter we defined

Zt =

∫ t

0

As dBs,

where Bt is a standard Brownian motion and As is a continuous or piecewise
continuous process. If ∫ t

0

E[A2
s] ds <∞

for each t, then Zt is a square integrable martingale. However, our next
example will show that if this inequality does not hold, the stochastic integral
might not be a martingale. Our example is a modification of the martingale
betting strategy from Section 1.2. In that example, we beat a fair game by
doubling our bet until we won. We recall that if Wn denotes the winnings
after n plays, then E[Wn] = 0, but with probability one W∞ = 1. In order to
beat the game, we had to allow for arbitrarily large numbers of plays of the
game until we won. In continuous time, one can do the same idea, but adapt
it so that we guarantee to win by time 1.

Example 4.1.1. (Martingale betting strategy revisited) We will consider

Zt =

∫ t

0

As dBs

125
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with a betting strategy As that changes only at times t0 < t1 < t2 < · · · < 1
where

tn = 1− 2−n.

We start by setting At = 1 for 0 ≤ t < 1/2. Then Z1/2 = B1/2. Note that

P{Z1/2 ≥ 1} = P{B1/2 ≥ 1} = P{B1 ≥
√
2} = 1− Φ(

√
2) =: q > 0.

If Z1/2 ≥ 1, we stop, that is, we set At = 0 for 1/2 ≤ t ≤ 1. If Z1/2 < 1, let
x = 1− Z1/2 > 0. Define a by the formula

P{a[B3/4 −B1/2] ≥ x} = q.

We set At = a for 1/2 ≤ t < 3/4. Note that we only need to know Z1/2 to
determine a and hence a is F1/2-measurable. Also, if a[B3/4−B1/2] ≥ x, then

Z3/4 =

∫ 3/4

0

As dBs = Z1/2 + a[B3/4 −B1/2] ≥ 1.

Therefore,
P{Z3/4 ≥ 1 | Z1/2 < 1} = q,

and hence
P{Z3/4 < 1} = (1− q)2.

If Z3/4 ≥ 1, we set At = 0 for 3/4 ≤ t ≤ 1. Otherwise, we proceed as above.
At each time tn we adjust the bet so that

P{Ztn+1 ≥ 1 | Ztn < 1} = q,

and hence
P{Ztn < 1} ≤ (1− q)n.

Using this strategy, with probability one Z1 ≥ 1, and hence, E[Z1] ≥ 1.
Therefore, Zt is not a martingale. Our choice of strategy used discontinu-
ous bets, but it is not difficult to adapt this example so that t 7→ At is a
continuous function except at the one time at which the bet changes to zero.

Although the stochastic integral may not be a martingale, it is almost a
martingale in the sense that one needs to make the bets arbitrarily large to
find a way to change the expectation. The next definition makes precise the
idea of a process that is a martingale “if it is stopped before the values get
big”.
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Definition A continuous process Mt adapted to the filtration {Ft} is called
a local martingale on [0, T ) if there exists an increasing sequence of stopping
times

τ1 ≤ τ2 ≤ τ3 ≤ · · ·
such that with probability one

lim
j→∞

τj = T,

and for each j,
M

(j)
t =Mt∧τj ,

is a martingale.

In the case of the stochastic integral

Zt =

∫ t

0

As dBs,

we let {τj} be the stopping times,

τj = inf

{
t : ⟨Z⟩t =

∫ t

0

A2
s ds = j

}
.

Then for each j, M
(j)
t is a square integrable martingale. Therefore, Zt is a

local martingale on [0, T ) where

T = inf

{
t :

∫ t

0

A2
s ds = ∞

}
.

The stochastic integral Zt is not defined after time T . Note that if s 7→ As is
continuous for all s ∈ [0,∞), then T = ∞.

More generally, suppose that

dXt = Rt dt+ At dBt.

If Rt ̸= 0, then Xt is not a martingale. In other words, if Xt is to be a
martingale we need Rt ≡ 0. However, as we have just shown, it is possible for
Rt ≡ 0 but Xt to not be a martingale. It is a local martingale in this case. In
an abuse of terminology, it is standard to refer to At dBt as the “martingale
part” of dXt even though one should say the “local martingale part”.

For continuous martingales, we have the optional sampling theorem which
states under certain circumstances that one cannot beat a fair game. The next
theorem includes two versions which are the most useful for applications.
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Theorem 4.1.1 (Optional Sampling Theorem). Suppose Zt is a continuous
martingale and T is a stopping time, both with respect to the filtration {Ft}.

� If Mt = Zt∧T , then Mt is a continuous martingale with respect to {Ft}.
In particular, E[Zt∧T ] = E[Z0].

� Suppose there exists C < ∞ such that for all t, E[Z2
t∧T ] ≤ C. Then if

P{T <∞} = 1, E[ZT ] = E[Z0].

Example 4.1.2. Suppose Zt is a continuous martingale with Z0 = 0. Sup-
pose that a, b > 0 and let

T = inf{t : Zt = −a or Zt = b}.

Suppose that P{T <∞} = 1, which happens, for example, if Zt is a standard
Brownian motion. Then Zt∧T is a bounded martingale and hence

0 = E[Z0] = E[ZT ] = −aP{ZT = a}+ bP{ZT = b}.

By solving, we get

P{ZT = b} =
a

a+ b
,

which is the gambler’s ruin estimate for continuous martingales.

Results about continuous martingales can be deduced from corre-
sponding results about discrete-time martingales. If Zt is a continuous
martingale and

Dn =

{
k

2n
: k = 0, 1, . . .

}
,

then Zt, t ∈ Dn is a discrete-time martingale. If Tn is a stopping time
taking values in Dn, then Zt∧Tn is also a martingale.

For more general T , we define Tn by

Tn =
k

2n
if

k − 1

2n
≤ T <

k

2n
, k = 1, 2, . . . , n2n,

Tn = n if T ≥ n,

Suppose s < t and let sn, tn denote the smallest element of Dn greater
than or equal to s, t, respectively. If A is an Fs-measurable event, then
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it is also Fsn measurable, and since Zr∧Tn , r ∈ Dn is a discrete-time
martingale,

E [1A Zsn∧Tn ] = E [1A Ztn∧Tn ] .

Since Z has continuous paths, we know that as n → ∞,

Zsn∧Tn → Zs∧T , Ztn∧Tn → Zt∧T .

In general, if Xn is a sequence of random variables converging to X,
we cannot conclude that E[Xn] → E[X]. However, this will hold if the
sequence {Xn} is uniformly integrable, that is, if for every ϵ > 0, there
exists K < ∞ such that for all n,

E [|Xn| 1{|Xn| ≥ K}] < ϵ.

(We leave this as an exercise or the reader can check a book on
measure-theoretic probability.)

Lemma 4.1.2. For every positive integer m, the collection of random
variables {ZTn} where n ranges over all positive integers, T ranges
over all stopping times with T ≤ m, and Tn is defined as above, is
uniformly integrable.

Proof. Let T be a stopping time with T ≤ m and n a positive integer.
Note that Nt = |Zt|, t ∈ Dn is a submartingale. Let K > 0 and let
τn = τn,K be the first t ∈ Dn such that NtK. If t ∈ Dn, let At = At,n

be the event {τn = t}. Since Nt is a discrete-time submartingale, if
t ≤ m,

E [Nm 1At ] ≥ E [NTn 1At ] .

By summing over t ∈ Dn, t ≤ m, we see that

E [NTn Jn,K ] ≤ E [Nm Jn,K ] .

where Jn,K = 1{τn ≤ m}. As n → ∞. the random variables Jn,K
converge monotonically to

J∞,K = 1

{
max
0≤s≤t

Ns > K

}
.

Therefore, for each K < ∞,

E [NTn 1{NTn > K}] ≤ E [Nm∧Tn J∞,K ] ≤ E [|Zm| J∞,K ] .
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Note that the right-hand side is independent of T and n. As K → ∞,
J∞,K → 0, and since Zm is integrable,

lim
K→∞

E [|Zm| J∞,K ] = 0.

Using the lemma, we now conclude

E [1A Zs∧T ] = E [1A Zt∧T ] .

A sufficient condition for uniform integrability of {Xn} is the existence
of C < ∞ such that E[X2

n] ≤ C for all n. Indeed,

E [|Xn| 1{|Xn| ≥ K}] ≤ K−1 E
[
|Xn|2 1{|Xn| ≥ K}

]
≤ C/K.

In particular, if E[Z2
t∧T ] ≤ C for all t and P{T < ∞} = 1, then

Zn∧T → ZT with probability one and uniform integrability implies
that

E[ZT ] = lim
n→∞

E[Zn∧T ] = lim
n→∞

E[Z0] = E[Z0].

Two other theorems that extend almost immediately to the continuous
martingale setting are the following. The proofs are essentially the
same as for their discrete counterparts.

Theorem 4.1.3. (Martingale Convergence Theorem) Suppose Zt is
a continuous martingale and there exists C < ∞ such that E [|Zt|] ≤
C for all t. Then there exists a random variable Z∞ such that with
probability one

lim
t→∞

Zt = Z∞.

Theorem 4.1.4. (Maximal inequality). Suppose Zt is a continuous
square integrable martingale, and let

Nt = max
0≤s≤t

|Zt|.

Then for every a > 0,

P{Nt ≥ a} ≤ E[Z2
t ]

a2
.
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4.2 An example: the Bessel process

The Bessel process with parameter a is the solution to the SDE

dXt =
a

Xt

dt+ dBt, X0 = x0 > 0.

If we choose a = (d−1)/2, this is called the Bessel-d process and is related to
d-dimensional Brownian motion (see Exercise 4.4). Let Tϵ = inf{t : Xt ≤ ϵ}.
There is no problem finding a solution to this equation for t < Tϵ, and hence
it is well defined for t < T where

T = T0 = inf{t : Xt = 0}.

At time T the equation is ill-defined so we will not consider the process for
t > T . If a > 0, then when Xt gets close to 0, there is a strong drift away
from the origin. It is not obvious whether or not this is strong enough to keep
the diffusion from reaching the origin.

Suppose that 0 < r < R <∞ and let

τ = τ(r, R) = inf{t : Xt = r or Xt = R}.

For r ≤ x ≤ R, let
ϕ(x) = P{Xτ = R | X0 = x}.

We will use Itô’s formula to compute ϕ. Note that ϕ(r) = 0, ϕ(R) = 1. Let J
denote the indicator function of the event {Xτ = R} and let

Mt = E[J | Ft].

The tower property for conditional expectation implies that Mt is a martin-
gale; indeed, if s < t,

E[Mt | Fs] = E[E(J | Ft) | Fs] = E[J | Fs] =Ms.

The Markovian nature of the diffusion X implies that

E[J | Ft] = ϕ(Xt∧τ ).

In other words, if τ ≤ t, then we already know whether or not {Xτ = R}.
However, if τ > t, the only useful information in Ft for predicting if Xτ = R
is Xt, and the conditional probability is the probability that this occurs given
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that the process started at Xt. The upshot of this reasoning is that ϕ(Xt∧τ )
must be a martingale. Itô’s formula (see Theorem 3.4.3) gives for t < T ,

dϕ(Xt) = ϕ′(Xt) dXt +
1

2
ϕ′′(Xt) d⟨X⟩t

=

[
a ϕ′(Xt)

Xt

+
ϕ′′(Xt)

2

]
dt+ ϕ′(Xt) dBt.

If this is to be a martingale, the dt term must vanish at all times. The way
to guarantee this is to choose ϕ to satisfy the ordinary differential equation
(ODE)

xϕ′′(x) + 2a ϕ′(x) = 0.

Solving such equations is standard (and this one is particularly easy for one
can solve the first-order equation for g(x) = ϕ′(x)), and the solutions are of
the form

ϕ(x) = c1 + c2 x
1−2a, a ̸= 1

2
,

ϕ(x) = c1 + c2 log x, a =
1

2
,

where c1, c2 are arbitrary constants. The boundary conditions ϕ(r) =
0, ϕ(R) = 1 determine the constants giving

ϕ(x) =
x1−2a − r1−2a

R1−2a − r1−2a
, a ̸= 1

2
, (4.1)

ϕ(x) =
log x− log r

logR− log r
, a =

1

2
. (4.2)

We now answer the question that we posed.

Proposition 4.2.1. If a ≥ 1/2, then P{T = ∞} = 1, that is, with probability
one the Bessel process never reaches zero. If a < 1/2, then P{T <∞} = 1.

Proof. Assume X0 = x < R and let τ(r, R) be defined as above. If T < ∞,
then there must be R < ∞ such that Xτ(r,R) = r for all r > 0. Using the
form of the probability in (4.1) and (4.2), we can see that

lim
r→0

P{Xτ(r,R) = r} =

{
0 if a ≥ 1/2
1− (x/R)1−2a if a < 1/2
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The alert reader will note that we cheated a little bit in our derivation
of ϕ because we assumed that ϕ was C2. After assuming this, we
obtained a differential equation and found what ϕ should be. To finish
a proof, we can start with ϕ as defined in (4.1) or (4.2), and use
Itô’s formula to show that Mt = ϕ(Xt∧τ ) is a continuous martingale.
Since it is also bounded, we can use the optional sampling theorem to
conclude that

ϕ(x0) = E[M0] = E[Mτ ] = P{Xτ = R}.

This kind of argument is often done in stochastic calculus where one
first assumes sufficient smoothness of a a function in order to use
Itô’s formula and obtain a differential equation for the function. Once
the differential equation is solved, one can go back and redo the Itô’s
formula calculation rigorously.

4.3 Feynman-Kac formula

Suppose that the price of a stock follows a geometric Brownian motion

dXt = mXt dt+ σXt dBt. (4.3)

Suppose that at some future time T we have an option to buy a share of the
stock at price S. We will exercise the option only if XT ≥ S and the value
of the option at time T is F (XT ) where

F (x) = (x− S)+ = max {x− S, 0} .

Suppose that there is an inflation rate of r so that x dollars at time t in future
is worth only e−rtx in current dollars. Let ϕ(t, x) be the expected value of
this option at time t, measured in dollars at time t, given that the current
price of the stock is x,

ϕ(t, x) = E
[
e−r(T−t)F (XT ) | Xt = x

]
. (4.4)

The Feynman-Kac formula gives a PDE for this quantity.
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Since it is not any harder, we generalize and assume that Xt satisfies the
SDE

dXt = m(t,Xt) dt+ σ(t,Xt) dBt, X0 = x0,

and that there is a payoff F (XT ) at some future time T . Suppose also that
there is an inflation rate r(t, x) so that if Rt denotes the value at time t of
R0 dollars at time 0,

dRt = r(t,Xt)Rt dt,

Rt = R0 exp

{∫ t

0

r(s,Xs) ds

}
.

If ϕ(t, x) denote the expected value of the payoff in time t dollars given
Xt = x, then

ϕ(t, x) = E
[
exp

{
−
∫ T

t

r(s,Xs) ds

}
F (XT ) | Xt = x

]
. (4.5)

We will use Itô’s formula to derive a PDE for ϕ under the assumption that
ϕ is C1 in t and C2 in x.

Let
Mt = E

[
R−1

T F (XT ) | Ft

]
.

The tower property for conditional expectation implies that if s < t,

E[Mt | Fs] = E[E(MT | Ft) | Fs] = E[MT | Fs] =Ms.

In other words, Mt is a martingale. Since Rt is Ft-measurable, we see that

Mt = R−1
t E

[
exp

{
−
∫ T

t

r(s,Xs) ds

}
F (XT ) | Ft

]
.

However, since Xt is a Markov process, the only relevant information in Ft

is given by the value Xt. Hence, by the definition of ϕ,

Mt = R−1
t ϕ(t,Xt). (4.6)

Our conclusion is thatMt as given in (4.6) must be a martingale. Itô’s formula
gives

dϕ(t,Xt) = ∂tϕ(t,Xt) dt+ ∂xϕ(t,Xt) dXt +
1

2
∂xx ϕ(t,Xt) d⟨X⟩t.
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In particular,
dϕ(t,Xt) = Ht dt+ At dBt,

with

Ht = ∂tϕ(t,Xt) +m(t,Xt) ∂xϕ(t,Xt) +
1

2
σ(t,Xt)

2 ∂xxϕ(t,Xt),

At = σ(t,Xt) ∂xϕ(t,Xt).

Since ⟨R⟩t = 0, the stochastic product rule implies that

d[R−1
t ϕ(t,Xt)] = R−1

t dϕ(t,Xt) + ϕ(t,Xt) d[R
−1
t ],

and hence the dt term of d[R−1
t ϕ(t,Xt)] is R

−1
t times

−r(t,Xt)ϕ(t,Xt) + ∂tϕ(t,Xt) +m(t,Xt) ∂xϕ(t,Xt)

+
1

2
σ(t,Xt)

2 ∂xxϕ(t,Xt).

Since Mt is a martingale, the dt term must be identically zero. This happens
only if for all t, x,

−r(t, x)ϕ(t, x) + ∂tϕ(t, x) +m(t, x) ∂xϕ(t, x)

+
1

2
σ(t, x)2 ∂xxϕ(t, x) = 0.

We have derived the following.1

Theorem 4.3.1 (Feynman-Kac formula). Suppose Xt satisfies

dXt = m(t,Xt) dt+ σ(t,Xt) dBt, X0 = x0,

and r(t, x) ≥ 0 is a discounting rate. Suppose a payoff F at time T is given
with E[|F (XT )|] <∞. If ϕ(t, x), 0 ≤ t ≤ T is defined as in (4.5), and ϕ(t, x)
is C1 in t and C2 in x, then ϕ(t, x) satisfies the PDE

∂tϕ(t, x) = −m(t, x) ∂xϕ(t, x)

−1

2
σ(t, x)2 ∂xxϕ(t, x) + r(t, x)ϕ(t, x),

for 0 ≤ t < T, with terminal condition ϕ(T, x) = F (x).
1One of our assumptions in Theorem 4.3.1 is that ϕ is sufficiently differentiable. One can

give conditions on the coefficients and payoff function F under which this holds, and they
include the examples that we give, but the general theory is beyond what we will discuss
in this book. See I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus,
2nd. ed, Springer (1991), Section 5.7.B for a discussion of this.
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Example 4.3.1. Suppose Xt satisfies (4.3). Thenm(t, x) = mx, σ(t, x) = σx
and ϕ is as given in (4.4). The Feynman-Kac formula gives

∂tϕ = r ϕ−mx∂xϕ− σ2 x2

2
∂xxϕ. (4.7)

This is a version of the Black-Scholes PDE. We will return to this later.

Let us give a somewhat different derivation of the Feynman-Kac formula
using the generator. Again, suppose that Xt satisfies

dXt = m(t,Xt) dt+ σ(t,Xt) dBt,

and that F is a function that does not grow too quickly. Let

f(t, x) = E [F (XT ) | Xt = x] .

Let r(t) ≥ 0 be a discount rate which for ease we will assume is a deterministic
function of time, and

Rt = R0 exp

{∫ t

0

r(s) ds

}
.

Let

ϕ(t, x) = E [(Rt/RT )F (XT ) | Xt = x] = exp

{
−
∫ T

t

r(s) ds

}
f(t, x)

Recall that
∂tf(t, x) = −Lt

xf(t, x),

where Lt is the generator

Lth(x) = m(t, x)h′(x) +
σ(t, x)

2
h′′(x).

Therefore,

∂tϕ(t, x) = r(t) exp

{
−
∫ T

t

r(s) ds

}
f(t, x)

− exp

{
−
∫ T

t

r(s) ds

}
Lt
xf(t, x)

= r(t)ϕ(t, x)− Lt
xϕ(t, x)

= r(t)ϕ(t, x)−m(t, x) ∂xϕ(t, x)−
σ2(t, x)

2
∂xxϕ(t.x),

which is the Feynman-Kac PDE.
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4.4 Binomial approximations

In the next few sections we will be considering the SDE

dXt = m(t,Xt) dt+ σ(t,Xt) dBt.

We will give some heuristic derivations based on discrete approximations.
Recall that the Euler method to sample from this equation uses the rule

X(t+∆t) = X(t) +m(t,X(t))∆t+ σ(t,X(t))
√
∆t Z

where Z ∼ N(0, 1). Here we wish to consider some binomial sampling
schemes, that is, schemes such that given X(t), X(t +∆t) takes one of two
values.

If Xt is Brownian motion with drift zero and variance σ2,

dXt = σ dBt,

then the binomial scheme is approximation by random walk,

P{X(t+∆t)−X(t) = σ
√
∆t | X(t)}

= P{X(t+∆t)−X(t) = −σ
√
∆t | X(t)} =

1

2
.

In this case the values of X(k∆t) lie in the lattice of points{
. . . ,−2σ

√
∆t,−σ

√
∆t, 0, σ

√
∆t, 2σ

√
∆t, . . .

}
.

If m ≡ 0 and σ(t, x) is not constant, we can change this rule to

P{X(t+∆t)−X(t) = ±σ(t,X(t))
√
∆t | X(t)} =

1

2
,

but then the values of X(t) do not stay in a lattice.
Suppose σ is constant, but m varies,

dXt = m(t,Xt) dt+ σ dBt.

There are two reasonable ways to incorporate drift in this binomial model.
One is to use a version of the Euler’s method and set

P{X(t+∆t)−X(t) = m(t,Xt)∆t± σ
√
∆t | X(t)} =

1

2
,
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for which it is immediate that

E [X(t+∆t)−X(t) | Ft]

= E [X(t+∆t)−X(t) | X(t)] = m(t,Xt)∆t. (4.8)

This method has the disadvantage that we do not stay on a lattice of points.
Another approach is to always make the jumps ±σ

√
∆t but to change the

probabilities based on the drift. In particular, we let

P{X(t+∆t)−X(t) = σ
√
∆t | X(t)} =

1

2

[
1 +

m(t,Xt)

σ

√
∆t

]
,

P{X(t+∆t)−X(t) = −σ
√
∆t | X(t)} =

1

2

[
1− m(t,Xt)

σ

√
∆t

]
.

The probabilities are chosen so that (4.8) holds for this scheme as well. These
two binomial methods illustrate the two main ways to incorporate a drift term
(in other words, to turn a fair game into an unfair game):

� Choose an increment with mean zero and then add a small amount to
it.

� Change the probabilities of the increment so that it does not have mean
zero.

Example 4.4.1. We will use the latter rule to sample from Brownian motion
with constant drift m ̸= 0 and σ2 = 1. Our procedure for simulating uses

P{X(t+∆t)−X(t) = ±
√
∆t | X(t)} =

1

2

[
1±m

√
∆t
]
. (4.9)

Suppose that ∆t = 1/N for some large integer N , and let us consider the
distribution of X(1). There are 2N possible paths that the discrete process
can take which can be represented by

ω = (a1, a2, . . . , aN)

where aj = +1 or − 1 depending on whether that step goes up or down. Let
J = J(ω) denote the number of +1’s, and define r by J = (N/2) + r

√
N .

Note that the position at time 1 is

X(1) =
√
∆t [a1 + · · ·+ aN ]

= J
√
∆t− (N − J)

√
∆t

= 2r
√
N

√
∆t = 2r.
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For each ω, the probability of its occurring is

q(ω) =

(
1

2

)N [
1 +m

√
∆t
]J [

1−m
√
∆t
]N−J

.

If m were 0, then the probability would be be just (1/2)N . Therefore, the
ratio of the probabilities for m ̸= 0 to m = 0 is[

1 +
m√
N

]J [
1− m√

N

]N−J

=

[
1− m2

N

]N/2 [
1 +

m√
N

]r√N [
1− m√

N

]−r
√
N

.

Using the relation
(
1 + a

N

)N ∼ ea, we see that the limit of the right-hand
side as N → ∞ is

e−m2/2 e2rm = emX(1) e−m2/2.

Given this, we see that in order to sample from a Brownian motion with
drift, we could first sample from a Brownian motion without drift and then
weight the samples by the factor emX(1) e−m2/2. We will show how to do this
directly in Section 5.2.

As one more application of binomial approximations, we will give a heuris-
tic argument for the following theorem.

Theorem 4.4.1. Suppose that

dXt = m(Xt) dt+ σ dBt,

where m is continuously differentiable, and let p(t, x) denote the density of
Xt at time t. Then

∂tp(t, x) = L∗
xp(t, x),

where

L∗f(x) = −[m(x) f(x)]′ +
σ2

2
f ′′(x)

= −m′(x) f(x)−m(x) f ′(x) +
σ2

2
f ′′(x).

—
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Recall that

Lf(x) = m(x) f ′(x) +
σ2

2
f ′′(x).

If m is constant, then as we saw before, one obtains L∗ from L by just
changing the sign of the drift. For varying m we get another term. We will
derive the expression for L∗ by using the binomial approximation

P{X(t+∆t)−X(t) = ±σ
√
∆t | X(t)} =

1

2

[
1± m(Xt)

σ

√
∆t

]
.

Let ϵ =
√
∆t, ϵ2 = ∆t. To be at position x = kϵ at time t + ϵ2, one must be

at position x± σ ϵ at time t. This gives the relation

p(t+ ϵ2, x) = p(t, x− σϵ)
1

2

[
1 +

m(x− σϵ) ϵ

σ

]

+p(t, x+ σϵ)
1

2

[
1− m(x+ σϵ)

σ
ϵ

]
. (4.10)

We know that

p(t+ ϵ2, x) = p(t, x) + ∂tp(t, x) ϵ
2 + o(ϵ2). (4.11)

The definition of the derivative (see Section 2.10.1), implies that

p(t, x+ σϵ) + p(t, x− σϵ)

2
= p(t, x) +

σ2 ϵ2

2
∂xxp(t, x) + o(ϵ2).

p(t, x± σϵ) = p(t, x)± ∂xp(t, x)σϵ+ o(ϵ),

m(x± σϵ) = m(x)±m′(x)σϵ+ o(ϵ),

Plugging in, we see that the right-hand side of (4.10) equals

p(t, x) + ϵ2
[
σ2

2
∂xxp(t, x)−m′(x) p(t, x)−m(x) ∂xp(t, x)

]
+ o(ϵ2).

Comparing this with (4.11) gives us the result.
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One can also derive this result by considering L∗ as the adjoint of L.
In other words, L∗ is defined by∫ ∞

−∞
L∗f(x) g(x) dx =

∫ ∞

−∞
f(x)Lg(x) dx.

If

Lg(x) = m(x) g′(x) +
σ2

2
g′′(x),

then integration by parts gives

L∗f(x) = −[m(x) f(x)]′ +
σ2

2
f ′′(x).

4.5 Continuous martingales

Earlier we made the comment that Brownian motion is the only continuous
martingale. We will make this explicit in this section.

Proposition 4.5.1. Suppose that Mt is a continuous martingale with respect
to a filtration {Ft} with M0 = 0, and suppose that the quadratic variation of
Mt is the same as that of standard Brownian motion,

⟨M⟩t = lim
n→∞

∑
j<2nt

[
M

(
j + 1

2n

)
−M

(
j

2n

)]2
= t.

Then every λ ∈ R,
E [exp{iλMt}] = e−λ2t/2.

Sketch of proof. Fix λ and let f(x) = eiλx. Note that the derivatives of f are
uniformly bounded in x. Following the proof of Itô’s formula we can show
that

f(Mt)− f(M0) = Nt +
1

2

∫ t

0

f ′′(Ms) ds = Nt −
λ2

2

∫ t

0

f(Ms) ds,

where Nt is a martingale. In particular, if r < t,

E[f(Mt)− f(Mr)] =
1

2
E
[∫ t

r

f ′′(Ms) ds

]
= −λ

2

2

∫ t

r

E[f(Ms)] ds.
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If we let G(t) = E[f(Mt)], we get the equation

G′(t) = −λ
2

2
G(t), G(0) = 1,

which has solution G(t) = e−λ2t/2.

Theorem 4.5.2. Suppose that Mt is a continuous martingale with respect
to a filtration {Ft} with M0 = 0, and suppose that the quadratic variation of
Mt is the same as that of standard Brownian motion

⟨M⟩t = lim
n→∞

∑
j<2nt

[
M

(
j + 1

2n

)
−M

(
j

2n

)]2
= t.

Then Mt is a standard Brownian motion.

Proof. We need to show that Mt satisfies the conditions of a standard Brow-
nian motion. We are givenM0 = 0 and that t 7→Mt is continuous, so we only
need to establish independent, normal increments. One way to express both
of these conditions is to say that for every s < t, the conditional distribution
of Mt−Ms given Fs is N(0, t− s). But the proposition above shows that for
every λ,

E
(
eiλ(Mt−Ms) | Fs

)
= e−λ2(t−s)/2.

Since the characteristic function determines the distribution, we are finished.

This theorem can be extended to say that any continuous martingale
is a time change of a Brownian motion. To be precise, suppose that
Mt is a continuous martingale. The quadratic variation can be defined
as the process ⟨M⟩t such that M2

t − ⟨M⟩t is a local martingale. Let

τs = inf{t : ⟨M⟩t = s}.

Then Ys = Mτs is a continuous martingale whose quadratic variation
is the same as standard Brownian motion. Hence Ys is a standard
Brownian motion.
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4.6 Exercises

Exercise 4.1. A process Xt satisfies the Ornstein-Uhlenbeck SDE if

dXt = mXt dt+ dBt,

where m ∈ R and Bt is a standard Brownian motion. Suppose that X0 = 1,
R > 1 and T = TR is the first time that Xt = R or Xt = 0.

1. Find a function F with F (0) = 0 and F (x) > 0 for x > 0 such that
F (Xt∧T ) is a martingale. (You may leave your answer in terms of a
definite integral.)

2. Find the probability that XT = R. You can write the answer in terms
of the function F .

3. For what values of m is it true that

lim
R→∞

P{XT = R} = 0 ?

Exercise 4.2. Suppose Bt is a standard Brownian motion and Xt satisfies
the SDE

dXt = a cot(Xt) dt+ dBt, X0 = x0 ∈ (0, π/2),

where a ∈ R. For ϵ > 0, let

Tϵ = min{t : sin(Xt) = sin ϵ},

T = T0+ = min {t : Xt ∈ {0, π}} = min{t : sin(Xt) = 0},
We will only consider the process Xt for t ≤ T . Let

τ = min{t : Xt = π/2}.

1. Find a function F (x) that is positive for 0 < x < π/2 with F (π/2) = 0
and such thatMt = F (Xt∧T ) is a local martingale for t < T . (It suffices
to write F in the form

F (x) =

∫ π/2

x

g(y) dy,
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where g is an explicit function.)

2. For which values of a is

F (0+) = lim
ϵ↓0

F (ϵ) <∞ ?

3. Assume that 0 < ϵ < x0 < π/2 and let

q(x0, ϵ) = P{Tϵ < τ}.

Write q(x0, ϵ) explicitly in terms of F .

4. For whch values of a is it the case that

lim
ϵ↓0

q(x0, ϵ) = 0 ?

Exercise 4.3. Suppose Bt is a standard Brownian motion and let Xt =
eBt + 2. Let

ϕ(t, x) = E
[
e−2(T−t) (X3

T − 1) e−XT | Xt = x
]
, 0 < t < T.

Use the Feynman-Kac theorem to find a second-order PDE that ϕ satisfies.

Exercise 4.4. Suppose B1
1 , . . . , B

d
t are independent standard Brownian mo-

tions and let

Xt =
√

(B1
t )

2 + · · ·+ (Bd
t )

2.

1. Use Itô’s formula to show that

dXt =
a

Xt

dt+ dMt,

where a = (d− 1)/2 and Mt is a continuous martingale satisfying

dMt =
d∑

j=1

Aj
t dB

j
t ,

for suitable processes Aj
t .

2. Show that ⟨M⟩t = t.

3. Explain whyMt is a standard Brownian motion. (Hint: use Proposition
4.5.1.)



Chapter 5

Change of measure and
Girsanov theorem

5.1 Absolutely continuous measures

In order to state the Girsanov theorem in the next section, we will need
to discuss absolute continuity and singularity of measures. For measures on
discrete (countable) spaces, this is an elementary idea, but it is more subtle
for uncountable spaces. We assume that we have a probability space (Ω,F)
where Ω is the space of outcomes (sometimes called the sample space) and
F is the collection of events. An event is a subset of Ω, and we assume that
the set of events forms a σ-algebra (see Section 1.1). A (positive) measure is
a function µ : F → [0,∞] such that µ(∅) = 0 and if A1, A2, . . . are disjoint,

µ

(
∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

The measure µ is a probability (measure) if µ(Ω) = 1.

Definition Suppose µ, ν are measures on (Ω,F).

� ν is absolutely continuous with respect to µ, written ν ≪ µ, if for every
E ∈ F , if µ(E) = 0, then ν(E) = 0.

� µ and ν are mutually absolutely continuous or equivalent measures if
ν ≪ µ and µ≪ ν.

145



146CHAPTER 5. CHANGEOFMEASURE ANDGIRSANOV THEOREM

� µ and ν are singular measures, written µ ⊥ ν, if there exists an event
E ∈ F with µ(E) = 0 and ν(Ω \ E) = 0.

Example 5.1.1. Suppose Ω is a countable set and F is the collection of all
subsets of Ω. If p : Ω → [0,∞) is a function, then there is a corresponding
measure µ defined by

µ(E) =
∑
ω∈E

p(ω).

Suppose ν is another measure given by the function q. Let

Aµ = {ω : p(ω) > 0}, Aν = {ω : q(ω) > 0}.

Then ν ≪ µ if and only if Aν ⊂ Aµ, and

q(ω) =
dν

dµ
(ω) p(ω), ω ∈ Ω,

where dν/dµ is defined on Aµ by

dν

dµ
(ω) =

q(ω)

p(ω)
.

Note that for any event E,

ν(E) =
∑
ω∈E

dν

dµ
(ω) p(ω).

In this case, ν and µ are equivalent if Aν = Aµ, and ν ⊥ µ if Aν ∩ Aµ = ∅.

Example 5.1.2. Suppose µ denotes Lebesgue measure on R,

µ(A) =

∫
A

dµ =

∫
A

dx = length(A),

and X is a continuous random variable with density f . Let PX denote the
distribution of X, that is, the probability measure on R given by

PX(A) = P{X ∈ A} =

∫
A

f(x) dx =

∫
A

f dµ.

Then PX ≪ µ and we can write

PX(A) =

∫
A

dPX

dµ
dµ where

dPX

dµ
= f.
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If f(x) > 0 for all x, then PX(A) > 0 whenever µ(A) > 0 and hence µ≪ PX .
If Y is another continuous random variable with density g, let

AX = {x : f(x) > 0}, AY = {y : g(y) > 0}.

If AY ⊂ AX , then PY ≪ PX and we can write

P{Y ∈ A} =

∫
A

g dµ =

∫
A

g

f
f dµ =

∫
A

dPY

dPX

dPX ,

where
dPY

dPX

=
g

f
.

If AX ∩ AY = ∅, then PX ⊥ PY .

Example 5.1.3. Suppose X is a discrete random variable taking values in
the countable set A and Y is a continuous random variable with density g.
If PX , PY denote the distributions, then PX ⊥ PY . Indeed,

PX(R \ A) = 0, PY (A) = 0.

These examples demonstrate the following theorem whose proof can be
found in any book on measure theory. A measure µ is σ-finite if we can write

Ω =
∞⋃
n=1

An,

where µ(An) <∞ for each n.

Theorem 5.1.1 (Radon-Nikodym Theorem). Suppose µ, ν are σ-finite mea-
sures on (Ω,F) with ν ≪ µ. Then there exists a function f such that for
every E,

ν(E) =

∫
E

f dµ. (5.1)

The function f is called the Radon-Nikodym derivative of ν with respect
to µ and is denoted

f =
dν

dµ
.

Roughly speaking, the ν measure of a point x is (dν/dµ)(x) times the µ
measure of x. This interpretation is precise in the case of discrete measures,
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such as in Example 5.1.1, but does not make precise sense when the point x
gets zero measure in both measures. Example 5.1.2 shows that this subtlety is
something we are already familiar with. If µ denotes length, then the density
f = dPX/dµ of a continuous random variable can be interpreted as saying
that the probability of obtaining a value in [x, x + dx] is f(x) times dx, the
length of [x, x+ dx].

If (Ω,F , P ) is a probability space, and Q is a probability measure with
Q≪ P , then the Radon-Nikodym derivative

X =
dQ

dP

is a nonnegative random variable with E[X] = 1. If E is an event, then (5.1)
can be written as

Q(E) = EP [X 1E] . (5.2)

Here EP denotes expectation using the probability measure P . (Up to now, we
have been considering a single probability measure P on a space and using E
to denote expectation with respect to it. Since we are now going to consider
different measures on the same space, we adopt the notation EP to denote
expectations using the measure P .) It is not hard to extend the relation (5.2)
to give

EQ[Y ] = EP

[
Y
dQ

dP

]
.

Example 5.1.4. Suppose (Ω,F ,P) is a probability space, and G ⊂ F is a
sub σ-algebra. As before, we think of G as “partial information”. Let X be
a nonnegative, integrable F -measurable random variable. Then

Q(A) = E [1AX] , A ∈ G,

defines a measure on (Ω,G) that satisfies Q ≪ P. Therefore, there exists a
G-measurable random variable Y such that for all A ∈ G,

Q(A) = E [1A Y ] .

This random variable Y is the conditional expectation E(X | G) as defined
in Section 1.1.

Example 5.1.5. Let the set of outcomes Ω be the set of continuous functions
f : [0, 1] → R. If Bt denotes a Brownian motion with drift zero and variance
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σ2, there is a measure Pσ on Ω called Wiener measure (with variance σ2).
We think of Pσ as the distribution of the “function-valued” random variable
t 7→ Bt. If V is a subset of Ω, then Pσ(V ) is the probability that the function
t 7→ Bt lies in V . We claim that if σ ̸= σ′, then Pσ ⊥ Pσ′ . In order to show
this, we need to find an event E such that Pσ(E) = 1, Pσ′(E) = 0. Let Er

denote the set of functions f such that

lim
n→∞

2n∑
j=1

[
f

(
j

2n

)
− f

(
j − 1

2n

)]2
= r2.

Using what we know about the quadratic variation, we see that

Pσ(Eσ) = 1, Pσ′(Eσ′) = 1.

Let Ω denote the set of continuous functions f : [0, 1] → C which is a
Banach space (complete, normed, metric space) under the norm

∥f∥ = max{|f(s)| : 0 ≤ s ≤ 1}.

Let F denote the corresponding Borel σ-algebra, that is, the smallest
σ-algebra under which all the open sets under ∥ · ∥ are measurable.
The measures Pσ are defined on (Ω,F). It is easy to check that the
functions Θs(f) = f(s) are measurable functions on this space, and
hence so are the functions

Ψn(f) =
2n∑
j=1

[
f

(
j

2n

)
− f

(
j − 1

2n

)]2
,

and the sets

Er =
{
f : lim

n→∞
Ψn(f) = r2

}
.

We proved that Pσ(Eσ) = 1 in Theorem 2.8.2.

One rarely needs to deal with measures that are not σ-finite, but
the Radon-Nikodym derivative does not hold for such measures. For
example, if µ is counting measure and ν is Lebesgue measure, both on
R, then ν ≪ µ, but there is no f such that (5.1) holds.
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5.2 Giving drift to a Brownian motion

As we have already noted, there are two ways to take a fair game and make
it unfair or vice versa:

� Play the game and then add a deterministic amount in one direction.

� Change the probabilities of the outcome.

We will consider these methods in the case of a standard Brownian motion
Bt. For the first method, we can define a Brownian motion with drift m, by
setting

Wt = mt+Bt.

We will now consider the second way by changing the probabilities. We have
already motivated this with a binomial approximation in (4.9), but in this
section we will transform the game directly using the Brownian motion.

Suppose that Bt is defined on the probability space (Ω,F ,P) with a fil-
tration {Ft}. To change the probability is to consider a different measure Q
instead of P. Let

Mt = emBt−m2t
2 . (5.3)

We have seen thatMt is a martingale. In fact (see (3.20)), Itô’s formula shows
that Mt satisfies

dMt = mMt dBt, M0 = 1.

For each event V that is Ft measurable, we define

Qt(V ) = E [1V Mt] .

In other words, on the probability space (Ω,Ft,P),

dQt

dP
=Mt.

If s < t and V is Fs-measurable, then it is also Ft-measurable. In this case,
Qs(V ) = Qt(V ) as can be seen in the calculation

Qt(V ) = E [1V Mt] = E [E(1V Mt | Fs)]

= E [1V E(Mt | Fs)] = E [1V Ms] = Qs(V ). (5.4)

Hence we can write just Q for the measure.
We claim that
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� The process t 7→ Bt, under the measure Q, is a Brownian motion with
drift m and σ2 = 1.

We prove this by showing it satisfies the conditions to be a Brownian motion.
The continuity of paths is immediate as well as B0 = 0. To show the rest, it
suffices to show that if s, t ≥ 0, then Bt+s − Bs is independent of Fs with a
normal distribution with mean mt and variance t. We can establish this by
showing it has the (conditional) moment generating function

EQ (exp{λ(Bt+s −Bs)} | Fs) = eλmt eλ
2t/2. (5.5)

Here we are writing EQ to denote that the conditional expectation is taken
using the measure Q. To establish (5.5), we need to show that if V is Fs-
measurable, then

EQ [1V exp{λ(Bt+s −Bs)}] = EQ

[
1V e

λmt eλ
2t/2
]

= eλmt eλ
2t/2Q(V ),

or equivalently, by the definition of EQ,

E [1V exp{λ(Bt+s −Bs)}Mt+s] = eλmt eλ
2t/2 E[1V Ms].

Note that if Y = Bt+s −Bs, then Y is independent of Fs and

E
(
eλY Mt+s | Fs

)
= Ms e

−m2t/2E
(
eλY emY | Fs

)
= Ms e

−m2t/2E
[
e(λ+m)Y

]
= Ms e

−m2t/2 e(λ+m)2t/2

= Ms e
λ2t/2 eλmt.

Therefore, if V is Fs-measurable,

E [1V exp{λ(Bt+s −Bs)}Mt+s]

= E [E(1V exp{λ(Bt+s −Bs)}Mt+s | Fs)]

= E [1V E(exp{λ(Bt+s −Bs)}Mt+s | Fs)]

= eλ
2t/2 eλmt E[1V Ms].

Example 5.2.1. Suppose Xt is a geometric Brownian motion satisfying

dXt = Xt [mdt+ σ dBt] ,
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where Bt is a standard Brownian motion defined on the probability space
(Ω,F ,P). If r ∈ R, then we can find a new probability measure Q such that

dBt = r dt+ dWt,

where Wt is a Brownian motion with respect to Q. Then,

dXt = Xt [(m+ σr) dt+ σ dWt] .

Hence with respect to Q, Xt is a geometric Brownian motion with the same
volatility but a new drift. From this we can see that the measures for geo-
metric Brownian motions with the same σ are equivalent.

Example 5.2.2. We compute a quantity for Brownian motion with drift
by using a standard Brownian motion. Suppose Bt is a standard Brownian
motion, a > 0, m ∈ R, and Mt is the martingale in (5.3). Let Ta = inf{t :
Bt = a}. Then under the new measure Q, Bt is a Brownian motion with drift
m. Note that

Q{Ta <∞} = E [MTa 1{Ta <∞}] = E [MTa ] .

Here the expectation E is with respect to the original measure under which
B is a standard Brownian motion; the second equality follows from the fact
that P{Ta <∞} = 1. Therefore,

Q{Ta <∞} = E
[
exp

{
mBTa −

m2 Ta
2

}]
= eam E

[
exp

{
−m

2 Ta
2

}]
.

In Example 2.7.1 we computed the density of Ta for Brownian motion. Given
this we could compute the expectation on the right-hand side. However we
will choose a different method. We know that driftless Brownian motion will
hit the line y = a with probability one, and hence so will Brownian motion
with m > 0. Therefore, if m > 0, Q{Ta <∞} = 1 and

E
[
exp

{
−m

2 Ta
2

}]
= e−am.

If the Brownian motion has drift −m, then

Q{Ta <∞} = e−am E
[
exp

{
−m

2 Ta
2

}]
= e−2am.
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5.3 Girsanov theorem

The Girsanov theorem describes the probability measure one obtains by
“weighting” or “tilting” the measure of a Brownian motion by a martin-
gale. One example was given in the previous section where the martingale
was

Mt = emBt−(m2t/2), (5.6)

and in the new measure, Bt was a Brownian motion with drift. We will
generalize this idea here.

Suppose Mt is a nonnegative martingale satisfying the exponential SDE

dMt = AtMt dBt, M0 = 1, (5.7)

where Bt is a standard Brownian motion. The solution to this equation was
given in (3.20),

Mt = eYt where Yt =

∫ t

0

As dBs −
1

2

∫ t

0

A2
s ds. (5.8)

For many applications it suffices to consider the equation (5.7) and not worry
about the form of the solution (5.8). Solutions to (5.7) are local martingales,
but as we have seen, they might not be martingales. For now we will assume
that Mt is a martingale. In that case, we can define a probability measure P∗

by saying that if V is an Ft-measurable event, then

P∗(V ) = E [1V Mt] . (5.9)

In other words, if we consider P,P∗ as being defined on Ft-measurable events,

dP∗

dP
=Mt.

If s < t and V is Fs-measurable, then V is also Ft-measurable. Hence, in
order for the above definition to be consistent, we need that for such V ,

E [1V Ms] = E [1V Mt] .

Indeed, this holds by the computation (5.4) which only uses the fact that M
is a martingale and V is Fs-measurable. We write E∗ for expectations with
respect to P∗. If X is Ft-measurable, then

E∗[X] = E [XMt] .
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Theorem 5.3.1 (Girsanov Theorem). Suppose Mt is a nonnegative martin-
gale satisfying (5.7), and let P∗ be the probability measure defined in (5.9).
If

Wt = Bt −
∫ t

0

As ds,

then with respect to the measure P∗, Wt is a standard Brownian motion. In
other words,

dBt = At dt+ dWt,

where W is a P∗-Brownian motion.

In other words, if we weight the probability measure P by the martingale,
then in the new measure P∗, the Brownian motion acquires a drift At. The
example of the previous section is the martingale (5.6) with At ≡ m and a
constant drift m is obtained.

Let us give a heuristic derivation of Girsanov’s theorem using a binomial
approximation. Suppose ∆t is given. In the binomial approximation to P, we
are equally likely to go up and down,

P
{
B(t+∆t)−B(t) = ±

√
∆t | B(t)

}
=

1

2
.

The binomial approximation to (5.7) is

P
{
M(t+∆t) =M(t)

[
1± A(t)

√
∆t
]
| B(t)

}
=

1

2
.

Therefore, in the weighted measure P∗ the probability of a jump of ±
√
∆

should be proportional to 1±A(t)
√
∆t. Since the sum of the two probabilities

equals one, we see that

P∗
{
B(t+∆t)−B(t) = ±

√
∆t | B(t)

}
=

1

2

[
1± A(t)

√
∆t
]
.

As we saw in Section 4.4, this implies that

E∗[B(t+∆t)−B(t) | B(t)] = A(t)∆t,

that is, in the probability measure P∗, the process obtains a drift of A(t).
The condition that Mt be a martingale (and not just a local martingale)

is necessary for Girsanov’s theorem as we have stated it. Given only (5.7)



5.3. GIRSANOV THEOREM 155

or (5.8), it may be hard to determine if Mt is a martingale, so it is useful
to have a version that applies for local martingales. If we do not know Mt

is a martingale, we can still use Theorem 5.3.1 if we are careful to stop the
process before anything bad happens. To be more precise, suppose Mt = eYt

satisfies (5.8), and note that

⟨Y ⟩t =
∫ t

0

A2
s ds.

Let

Tn = inf{t :Mt + ⟨Y ⟩t = n},

and let

A
(n)
t =

{
At, t < Tn
0, t ≥ Tn

.

Then

dMt∧Tn = A
(n)
t Mt∧Tn dBt,

which is a square integrable martingale since

E
[
(Mt∧Tn − 1)2

]
=

∫ t

0

E[A(n)
s Ms∧Tn ]

2 ds

≤ n2 E
∫ t

0

[A(n)
s ]2ds ≤ n3.

There is the corresponding measure, which we might denote by P∗
n, which

gives a drift of At up to time Tn and then proceeds with drift 0. If n < m,
then P∗

n and P∗
m are the same measure restricted to t ≤ Tn. Hence we can

write P∗ for a measure on Bt, 0 ≤ t < T , where

T = lim
n→∞

Tn.

This shows how to tilt the measure up to time T , There are examples
such that P∗{T < ∞} > 0. However, if for some fixed t0, P∗{T > t0} = 1,
then Mt, 0 ≤ t ≤ t0 is a martingale. In other words, what prevents a solution
to (5.7) from being a martingale is that with respect to the new measure
P∗, either Mt or |At| goes to infinity in finite time. We summarize with a
restatement of the Girsanov theorem.
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Theorem 5.3.2 (Girsanov Theorem, local martingale form). Suppose Mt =
eYt satisfies (5.7)–(5.8), and let

Tn = inf{t :Mt + |At| = n}, T = T∞ = lim
n→∞

Tn.

Let P∗ be the probability measure as above. If

Wt = Bt −
∫ t

0

As ds, 0 ≤ t < T,

then with respect to the measure P∗, Wt, t < T is a standard Brownian mo-
tion. In other words,

dBt = At dt+ dWt, t < T,

where W is a P∗-Brownian motion. If any one of the following three condi-
tions hold, then Ms, 0 ≤ s ≤ t, is actually a martingale:

P∗{T > t} = 1,

E[Mt] = 1,

E
[
exp

{
⟨Y ⟩t
2

}]
<∞. (5.10)

It is not always easy to see whether or not the local martingale in (5.7)
will be a martingale. However, if any one of the three conditions at the end of
the theorem hold, then it is a martingale. The first condition uses P∗, the new
measure, while the expectation E in the other two conditions is with respect
to the original measure. The relation (5.10) is called the Novikov condition.

Even if Mt is not a martingale, since

Mt = lim
n→∞

Mt∧Tn ,

Fatou’s lemma implies that

E [Mt] = E
[
lim
n→∞

Mt∧Tn

]
≤ lim

n→∞
E[Mt∧Tn ] = E[M0] = 1.

An extension of this argument shows that nonnegative local martingales are
supermartingales, that is, if s < t,

E[Mt | Fs] ≤Ms.
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Example 5.3.1. Let Bt be a standard Brownian motion with B0 = 1. Let
τ = inf{t : Bt = 0}. Then Mt = Bt∧τ is a nonnegative martingale, satisfying

dMt = dBt = AtMt dBt, t < τ,

where

At =
1

Mt

=
1

Bt

.

If we tilt the measure using Mt, then

dBt = At dt+ dWt =
dt

Bt

+ dWt,

where Wt is a standard Brownian motion in the new measure P∗. Note that
this equation gives the Bessel process that we studied in Section 4.2 with
a = 1. Using properties of the Bessel process, we see that

P∗{τ <∞} = 0.

In other words, in the new measure the process avoids the origin.

Example 5.3.2. Let Bt be a standard Brownian motion with B0 = 1 and
r ∈ R. Let τ = inf{t : Bt = 0}. For t < τ , Itô’s formula gives

dBr
t = r Br−1

t dBt +
r(r − 1)

2
Br−2

t dt

= Br
t

[
r

Bt

dBt +
r(r − 1)

2B2
t

dt

]
.

Let

Mt = exp

{
−
∫ t

0

r(r − 1)

2B2
s

ds

}
Br

t .

The product rule shows that Mt satisfies the exponential SDE

dMt =
r

Bt

Mt dBt, t < τ.

Therefore,

dBt =
r

Bt

dt+ dWt, t < τ,
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where Wt is a Brownian motion in the new measure. This equation is the
Bessel equation. In particular, if r ≥ 1/2, then P∗{τ = ∞} = 1, and using
this we see that with P∗-probability one

Mt +

∫ t

0

A2
s ds

is finite. Therefore, for r ≥ 1/2, Mt is a martingale.

Example 5.3.3. Suppose that Xt satisfies

dXt = Xt [m(t,Xt) dt+ σ(t,Xt) dBt] ,

where Bt is a standard Brownian motion with respect to the probability
measure P. Let us assume that σ(t, x) > 0 for all t, x. Suppose we want to
find a probability measure P∗ that is mutually absolutely continuous with
respect to P and such that Xt is a martingale under P∗. Then we would want

dBt = −m(t,Xt)

σ(t,Xt)
dt+ dWt,

whereWt is a standard Brownian motion with respect to P∗. This would give

dXt = Xt σ(t,Xt) dWt.

The local martingale that we need to consider is Mt satisfying

dMt = −m(t,Xt)

σ(t,Xt)
Mt dBt, M0 = 1.

In other words,

Mt = exp

{∫ t

0

As dBs −
1

2

∫ t

0

A2
s ds

}
, At = −m(t,Xt)

σ(t,Xt)
. (5.11)

While Mt is a local martingale, we cannot say it is a martingale without
verifying one of the conditions in Theorem 5.3.2.

Example 5.3.4. Suppose Xt is a Bessel process satisfying

dXt =
1

Xt

dt+ dBt, X0 = 1,
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where Bt is a standard Browian motion. In Section 4.2 it was shown that
with probability one, the process Xt will never reach the origin and, in fact,
Xt → ∞. Let

Mt =
1

Xt

.

Using Itô’s formula, we see that

dMt = − 1

X2
t

dXt +
1

X3
t

d⟨X⟩t = − 1

Xt

Mt dBt.

Therefore,Mt is a local martingale withM0 = 1 and we can apply the second
form of the Girsanov theorem. We will ask if Mt is a martingale. Indeed, one
can see that it is not by noting that Mt → 0 and (with some more work that
we omit) E[Mt] → 0. If Mt were a martingale, we would have E[Mt] = 1
for all t. Another way to see that Mt is not a martingale is to consider the
measure P∗ given by tilting by the martingale. In this measure,

dBt = − 1

Xt

dt+ dWt,

whereWt is a P∗-Brownian motion. Therefore, dXt = dWt which says that the
distribution of Xt in the measure P∗ is that of a standard Brownian motion.
Since the Brownian motion reaches zero, we can see that with respect to P∗,
the martingale Mt reaches infinity in finite time.

Suppose Mt is a continuous, nonnegative local martingale. To show
thatMt is a supermartingale, suppose that τn is an increasing sequence
of stopping times such that Mt∧τn is a martingale. Let s < t. Suppose
V is an Fs-measurable event and let Vk = V ∩ {τk > s}. Since Mt∧τn
is a martingale, if n ≥ k,

E [1Vk
Mt∧τn ] = E [1Vk

Ms∧τn ] = E [1Vk
Ms] .

Hence Fatou’s lemma implies that

E [1Vk
Mt] ≤ lim inf

n→∞
E [1Vk

Mt∧τn ] = E [1Vk
Ms] .

Since E [1V E(Mt | Fs)] = E [1V Mt], by letting k → ∞ and using the
monotone convergence theorem, we get

E [1V E(Mt | Fs)] = E [1V Mt] ≤ E [1V Ms] .
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Since this holds for every Fs-measurable event V , we have E(Mt |
Fs) ≤ Ms with probability one. Also, if V = {E(Mt | Fs) < Ms} and
P(V ) > 0, then

E[Mt] = E [1V Mt] + E [1V c Mt] < E [1V Ms] + E [1V c Ms] = E[Ms].

Conversely, if E[Mt] = E[M0] for all t, then Mt must be a martingale.
(We emphasize that we are using the fact that Mt ≥ 0.)

To prove the Girsanov theorem, let us first consider the case when
there exists K < ∞ such that with probability one |At| ≤ K and
Mt ≤ K. By Theorem 4.5.2, we need only show that in the measure
P∗, Wt is a continuous martingale with quadratic variation ⟨W ⟩t =
t. Continuity and the quadratic variation calculation are immediate
(since they hold with probability one in the measure P), so all we need
to show is that Wt is a P∗-martingale, that is, if s < t, then

EP∗(Wt | Fs) = Ws.

In other words, if V is Fs-measurable, we need to show that

E∗ [1V Ws] = E∗ [1V Wt] ,

which by definition means

E [1V WsMs] = E [1V WtMt] .

In other words, we need to show that Zt = WtMt is a martingale with
respect to P. Since

dWt = −At dt+ dBt, dMt = AtMt dBt,

the product rule gives

dZt = Wt dMt +Mt dWt + d⟨W,M⟩t = (AtWt + 1)Mt dBt,

which shows that Zt is a local martingale. Also, since |Wt| ≤ |Bt|+ tK
we see that ∫ t

0
E[(AsWs + 1)2M2

s ] ds < ∞,

and hence Zt is a square-integrable martingale.

For more general At,Mt we use localization with the stopping times
Tn as above. Note that

E[Mt] ≥ lim
n→∞

E [Mt 1{Tn > t}] = lim
n→∞

P∗{Tn > t} = P∗{T > t},
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and hence if P∗{T > t} = 1, then E[Mt] = 1 and Ms, 0 ≤ s ≤ t is a
martingale.

We will now show that the Novikov condition (5.10) implies that M
is a martingale. For ease let t = 1. Let

τr = inf{t : ⟨Y ⟩t = r}.

The process

Xr =

∫ τr

0
As dWs

is a standard Brownian motion with respect to the measure P∗. Also,

Yr = Xr +
1

2

∫ τr

0
As ds = Xr +

r

2
.

In particular,

max
0≤s≤τr

Ms = max
0≤t≤r

exp

{
Xt +

t

2

}
.

In other words, T = limTn can be defined as

T = sup{t : ⟨Y ⟩t < ∞}.

Let V denote the event that τr ≤ 1 for all r < ∞. We need to show
that P∗(V ) = 0.

Let
ρn = min {m ≥ n : Xm ≤ 0} .

Since Xm is a P∗-local martingale, for each n, P∗[V ∩ {ρn < ∞}] =
P∗(V ). Also,

Mρn = exp {Yρn} ≤ eρn/2.

Let us fix n, let ρ = ρn, and note that

P∗(V ) ≤
∞∑

m=n

E [Mm 1 {ρ = m}] ≤
∞∑

m=n

em/2 P{ρ = m}

≤ E
[
e⟨Y ⟩1/2 1{ρ = m}

]
.

We therefore, get

P∗(V ) ≤ E
[
e⟨Y ⟩1/2 1{τr < 1}

]
.
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The events {τr ≤ 1} shrink to a P-null set as r → ∞. The condition
(5.10) implies that e⟨Y ⟩1/2 is integrable, and hence,

lim
r→∞

E
[
e⟨Y ⟩1/2 1{τr ≤ 1}

]
= 0.

5.4 Black-Scholes formula

An arbitrage is a system that guarantees that a player (investor) will not lose
money while also giving a positive probability of making money. If P and Q
are equivalent probability measures, then an arbitrage under probability P is
the same as an arbitrage under probability Q. This holds since for equivalent
probability measures

P (V ) = 0 if and only if Q(V ) = 0,

P (V ) > 0 if and only if Q(V ) > 0.

This observation is the main tool for the pricing of options as we now show.
We will consider a simple (European) call option for a stock whose price
moves according to a geometric Brownian motion.

Suppose that the stock price St follows the geometric Brownian motion,

dSt = St [mdt+ σ dBt] , (5.12)

and there also exists a risk-free bound Rt satisfying

dRt = r Rt dt, (5.13)

that is, Rt = ertR0. Let T be a time in the future and suppose we have the
option to buy a share of stock at time T for strike price K. The value of this
option at time T is

F (ST ) = (ST −K)+ =

{
(ST −K) if ST > K,

0 if ST ≤ K.

The goal is to find the price f(t, x) of the option at time t < T given St = x.
One possibility, which is not the Black-Scholes solution, is to price the

option by the expected value (in time t dollars),

f̂(t, x) = E
[
e−r(T−t) F (ST ) | St = x

]
.
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In (4.7) we showed that this function satisfies the PDE

∂tf̂(t, x) = r f̂(t, x)−mx f̂ ′(t, x)− σ2 x2

2
f̂ ′′(t, x). (5.14)

Here and throughout this section we use primes for x-derivatives. If one sells
an option at this price and uses the money to buy a bond at the current
interest rate, then there is a positive probability of losing money.

The Black-Scholes approach to pricing is to let f(t, x) be the value of
a portfolio at time t, given that St = x, that can be hedged in order to
guarantee a portfolio of value F (ST ) at time T . By a portfolio, we mean an
ordered pair (at, bt) where at, bt denote the number of units of stocks and
bonds, respectively. Let Vt be the value of the portfolio at time t,

Vt = at St + btRt. (5.15)

We will manage the portfolio by switching between stocks and bonds so that,
no matter how the price of the stock moves, the value at time T will be

VT = (ST −K)+.

We assume that the portfolio is self-financing, that is, one does not add
outside resources to the portfolio. The mathematical consequence of this
assumption is that the change of the value of the portfolio is given only by
the change of the price of the assets,

dVt = at dSt + bt dRt. (5.16)

It may appear at first that (5.16) is a consequence of (5.15). However, the
units of the assets at, bt vary with time and hence we need to use the product
rule. If Vt is defined by (5.15), the product rule implies that

d(at St) = at dSt + St dat + d⟨a, S⟩t,

d(btRt) = bt dRt +Rt dbt.

Here we use the fact that Rt is differentiable in t to see that ⟨b, R⟩t = 0.
Hence, (5.16) is a strong assumption about the portfolio, and we will use it
to determine the price and the hedging strategy.
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If we assume (5.16) and plug in (5.12) and (5.13), we get

dVt = at St [mdt+ σ dBt] + bt r Rt dt

= at St [mdt+ σ dBt] + r [Vt − at St] dt

= [mat St + r (Vt − at St)] dt+ σ at St dBt. (5.17)

Under our definition, Vt = f(t, St). Therefore, assuming f is sufficiently dif-
ferentiable, Itô’s formula shows that

dVt = df(t, St)

= ∂tf(t, St) dt+ f ′(t, St) dSt +
1

2
f ′′(t, St) d⟨S⟩t

=

[
∂tf(t, St) +mSt f

′(t, St) +
σ2S2

t

2
f ′′(t, St)

]
dt

+σ St f
′(t, St) dBt. (5.18)

By equating the dBt terms in (5.17) and (5.18), we see that that the portfolio
is given by

at = f ′(t, St), bt =
Vt − at St

Rt

, (5.19)

and then by equating the dt terms we get the Black-Scholes equation

∂tf(t, x) = r f(t, x)− r x f ′(t, x)− σ2 x2

2
f ′′(t, x).

There are two things to note about this equation.

� The drift termm does not appear. If we think about this, we realize why
our assumptions should give us an equation independent ofm. Our price
was based on being able to hedge our portfolio so that with probability
one the value at time T is (ST − K)+. Geometric Brownian motions
with the same σ but different m are mutually absolutely continuous
and hence have the same events of probability one.

� The equation is exactly the same as (5.14) except that m has been
replaced with r. Therefore, we can write

f(t, x) = E
[
e−r(T−t) F (St) | St = x

]
,

where S satisfies
dSt = St [r dt+ σ dBt].
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Using this, one can compute f(t, x) exactly; in the next section we do
this and derive the Black-Scholes formula

f(T − t, x) = xΦ

(
log(x/K) + (r + σ2

2
)t

σ
√
t

)

−K e−rtΦ

(
log(x/K) + (r − σ2

2
)t

σ
√
t

)
, (5.20)

where Φ is the standard normal distribution function. If one knows r
and σ (which from a practical perspective is a big assumption), one can
just plug into this formula.

We can easily generalize this to the case where the stock price satisfies

dSt = St [m(t, St) dt+ σ(t, St) dBt] ,

dRt = r(t, St)Rt dt.

Under the assumption of a self-financing portfolio, we again get (5.17) and
(5.18), and by equating coefficients we get the Black-Scholes equation

∂tf(t, x) = r(t, x) f(t, x)− r(t, x)x f ′(t, x)− σ(t, x)2 x2

2
f ′′(t, x). (5.21)

As before, the drift term m(t, x) does not appear in the equation. The func-
tion f can be given by

f(t, x) = E [(Rt/RT )F (ST ) | St = x] ,

where St, Rt satisfy

dSt = St [r(t, St) dt+ σ(t, St) dBt] ,

dRt = r(t, St)Rt dt.

Mathematical justification of this arguments requires sufficient assumptions
on m and σ such that the equation (5.21) has a solution. Finding explicit
solutions to such equations is often impossible, but one can either solve the
PDE numerically or do Monte Carlo simulations of the associated diffusion
process St.
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5.5 Martingale approach to Black-Scholes

equation

We will give a different approach to deriving the Black-Scholes formula. Sup-
pose for the moment that the risk-free bond has rate r(t, x) and that the
volatility is given by σ(t, x). If Rt denotes the value of the bond at time t,
then

dRt = r(t, St)Rt dt, Rt = R0 exp

{∫ t

0

r(s, Ss) ds

}
.

As explained in the previous section, if we want a strategy to hedge a port-
folio so that its value is determined at time T , then the strategy must be
independent of the drift coefficient m(t, x). For this reason, we may assume
that the stock price satisfies

dSt = St [r(t, St) dt+ σ(t, St) dBt] , (5.22)

and then the value of the portfolio at time t satisfies

Vt = f(t, St) = EQ [(Rt/RT )F (ST ) | St] = EQ [(Rt/RT )F (ST ) | Ft] .

We write EQ, EQ to emphasize that the expectations are taken with respect
to the measure under which St satisfies (5.22).

Let S̃t = St/Rt, Ṽt = Vt/Rt be the stock price and portfolio value, respec-
tively, discounted by the bond rate. The product rule shows that S̃t satisfies

dS̃t = σ(t, Rt) S̃t dBt.

In other words (under some growth restrictions on σ, for example, if σ is
uniformly bounded), S̃t is a martingale. Also,

Ṽt = Vt/Rt = R−1
t EQ ((Rt/RT )F (ST ) | Ft)

= EQ

(
R−1

T F (ST ) | Ft

)
= EQ[ṼT | Ft].

We have just demonstrated the following principle.

Theorem 5.5.1. Suppose St satisfies

dSt = St [m(t, St) dt+ σ(t, St) dBt] ,
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and a risk-free bond Rt is available at rate r(t, St),

dRt = r(t, St)Rt dt.

Suppose that the Brownian motion is defined on a probability space (Ω,F ,P)
and that there exists a probability measure Q that is mutually absolutely
continuous with respect to P such that under Q, the discounted stock price
S̃t = St/Rt is a martingale. Suppose there is an option at time T with value
F (ST ) such that EQ[R

−1
T |F (ST )|] < ∞. Then the arbitrage-free price of the

option at time t is
Vt = RtEQ

(
R−1

T F (ST ) | Ft

)
. (5.23)

A nice thing about this formulation is that VT = F (ST ) follows directly
from the formula. However, unlike the previous approach, we do not imme-
diately get the expression for the portfolio needed to hedge the option.

Example 5.5.1. We will derive the Black-Scholes formula leaving some of
the calculus calculations to Exercise 5.11. Suppose that r, σ are constants
and F (ST ) = (ST −K)+. The discounted values are S̃t = e−rtSt, Ṽt = e−rt Vt
and

ṼT = e−rT F (ST ) = e−rT (ST −K)+ = (S̃T − K̃)+,

where K̃ = e−rTK. Under the measure Q, S̃t satisfies

dS̃t = σ S̃t dBt,

which implies that

S̃T = S̃t exp

{∫ T

t

σ dBs −
1

2

∫ T

t

σ2 ds

}
= S̃t exp

{
σ(BT −Bt)−

σ2(T − t)

2

}
.

In other words, the conditional distribution of S̃T given S̃t is that of

Z = exp {aN + y} ,

where a = σ
√
T − t, N is a standard normal random variable, and

y = log S̃t −
a2

2
.
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Straightforward calculus shows that Z has a density

g(z) =
1

az
ϕ

(
−y + log z

a

)
,

where ϕ is the standard normal density, and hence

Ṽt =

∫ ∞

K̃

(z − K̃) g(z) dz.

Another computation gives

Ṽt = S̃tΦ

(
log(S̃t/K̃) + a2

2

a

)
− K̃ Φ

(
log(S̃t/K̃)− a2

2

a

)
,

which implies that

Vt = ert Ṽt = St Φ

(
log(St/K) + rs+ a2

2

a

)

−e−rsK Φ

(
log(St/K) + rs− a2

2

a

)
,

where s = T − t. Plugging in a = σ
√
s gives (5.20).

One of the hypotheses in Theorem 5.5.1 is that if St satisfies

dSt = St [m(t, St) dt+ σ(t, St) dBt] ,

then there exists a probability measure Q under which

dSt = St [r(t, St) dt+ σ(t, St) dWt] , (5.24)

where Wt is a Q-Brownian motion. Indeed, if St satisfies (5.24), then the
discounted price S̃t = St/Rt satisfies

dS̃t = S̃t σ(t, St) dWt = S̃t σ(t, Rt S̃t) dWt. (5.25)

The Girsanov theorem tells us that the way to obtain Q is to tilt by the local
martingale Mt where

dMt =Mt
r(t, St)−m(t, St)

σ(t, St)
dBt,
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for then in the measure Q,

dBt =
r(t, St)−m(t, St)

σ(t, St)
dt+ dWt.

In order for the theorem to hold, we need that Mt is actually a martingale
and that S̃t as given in (5.25) is a martingale. While one can give general
conditions when this is true, it is often just as easy to check this in each case.
If |r −m|/σ is uniformly bounded, these conditions are satisfied.

5.6 Martingale approach to pricing

We generalize the discussion in the previous section to the pricing of claims
that are functions of the entire history of the prices of an asset. Suppose St

denotes the price of an asset satisfying

dSt = St [mt dt+ σt dBt] (5.26)

where Bt is a standard Brownian motion. Let Ft denote the information in
{Bs : 0 ≤ s ≤ t}, and as usual we assume thatmt, σt are processes adapted to
the filtration {Ft}. We also assume that there is a risk-free bond Rt satisfying

dRt = rtRt dt, Rt = R0 exp

{∫ t

0

rs ds

}
,

where rt is also adapted.
Let T be a fixed future time and assume that V is an FT -measurable

random variable. We call V a claim (at time T ). The examples we have seen
are of the form V = F (ST ), but other examples are

V = max
0≤t≤T

St, V =
1

T

∫ T

0

St dt.

We will start with the following definition.

Definition, first try If V is a claim at time T , then the (arbitrage-free)
price Vt, 0 ≤ t ≤ T, of a claim VT is the minimum value of a self-financing
portfolio that can be hedged to guarantee that its value at time T is V .
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Our goal is to determine the price Vt and the corresponding portfolio
(at, bt), where at denotes the number of units of S and bt the number of units
of R. This will require some mathematical assumptions that we will make as
we need them. Recall that

Vt = at St + btRt,

and (at, bt) is self-financing if

dVt = at dSt + bt dRt.

We will start by giving two bad, but unrealistic, examples that show that we
need to take some care. The two examples are similar. In the first example,
we allow the stock price to fluctuate too much. In the second, we choose a
very risky portfolio similar to the martingale betting strategy.

Example 5.6.1. Suppose for ease that rt ≡ 0 and R0 = 1 so that Rt ≡ 1. Let
St = eZt where Zt is the “martingale betting strategy revisited” in Example
4.1.1. We recall that Zt satisfies

dZt = At dBt, Z0 = 0,

and the “bets” At are chosen so that with probability one Z1 ≥ 1. Itô’s
formula shows that St satisfies

dSt = St

[
A2

t

2
dt+ At dBt

]
.

We cannot find an equivalent measure such that St is a martingale. Indeed,
we know that with probability one S1 > S0, and hence this fact must be true
in any equivalent measure.

Example 5.6.2. Suppose that Rt ≡ 1 and St = eBt−(t/2) which satisfies

dSt = St dBt, S0 = 1.

Let At be as in Example 5.6.1, and choose a portfolio with at = At/St. The
value of the portfolio is Vt = at St + btRt = At + bt. If the portfolio is to be
self-financing, we need that

dVt = at dSt + bt dRt =
At

St

St dBt = At dBt.
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We choose bt so that this holds (this may require choosing bt to be negative).
Since V0 = 1, we see that Vt = 1 + Zt where Zt is as in Example 5.6.1. In
particular, V1 = 2, and this portfolio hedges the claim V ≡ 2 at time T = 1.
Similarly for any constant J , we can find At such that with probability one
Zt ≥ J . Hence given any V0 (even negative values), we can find a portfolio
that hedges the claim V ≡ 2. One disadvantage of these portfolios, however,
is that they allow the value at times 0 < t < 1 to be negative. It will turn out
that we can eliminate examples like this by restricting to portfolios whose
value at all times is nonnegative.

With the bad examples in mind, we now proceed to develop the theory.
To start, we will consider discounted prices. Let

S̃t = (R0/Rt)St, Ṽt = (R0/Rt)Vt

denote the discounted stock price and discounted value, respectively. The
portfolio (at, bt) is the same whether or not we are using discounted units
and the discounted value Ṽt is given by

Ṽt = at S̃t + btR0.

(Note that the “discounted bond value” is R0.) Using the product formula,
we see that

dS̃t = S̃t [(mt − rt) dt+ σt dBt] .

Our goal is to find a self-financing portfolio (at, bt) such that with probability
one

ṼT = aT S̃T + bT R0 = Ṽ .

Since this must happen with probability one, we may consider a mutually
absolutely continuous measure. We let Q be the probability measure (if it
exists) that is mutually absolutely continuous with respect to P such that
under Q the discounted stock price is a martingale. Recalling (5.11), we can
see that the Girsanov theorem tells us to choose

dQ =Mt dP,

where Mt satisfies

dMt =
rt −mt

σt
Mt dBt, M0 = 1. (5.27)
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The solution to this last equation is a local martingale, but it not necessarily
a martingale. If it is not a martingale, then some undesirable conclusions
may result as in our examples above. Our first assumption will be that it is
a martingale.

� Assumption 1. The local martingale defined in (5.27) is actually a
martingale.

This assumption implies that Q is mutually absolutely continuous with re-
spect to P. Theorem 5.3.2 gives a number of ways to establish Q ≪ P. If
Q≪ P, then we also get P ≪ Q if P{Mt > 0} = 1. Let

Wt = Bt −
∫ t

0

rs −ms

σs
ds,

which is a Brownian motion with respect to Q. Plugging in we see that

dS̃t = σt S̃t dWt. (5.28)

This shows that S̃t is a local martingale with respect to Q. We will want this
to be a martingale, and we make this assumption.

� Assumption 2. The Q-local martingale S̃t satisfying (5.28) is actually
a Q-martingale.

Again, Theorem 5.3.2 gives some sufficient conditions for establishing that
the solution to (5.28) is a Q-martingale. We write EQ and EQ for expectations
(regular and conditional) with respect to Q.

Definition A claim V at time T is called a contingent claim if V ≥ 0 and

EQ

[
Ṽ 2
]
<∞.

The (arbitrage-free) price Vt, 0 ≤ t ≤ T, of a contingent claim VT is the
minimum value of a self-financing portfolio that can be hedged to guarantee
that its value never drops below zero and at time T equals V .

Given a contingent claim, we can set

Ṽt = EQ

[
Ṽ | Ft

]
.
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This is a square integrable martingale and ṼT = Ṽ . We would like to find a
portfolio (at, bt) satisfying

Vt = at St + btRt,

that is self-financing,

dVt = at dSt + bt dRt.

Recall that if At is an adapted process with∫ t

0

EQ[A
2
s] ds <∞,

then

Zt =

∫ t

0

As dWs

is a square integrable martingale. Let us assume for the moment that there
exists such a process As such that

Ṽt = Ṽ0 +

∫ t

0

As dWs,

that is

dṼt = At dWt. (5.29)

We compute,

dVt = Rt dṼt + Ṽt dRt

= RtAt dWt + Ṽt dRt

=
At

σt S̃t

Rt dS̃t + Ṽt dRt

=
At

σt S̃t

[dSt − S̃t dRt] + Ṽt dRt

=
At

σt S̃t

dSt +

[
Ṽt −

At

σt

]
dRt.

Therefore, if

at =
At

σt S̃t

, bt = Ṽt −
At

σt
, (5.30)
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the portfolio is self-financing and

at St + btRt =
At

σt S̃t

S̃tRt +

[
Ṽt −

At

σt

]
Rt = Rt Ṽt = Vt.

Along the way we made the assumption that we could write Vt as (5.29).
It turns out, as we discuss in the next section, that this can always be done
although we cannot guarantee that the process At is continuous or piecewise
continuous. Knowing existence of the process is not very useful if one cannot
find At. For now we just write as an assumption that the computations work
out.

� Assumption 3. We can write Ṽt as (5.29), and if we define at, bt as in
(5.30), then the stochastic integral

Vt =

∫ t

0

as dSs +

∫ t

0

bs dRs,

is well defined.

Theorem 5.6.1. If V is a contingent claim and assumptions 1-3 hold, then
the arbitrage-free price is

Vt = RtEQ(ṼT | Ft).

We have done most of the work in proving this theorem. What remains
is to show that if (a∗t , b

∗
t ) is a self-financing strategy with value

V ∗
t = a∗t St + b∗t Rt,

such that with probability one, V ∗
t ≥ 0 for all t and V ∗

T ≥ V , then for all
t, with probability one V ∗

t ≥ Vt. When we say “with probability one” this
can be with respect to either P or Q since one of our assumptions is that the
two measures are mutually absolutely continuous. Let Ṽ ∗

t = V ∗
t /Rt be the

discounted values. The product rule gives

dV ∗
t = d(RtṼ

∗
t ) = Rt dṼ

∗
t + Ṽ ∗

t dRt = Rt dṼ
∗
t +

[
a∗t S̃t + b∗t

]
dRt,

and the self-financing assumptions implies that

dV ∗
t = a∗t dSt + b∗t dRt = a∗t

[
Rt dS̃t + S̃t dRt

]
+ b∗t dRt.
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By equating coefficients, we see that

dṼ ∗
t = a∗t dS̃t = a∗t σt S̃t dWt.

In particular, Ṽ ∗
t is a nonnegative local martingale. We have seen that this

implies that Ṽ ∗
t is a supermartingale and

EQ

[
Ṽ ∗
T | Ft

]
≤ Ṽ ∗

t .

If V ≤ Ṽ ∗
T , then

EQ

[
Ṽ ∗
T | Ft

]
≥ EQ [V | Ft] = Vt.

Example 5.6.3. We will give another derivation of the Black-Scholes equa-
tion. Assume that the stock price is a diffusion satisfying

dSt = St [m(t, St) dt+ σ(t, St) dBt] ,

and the bond rate satisfies

dRt = r(t, St)Rt dt.

The product rule implies that the discounted stock price satisfies

dS̃t = S̃t [(m(t, St)− r(t, St)) dt+ σ(t, St) dBt] .

If V is a claim of the form V = F (ST ), let ϕ be the function

ϕ(t, x) = EQ [(Rt/RT )V | St = x] ,

and note that

Vt = Rt Ṽt = RtEQ

[
R−1

T V | Ft

]
= ϕ(t, St).

Assuming sufficient smoothness, Itô’s formula gives

dϕ(t, St) = ∂tϕ(t, St) dt+ ϕ′(t, St) dSt +
1

2
ϕ′′(t, St) d⟨S⟩t.

Recalling that
dSt = St [r(t, St) dt+ σ(t, St) dWt] ,
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we see that

dṼt = d[R−1
t ϕ(t, St)] = Jt dt+ At dWt,

where

Jt = R−1
t

[
∂tϕ(t, St) +

σ(t, St)
2 S2

t

2
ϕ′′(t, St)

+r(t, St)St ϕ
′(t, St)− r(t, St)ϕ(t, St)

]
,

At = R−1
t St σ(t, St)ϕ

′(t, St) = S̃t σ(t, St)ϕ
′(t, St).

Since Ṽt is a Q-martingale, Jt = 0, giving the Black-Scholes PDE again, and
dṼt = At dWt. Plugging into (5.30), we recover the hedging portfolio,

at =
At

σ(t, St) S̃t

= ϕ′(t, St),

bt = Ṽt −
At

σ(t, St)
= R−1

t [Vt − St ϕ
′(t, St)] .

This can be compared to (5.19).

Example 5.6.4. Suppose St is a geometric Brownian motion

dSt = St [mdt+ σ dBt] ,

and the bond rate is constant r. Suppose that the claim is the average stock
price over the interval [0, T ],

V =
1

T

∫ T

0

St dt.

In the new measure Q, the discounted stock price S̃t = e−rt St satisfies

dS̃t = σ S̃t dWt,

where Wt is a Q-Brownian motion. The discounted value is

Ṽt = EQ

[
e−rT

T

∫ T

0

Ss ds | Ft

]
.
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Since
∫ t

0
Ss ds is Ft-measurable, we get

T erT Ṽt =

∫ t

0

Ss ds+ EQ

[∫ T

t

Ss ds | Ft

]
=

∫ t

0

Ss ds+

∫ T

t

EQ [Ss | Ft] ds.

The second equality uses a form of Fubini’s theorem that follows from the
linearity of conditional expectation. Since S̃s is a Q-martingale, if s > t,

EQ [Ss | Ft] = ersEQ

[
S̃s | Ft

]
= ers S̃t = er(s−t) St.

Therefore, ∫ T

t

EQ [Ss | Ft] ds = St

∫ T

t

er(s−t) ds =
er(T−t) − 1

r
St,

and

Ṽt =
e−rT

T

∫ t

0

Ss ds+
e−rt − e−rT

rT
St

=
e−rT

T

∫ t

0

Ss ds+
1− e−r(T−t)

rT
S̃t, (5.31)

Vt = ert Ṽt =
e−r(T−t)

T

∫ t

0

Ss ds+
1− e−r(T−t)

rT
St.

Note that VT = V which we needed, and the price at time 0 is

V0 =
1− e−rT

rT
S0.

The hedging portfolio can be worked out with a little thought. We will
start with all the money in stocks and as time progresses we move money
into bonds. Suppose that during time interval [t, t+∆t] we convert u∆t units
of stock into bonds. Then the value of these units of bonds at time T will
be about u er(T−t) St ∆t. If we choose u = er(t−T )/T , then the value will be

about St∆t/T and hence the value of all our bonds will be about 1
T

∫ T

0
Ss ds.

This gives us
dat
dt

= −e
r(t−T )

T
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and using the terminal condition aT = 0, we get

at =
1− er(t−T )

rT
. (5.32)

This is a special case where the hedging strategy does not depend on the
current stock price St. If we want to use the formula we derived, we use
(5.31) to give

dṼt =
1− er(t−T )

rT
dS̃t =

1− er(t−T )

rT
σ S̃t dWt.

Plugging this into (5.30) gives (5.32).

5.7 Martingale representation theorem

In the last section we assumed in (5.29) that a continuous martingale could be
represented as a stochastic integral. In fact, this is always that case. Suppose
Bt is a standard Brownian motion and {Ft} is the filtration given by the
Brownian motion. Suppose there is a claim V at time T and let

Vt = E[V | Ft].

Then there exists an adapted process At such that

E[V | Ft] = E[V ] +

∫ t

0

As dBs.

In order to be precise, we need to allow a wider class of processes than
those with continuous and piecewise continuous paths. We will not go into
detalis here, but any allowable process can be approximated by continuous
and piecewise continuous processes. From practical perspective, knowing that
such an As exists is not so useful unless one can give it explicitly. In the
examples we give the SDE for Vs explicitly.

This theorem states roughly that all of the randomness in the system
is given by the Brownian motion Bt and the only way to get martingales
with only this information is to vary the “betting strategy” on the Brownian
motion. To illustrate this idea, we will derive the representation theorem in
the easier case of random walk.
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Suppose we have a binomial model with ∆t = 1/N and ∆x =
√
∆t =

1/
√
N . We have independent random variables

X∆t, X2∆t, . . .

each with

P {Xk∆t = ∆x} = P {Xk∆t = −∆x} =
1

2
.

Let Fk∆t denote the information in {X∆t, X2∆t, , . . . , Xk∆t}, and assume that
Mk∆t is a martingale with respect to Fk∆t. The martingale property implies
that

E
[
M(k+1)∆t | Fk∆t

]
=Mk∆t. (5.33)

Since {M(k+1)∆t} is F(k+1)∆t-measurable, its value depends on the values of

X∆t, X2∆t, . . . , X(k+1)∆t.

When we take a conditional expectation with respect to Fk∆t we are given
the value of the vector

Xk∆ = (X∆t, X2∆t, . . . , Xk∆t) .

Given a particular value of Xk∆t, there are only two possible values for
M(k+1)∆t corresponding to the values when X(k+1)∆t = ∆x and X(k+1)∆t =
−∆x, respectively. Let us denote the two values by

[b+ a] ∆x, [b− a] ∆x,

where b∆x is the average of the two values. The two numbers a, b depend on
Xk∆t and hence are Fk∆t-measurable. The martingale property (5.33) tells
us that

b∆x =Mk∆t,

and hence
M(k+1)∆t −Mk∆t = ±a∆x = aX(k+1)∆t.

If we write J(k+1)∆t for the number a, then J(k+1)∆t is Fk∆t-measurable, and

Mk∆t =M0 +
k∑

j=1

Jj∆tXj∆t.

This is the form of the stochastic integral with respect to random walk as in
Section 1.6.
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5.8 Exercises

Exercise 5.1. For each of the following random variables Xj on R, let µj

be the distribution considered as a probability measure on R. For each pair
state whether or not µj ≪ µk. Since there are six random variables, there
should be 30 answers.

X1 normal mean 2, variance 7

X2 binomial with parameters n = 7, p = .3

X3 Poisson with parameter 2

X4 = eX1

X5 uniform on [0, 1]

X6 = X1X3 +X2 assuming X1, X2, X3 independent .

Exercise 5.2. Consider the martingale betting strategy from Chapter 1. Let
Wn denote the winnings at time n and let

Mn = 1−Wn,

so that at each time n, Mn equals 0 or 2n. Note that M0 = 1. Let T =
min{n :Mn = 0}. Let Fn be the information in M0,M1, . . . ,Mn.

1. Explain why Mn is a nonnegative martingale.

2. Define a new probability measure Qn by saying that for any event V
that is Fn-measurable,

Qn(V ) = E [Mn 1V ] .

Show that if m < n and V is Fm-measurable, then Qm(V ) = Qn(V ).

3. Given the last part, we can write Q rather than just Qn. Find the
transition probability

Q
{
Mn+1 = 2n+1 |Mn = 2n

}
.

4. Find the Q-probability that T <∞.

5. Is Mn a martingale with respect to the measure Q?
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Exercise 5.3. Suppose Bt is a standard Brownian motion on (Ω,P). For
each of the following choices of Xt, 0 ≤ t ≤ 1, state whether there is an
equivalent probability measure Q such that the Xt is a standard Brownian
motion in the new measure. If the answer is yes, give dQ/dP at t = 1. In all
cases assume that B0 = 0, X0 = 0.

dXt = 2 dt+ dBt,

dXt = 2 dt+ 6 dBt,

dXt = 2Bt dt+ dBt.

Exercise 5.4. Let Bt be a standard Brownian motion with B0 = 0. Let
m > 0 and let Xt = e−mB2

t .

1. Find a function g such that

Mt := Xt exp

{∫ t

0

g(Xs) ds

}
is a local martingale.

2. What SDE does Mt satisfy?

3. Let Q be the probability measure obtained by tilting by Mt. Find the
SDE for Bt in terms of a Q-Brownian motion.

4. Explain why Mt is actually a martingale.

Exercise 5.5. Let Bt be a standard Brownian motion with B0 = 1. Let
T = min{t : Bt = 0} Let r > 0 and let Xt = Br

t .

1. Find a function g such that

Mt := Xt exp

{∫ t

0

g(Xs) ds

}
is a local martingale for t < T . (Do not worry about what happens
after time T .)

2. What SDE does Mt satisfy?

3. Let Q be the probability measure obtained by tilting by Mt. Find the
SDE for Bt in terms of a Q-Brownian motion.
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Exercise 5.6. Suppose a,m > 0 and Wt is a Brownian motion with drift m
and variance 1. Let

Ta = inf{t : Wt = a}.

Find the density of Ta. Hint: look at Examples 2.7.1 and 5.2.2.

Exercise 5.7. Suppose the price of a stock St follows a geometric Brownian
motion

dSt = St [3 dt+ dBt] ,

whee Bt is a standard Brownian motion with respect to a measure P. Suppose
there is a risk-free bond with rate r = .05. Let Q be the measure, mutually
absolutely continuous with respect to P, under which the discounted stock
price S̃t is a martingale.

1. Give the SDE for S̃t in terms of Wt, a standard Brownian motion with
respect to Q.

2. Suppose there is a claim at time T = 2 of V = S2
2 . Is this a contingent

claim?

3. Find the discounted value Ṽt of the claim for 0 ≤ t ≤ 2.

4. Give the SDE for Ṽt in terms of the Brownian motion W .

5. Find the portfolio (at, bt) that hedges the claim.

6. Find the value Vt.

Exercise 5.8. Repeat Exercise 5.7 with V = S3
2 .

Exercise 5.9. Repeat Exercise 5.7 with claim

V =

∫ 2

0

s Ss ds.

Exercise 5.10. Repeat Exercise 5.7 with claim

V =

∫ 2

0

S2
s ds.

Exercise 5.11. Here we do the calculus needed to finish the derivation of
the Black-Scholes formula in Example 5.5.1.
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1. Show that if N has a standard normal distribution and a ̸= 0, y are
constants, then the density of Z = exp{aN + y} is

g(z) =
1

az
ϕ

(
−y + log z

a

)
,

where ϕ denotes the density of N .

2. Show that for all x,∫ ∞

x

(z − x) g(z) dz = ey+(a2/2)Φ

(
y − log x+ a2

a

)
− xΦ

(
y − log x

a

)
.

3. Use these calculations to check the details of Example 5.5.1.
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Chapter 6

Jump processes

6.1 Lévy processes

The assumptions that led to Brownian motion were:

� Independent increments

� Stationary increments

� Continuous paths.

If we want to consider more general processes, we need to give up at least
one of these assumptions. In this chapter we will not assume continuity of
paths.

Definition A stochastic process Xt is called a Lévy process if it has inde-
pendent, stationary increments. That is to say, for every s, t > 0, the random
variable Xs+t −Xs is independent of {Xr : r ≤ s} and has the same distri-
bution as Xt −X0.

Brownian motion is the only Lévy process with continuous paths. We
have already discussed one example of a Lévy process with discontinuous
paths, the Poisson process, and we will describe it in more detail in Section
6.2. Let us give two examples that can be derived from Brownian motion.

Example 6.1.1. Suppose Bt is a standard Brownian motion and Ts = inf{t :
Bt = s}. Using the strong Markov property, we can see that Ts, s ≥ 0 has
i.i.d. increments. Therefore it is a Lévy process. Note that it is increasing,

185
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that is, with probability one if r < s, then Tr < Ts. We calculated the density
of Ts in Example 2.7.1,

fs(t) =
s

t3/2
√
2π

e−
s2

2t , 0 < t <∞.

In particular, the distribution of Ts is not normal. We claim that (with
probability one) the function s 7→ Ts is not continuous. To see this, let
M = max0≤t≤1Bt and let s0 ∈ (0, 1) be a time t with Bt = M . Then by
definition of M,Ts we see that TM ≤ s0, but Ts > 1 for s > M , showing that
T is not continuous at s0. The scaling property of Brownian motion implies
that Ts has the same distribution as s2 T1. A tricky calculation which we omit
computes the characteristic function

E[ei(r/s2)Ts ] = E[eirT1 ] =

∫ ∞

−∞
eirt f1(t) dt = eΨ(r),

where

Ψ(r) =

{
|2r|1/2(1− i) if r ≥ 0
|2r|1/2(1 + i) if r ≤ 0

.

Example 6.1.2. Let Bt = (B1
t , B

2
t ) be a standard two-dimensional Brownian

motion. Let

Ts = inf{t : B1
t = s},

and

Xs = B2(Ts).

Using the strong Markov property, one can show that the increments are i.i.d.
and similarly to Example 6.1.1 that the paths as discontinuous. The scaling
property of Brownian motion implies that Xs has the same distribution as
sX1. The density of X1 turns out to be Cauchy,

f(x) =
1

π (x2 + 1)
, −∞ < x <∞,

with characteristic function

E
[
eirXt

]
=

∫ ∞

−∞
eirx f(x) dx = e−|r|.
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Not every distribution can arise as the distribution of the increments of a
Lévy process. Indeed, suppose that Xt is a Lévy process. Then we can write

X1 =
n∑

j=1

Yj,n, where Yj,n = X

(
j

n

)
−X

(
j − 1

n

)
.

Definition A random variable X has an infinitely divisible distribution if
for each n we can find independent, identically distributed random variables
Y1,n, . . . , Yn,n such that X has the same distribution as

Y1,n + · · ·+ Yn,n.

We just noted that if Xt is a Lévy process, then X1 (and, in fact, Xt for
each t) has an infinitely divisible distribution. The converse is true and it not
too difficult to show. If F is the distribution function of an infinitely divisible
distribution, then there is a Lévy process Xt such that X1 has distribution
F . Normal and Poisson random variables are infinitely divisible:

� If X ∼ N(m,σ2), then X has the same distribution as the sum of n
independent N(m/n, σ2/n) random variables.

� If X has a Poisson distribution with mean λ, then X has the same
distribution as the sum of n independent Poisson random variables
with mean λ/n.

The goal of the next few sections is to show that every infinitely divisible
random variable is the sum of a normal random variable and a “generalized
Poisson” or “jump” random variable. The category “generalized Poisson” is
rather large and will include the distributions in Examples 6.1.1 and 6.1.2.

A precise definition of a Lévy process needs another condition. For
Brownian motion, we put continuity of the paths into the assumptions.
To construct Brownian motion, we first defined Brownian motion on
dyadic rationals times, showed that the corresponding process was
uniformly continuous, and then extended to other times by continuity.
In the case of Lévy processes, we similarly can first define the process
at dyadic times to satisfy independent, stationary increments. As we
discuss later, we then prove that with probability one, for all times t,
the limits

Xt− = lim
q↑t

Xq, Xt+ = lim
q↓t

Xq,
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exist where the limits are taken over the dyadic rationals. We then
define Xt to be Xt+.

6.2 Poisson process

The Poisson process is the basic jump Lévy process. It is obtained by taking
jumps of size one at a particular rate λ. Suppose we have such a process,
and let p(s) denote the probability that there is at least one jump in the
interval [t, t + s]. If the increments are to be stationary, this quantity must
not depend on t. Rate λ means that the probability that there is a jump
some time during the time interval [t, t+∆t] is about λ∆t; more precisely,

p(∆t) = λ∆t+ o(∆t), ∆t ↓ 0.

We can use this observation to construct the Poisson process.
We consider the waiting times between jumps. Let Xt denote the number

of jumps that have occurred by time t and let

T = inf{t : Xt = 1}

denote the amount of time until the first jump. Using i.i.d. increments, we
see that

P{T > t} =
n∏

j=1

P
{
no jump during

[
(j − 1)t

n
,
jt

n

]}
=

[
1− p

(
t

n

)]n
.

Therefore,

P{T > t} = lim
n→∞

[
1− p

(
t

n

)]n
= lim

n→∞

[
1− λt

n
+ o

(
λt

n

)]n
= e−λt.

Recall that a random variable T has an exponential distribution with rate λ
if it has density

f(t) = λ e−λt, 0 < t <∞,



6.2. POISSON PROCESS 189

and hence

P{T > t} =

∫ ∞

t

f(s) ds = e−λt.

Our assumptions imply that the waiting times of a Poisson distribution with
parameter λ must be exponential with rate λ. Note that

E[T ] =
∫ ∞

0

t f(t) dt =
1

λ
,

so that the mean waiting time is (quite reasonably) the reciprocal of the rate.
This observation gives a way to construct a Poisson process. This construction
also gives a good way to simulate Poisson processes (see Exercise 6.1).

� Let T1, T2, T3, . . . be independent random variables each exponential
with rate λ.

� Let τ0 = 0 and for positive integer n,

τn = T1 + · · ·+ Tn.

In other words, τn is the time at which the nth jump occurs.

� Set
Xt = n for τn ≤ t < τn+1.

Note that we have defined the process so that the paths are right-continuous,

Xt = Xt+ := lim
s↓t

Xs.

The paths also have limits from the left, that is, for every t the limit

Xt− = lim
s↑t

Xs

exists. If t is a time that the process jumps, that is, if t = τn for some n > 0,
then

Xt = Xt+ = Xt− + 1.

At all other times the path is continuous, Xt− = Xt+.
The i.i.d. increments follow from the construction. We can use the as-

sumptions to show the following.
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� The random variable Xt+s −Xs has a Poisson distribution with mean
λt, that is,

P{Xt+s −Xs = k} = e−λt (λt)
k

k!
.

One way to derive this is to write a system of differential equations for the
functions

qk(t) = P{Xt = k}.
In the small time interval [t, t+∆t], the chance that there is more than one
jump is o(∆t) and the chance there is exactly one jump is λ∆t + o(∆t).
Therefore, up to errors that are o(∆t),

P{Xt+∆t = k} = P{Xt = k − 1} (λ∆t) + P{Xt = k} [1− λ∆t] .

This gives

qk(t+∆t)− qk(t) = λ∆t [qk−1(t)− qk(t)] + o(∆t),

or
dqk(t)

dt
= λ [qk−1(t)− qk(t)].

If we assume X0 = 0, we also have the initial conditions q0(0) = 1 and
qk(0) = 0 for k > 0. We can solve this system of equations recursively, and
this yields the solutions

qk(t) = e−λt (λt)
k

k!
.

(Although it takes some good guesswork to start with the equations and find
qk(t), it is easy to verify that qk(t) as given above satisfies the equations.)

When studying infinitely divisible distributions, it will be useful to con-
sider characteristic functions, and for notational ease, we will take logarithms.
Since the characteristic function is complex-valued, we take a little care in
defining the logarithm.

Definition If X is a random variable, then its characteristic exponent
Ψ(s) = ΨX(s) is defined to be the continuous function satisfying

E[eisX ] = eΨ(s), Ψ(0) = 0.

If Xt is a Lévy process, then the characteristic exponent of the process is the
characteristic exponent of X1 −X0.
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Note that if X, Y are independent, then

ΨX+Y = ΨX +ΨY . (6.1)

� If X ∼ N(m,σ2), then

Ψ(s) = ims− σ2

2
s2.

� If X is Poisson with mean λ, then

Ψ(s) = λ [eis − 1].

This can be seen from the computation

E[eisX ] =
∞∑
n=0

eisn P{X = n} =
∞∑
n=0

(λeis)n

n!
e−λ = eλe

is

e−λ.

If Xt is a Lévy process starting at the origin with characteristic exponent
Ψ, then i.i.d. increments and the relation (6.1), imply that

ΨXt = tΨX1 = tΨ.

An important property of Lévy processes is the following.

� SupposeX1
t , X

2
t are independent Lévy processes with ΨX1 = Ψ1,ΨX2 =

Ψ2. Then Xt = X1
t +X2

t is a Lévy process with ΨXt = Ψ1 +Ψ2.

For example if X1
t is a Brownian motion with drift m and variance σ2 and

X2
t is an independent Poisson process with rate λ, then Xt = X1

t +X2
t is a

Lévy process with

Ψ(s) = ims− σ2 s2

2
+ λ [eis − 1]. (6.2)

A Lévy process is a Markov process so we can talk about its generator,

Lf(x) = lim
t↓0

E[f(Xt) | X0 = x]− f(x)

t
.

Recall that for a Brownian motion Bt with drift m and variance σ2,

Lf(x) = mf ′(x) +
σ2

2
f ′′(x).
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Moreover, if
f(t, x) = E [F (Bt) | B0 = x] ,

then f satisfies the heat equation

∂tf(t, x) = Lxf(t, x). (6.3)

We now compute the generator for the Poisson process. Although we think
of the Poisson process as taking integer values, there is no problem extending
the definition so that X0 = x. In this case the values taken by the process are
x, x+ 1, x+ 2, . . . Up to terms that are o(t), P{Xt = X0 + 1} = 1− P{Xt =
X0} = λ t. Therefore as t ↓ 0,

E[f(Xt) | X0 = x] = λ t f(x+ 1) + [1− λ t] f(x) + o(t),

and
Lf(x) = λ [f(x+ 1)− f(x)].

The same argument shows that if f(t, x) is defined by

f(t, x) = E [F (Xt) | X0 = x] ,

then f satisfies the heat equation (6.3) with the generator L. We can view
the generator as the operator on functions f that makes (6.3) hold.

The generators satisfy the following linearity property: if X1
t , X

2
t are in-

dependent Lévy processes with generators L1, L2, respectively, then Xt =
X1

t +X2
t has generator L1 + L2. For example, if X is the Lévy process with

Ψ as in (6.2),

Lf(x) = mf ′(x) +
σ2

2
f ′′(x) + λ [f(x+ 1)− f(x)].

6.3 Compound Poisson process

In the Poisson process, the process jumps from x to x + 1 at rate λ. The
compound Poisson process generalizes this by allowing the jump size to be
random. For the moment we think of the process as having two parameters,
a jump rate λ and a distribution function F . We construct the process as
follows.

� Let T1, T2, T3, . . . be independent random variables each exponential
with rate λ.
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� Let Nt denote the corresponding Poisson process as in the previous
section,

Nt = n if T1 + · · ·+ Tn ≤ t < T1 + · · ·+ Tn+1.

� Let Y1, Y2, Y3, . . . be independent random variables, independent of
T1, T2, . . ., with distribution function F , and let

Sn = Y1 + · · ·+ Yn, S0 = 0.

� Set Xt = SNt .

We call the process Xt a compound Poisson process (CPP) starting at the
origin.

Let µ# denote the distribution of the random variables Yj, that is, if
V ⊂ R, then µ#(V ) = P{Y1 ∈ V }. We set

µ = λµ#

which is a measure on R with µ(R) = λ. For the usual Poisson process µ#, µ
are just “point masses” on the point 1,

µ#({1}) = 1, µ({1}) = λ, µ#(R \ {1}) = µ(R \ {1}) = 0.

The measure µ encodes both λ and µ# so we can consider µ as the parameter
for the compound Poisson process. For any measure µ with λ = µ(R) < ∞
there is such a process. The measure µ is called the Lévy measure for the
process. Without loss of generality we assume that µ({0}) = 0 since “jumps
of size zero” do not affect the process Xt. The construction shows that the
increments of Xt are i.i.d., and hence Xt is a Lévy process.

Proposition 6.3.1. Suppose Xt is a CPP with Lévy measure µ with X0 = 0.
Then

Ψ(s) =

∫ ∞

−∞
[eisx − 1] dµ(x),

Lf(x) =

∫ ∞

−∞
[f(x+ y)− f(x)] dµ(y). (6.4)

Moreover, if

σ2 :=

∫
x2 dµ(x) <∞, (6.5)
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and

m =

∫
x dµ(x),

then Mt = Xt − tm is a square integrable martingale with Var[Mt] = tσ2.

Proof. Let

ϕ(s) = E[eisYj ] =

∫ ∞

−∞
eisx dµ#(x),

denote the characteristic function of a random variable with distribution
function F . Then,

E[eisXt ] =
∞∑
n=0

P{Nt = n}E[eisXt | Nt = n].

Conditioned on Nt = n, the distribution of Xt is that of Y1 + · · · + Yn, and
hence

E[eisXt | Nt = n] = ϕ(s)n.

Since Nt is Poisson with mean tλ,

E[eisXt ] =
∞∑
n=0

e−tλ (tλ)n

n!
ϕ(s)n

= e−tλ

∞∑
n=0

(tλϕ(s))n

n!

= exp {tλ [ϕ(s)− 1]}

= exp

{
tλ

∫ ∞

−∞
[eisx − 1] dµ#(x)

}
= exp

{
t

∫ ∞

−∞
[eisx − 1] dµ(x)

}
.

The second-to-last equality uses the fact that µ# is a probability measure.
The computation for the generator L follows from the definition of the

CPP. In a small time ∆t, the probability that there is a jump is λ∆t +
o(∆t), and given that there is a jump, the amount jumped is given by the
distribution µ#. In other words, the probability that there is a jump in time
∆t whose size is in (a, b) is given up to an error of size o(∆t) by

λ∆t µ#(a, b) = ∆t µ(a, b).
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Therefore,

E [f(X∆t) | X0 = x]

= [1− λ∆t] f(x) + ∆t

∫ ∞

−∞
f(x+ y) dµ(y) + o(∆t)

= f(x) + ∆t

∫ ∞

−∞
[f(x+ y)− f(x)] dµ(y) + o(∆t),

which is a restatement of (6.4).
The moments of Xt can be computed by differentiating its characteristic

function,
ϕ′
Xt
(0) = iE[Xt], ϕ′′

Xt
(0) = −E[X2

t ],

assuming that the moments exist. For any positive integer n, if∫ ∞

−∞
|x|n dµ(x) <∞,

then we can differentiate under the integral n times to see that

Ψ(n)(s) = in
∫ ∞

−∞
xn eisx dµ(x).

In particular, if (6.5) holds,

Ψ′(0) = i

∫ ∞

−∞
x dµ(x), Ψ′′(0) = −

∫ ∞

−∞
x2 dµ(x),

and since ϕXt(s) = exp{tΨ(s)} and Ψ(0) = 0, we get

ϕ′
Xt
(0) = tΨ′(0) = it

∫ ∞

−∞
x dµ(x) = itm,

ϕ′′
Xt
(0) = tΨ′′(0) + [tΨ′(0)]2 = −[tσ2 + (tm)2].

Therefore,

E[Xt] = tm, Var[Xt] = E
[
(Xt − tm)2

]
= E

[
X2

t

]
− (E[Xt])

2 = tσ2.

If Fs denote the information contained in {Xr : r ≤ s} and s < t, then
Xt −Xs is independent of Fs and

E[Xt | Fs] = Xs + E[Xt −Xs | Fs] = Xs + E[Xt −Xs] = Xs + (t− s)m,
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and hence

E[Xt − tm | Fs] = Xs − sm.

This shows that Mt is a martingale and

E[M2
t ] = E[(Xt − tm)2] = Var[Xt] = t σ2.

We call Mt = Xt −mt the compensated compound Poisson process (com-
pensated CPP) associated to Xt. It is a Lévy process. If L denotes the gen-
erator for Xt, then Mt has generator

LMf(x) = Lf(x)−mf ′(x)

=

∫ ∞

−∞
[f(x+ y)− f(x)− y f ′(x)] dµ(y). (6.6)

The quadratic variation of the CPP is defined as before

⟨X⟩t = lim
n→∞

∑
j≤tn

[
X

(
j

n

)
−X

(
j − 1

n

)]2
.

Note that the terms in the sum are zero unless there is a jump in the time
interval [(j − 1)/n, j/n]. Hence we see that

⟨X⟩t =
∑
s≤t

[Xs −Xs−]
2.

Unlike the case of Brownian motion, for fixed t the random variable ⟨X⟩t is
not constant. We can similarly find the quadratic variation of the martingale
Mt = Xt −mt. By expanding the square, we see that this it is the limit as
n→ ∞ of three sums

∑
j≤tn

[
X

(
j

n

)
−X

(
j − 1

n

)]2

+
2m

n

∑
j≤tn

[
X

(
j

n

)
−X

(
j − 1

n

)]
+
∑
j≤tn

m2

n2
.
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Since there are only finitely many jumps, we can see that the second and
third limits are zero and hence

⟨M⟩t = ⟨X⟩t =
∑
s≤t

[Xs −Xs−]
2.

This next proposition generalizes the last assertion of the previous propo-
sition and sheds light on the meaning of the generator L. In some sense, this is
an analogue of Itô’s formula for CPP. Recall that if Xt is a diffusion satisfying

dXt = m(Xt) dt+ σ(Xt) dBt,

then the Markov process Xt has generator

Lf(x) = m(x) f ′(x) +
σ2(x)

2
f ′′(x),

and Itô’s formula gives

df(Xt) = Lf(Xt) dt+ f ′(Xt)σ(Xt) dBt.

In other words, if

Mt = f(Xt)−
∫ t

0

Lf(Xs) ds,

then Mt a (local) martingale satisfying

dMt = f ′(Xt)σ(Xt) dBt.

Proposition 6.3.2. Suppose Xt is a compound Poisson process with Lévy
measure µ, and suppose that f is a continuous function such that for all x, t,

E
[
f(Xt)

2 | X0 = x
]
<∞.

Then

Mt = f(Xt)−
∫ t

0

Lf(Xs) ds

is a square integrable martingale with

⟨M⟩t = ⟨f(X)⟩t =
∑
s≤t

[f(Xs)− f(Xs−)]
2 .
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The proof of this proposition is similar to the derivation of Itô’s formula.
We will first show that Mt is a martingale, that is, E[Mt | Fs] = Ms. The
argument is essentially the same for all s so we will assume that s = 0 and
X0 = x. We need to show that

E
[
f(Xt)− f(X0)−

∫ t

0

Lf(Xs) ds

]
= 0.

This argument is the same for all t, so let us assume t = 1. Then, as in the
proof of Itô’s formula, we write

f(X1)− f(X0)−
∫ 1

0

Lf(Xs) ds

=
n∑

j=1

[
f
(
X j

n

)
− f

(
X (j−1)

n

)
−
∫ j/n

(j−1)/n

Lf(Xs) ds

]
.

We write the expectation of the right-hand side as the sum of two terms

n∑
j=1

E
[
f
(
X j

n

)
− f

(
X (j−1)

n

)
− 1

n
Lf
(
X (j−1)

n

)]
(6.7)

n∑
j=1

E

[
1

n
Lf
(
X (j−1)

n

)
−
∫ j/n

(j−1)/n

Lf(Xs) ds

]
, (6.8)

The definition of L implies that

E [f(Xt+∆t) | Ft] = f(Xt) + Lf(Xt)∆t+ o(∆t),

and hence
E [f(Xt+∆t)− f(Xt)− Lf(Xt)∆t] = o(∆t).

This shows that the sum in (6.7) has n terms that are o(1/n) and hence
the limit is zero. The terms inside the expectation in (6.8) equal zero unless
there is a jump between time (j−1)/n and j/n. This occurs with probability
O(1/n) and in this case the value of the random variable is O(1/n). Hence
the expectations are O(1/n2) and the sum of n of them has limit zero.

The computation of the quadratic variation is essentially the same as in
Proposition 6.3.1.
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Suppose that Xt = SNt where Nt is a Poisson process of rate λ. Let
En be the event that Nt+(1/n) −Nt ≥ 2 for some t ≤ 1. We know that
∩nEn has probability zero, and hence since E[|f(X1)|] < ∞,

lim
n→∞

E [|f(X1)| 1En ] = 0.

Therefore,
E[f(X1)] = lim

n→∞
E[f(X1)1Ec

n
].

However,

E
[
[f(Xt+s)− f(Xt)] 1Ec

n

]
= sE[Lf(Xt)][1 +O(s)].

We therefore get

E [f(X1)− f(X0)] = lim
n→∞

1

n

n−1∑
j=0

E[Lf(Xj/n)].

Right-continuity implies that

lim
n→∞

1

n

n−1∑
j=0

Lf(Xj/n) =

∫ 1

0
Lf(Xs) ds,

and the bound E[|f(X1)|] < ∞ can be used to justify the interchange

of limit and expectation.

For a CPP the paths t 7→ Xt are piecewise constant and are discontinuous
at the jumps. As for the usual Poisson process, we have defined the path so
that is it right-continuous and has left-limits. We call a function cadlag (also
written càdlàg), short for continue à droite, limite à gauche, if the paths are
right-continuous everywhere and have left-limits. That is, for every t, the
limits

Xt+ = lim
s↓t

Xs, Xt− = lim
s↑t

Xs,

exist and Xt = Xt+. The paths of a CPP are cadlag. We can write

Xt = X0 +
∑
0≤s≤t

[Xs −Xs−] .

Although as written this sum is over an uncountable number of times s, the
term Xs −Xs− is only nonzero at those s at which the path is discontinuous
and this is a finite set.
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In the next section, we will use the following maximal lemma.

Lemma 6.3.3. If Xt is a CPP satisfying (6.5), Mt = Xt − tm, and

K = max
0≤t≤1

|Mt|,

then

P{|K| ≥ a} ≤ σ2

a2
.

Proof. Let
Kn = max{|Mj/n| : j = 1, 2, . . . , n}.

Since Xt has piecewise constant paths, K = limn→∞Kn and it suffices
to show for each n that

P{|Kn| ≥ a} ≤ σ2

a2
.

Fix n and let Zj = Mj/n, Zn = max{|Zj | : j = 1, . . . , n}. Then Zj is a
discrete-time martingale, and Corollary 1.7.2 gives

P{Zn ≥ a} ≤ E[Z2
n]

a2
=

E[M2
1 ]

a2
=

σ2

a2
.

6.4 Integration with respect to compound

Poisson processes

Defining the integral with respect to a compound Poisson process is easy. If
Xt is a CPP and At is another process, we could let∫ t

0

As dXs =
∑
0≤s≤t

As [Xs −Xs−] . (6.9)

As noted before, there are only a finite number of nonzero terms in the sum
so the sum is well defined. This definition requires no assumptions on the
process As. However, if we want the integral to satisfy some of the properties
of the Itô integral, we will need to assume more.
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Suppose that E[X1] = m,Var[X1] = σ2, and let Mt be the square in-
tegrable martingale Mt = Xt − mt. Then if the paths of At are Riemann
integrable, and the integral

Zt =

∫ t

0

As dMs =

∫ t

0

As dXs −m

∫ t

0

As ds

is well defined. Let Ft denote the information contained in {Ms : s ≤ t}
which is the same as the information contained in {Xs : s ≤ t}. In analogy
with the Itô integral, we might hope that if At is square integrable, piecewise
continuous, and adapted to {Ft}, then Zt would be a martingale. However,
this is not always the case as we now show.

Example 6.4.1. Suppose Xt is the CPP that takes jumps of rate 1 and when
it jumps it chooses ±1 each with the same probability. In other words, the
Lévy measure of X is the probability measure with µ({1}) = µ({−1}) = 1/2.
Thenm = 0, σ2 = 1, andAt = Xt−Xt− is adapted to {Ft}. It is discontinuous
only at the jumps of Xt and hence is piecewise continuous. However, if we
define the integral as in (6.9), then∫ t

0

As dXs =
∑
0≤s≤t

[Xs −Xs−]
2 ,

which has positive expectation (since it is nonnegative and has a positive
probability to be strictly positive).

The problem in our setup is that we allow a betting strategy that sees a
jump at time s and immediately changes the bet to take advantage of this. In
our frameweork, we will not allow these instantaneous changes by restricting
to strategies that are left-continuous.

Proposition 6.4.1. Suppose Xt is a CPP with σ2 <∞ and Mt = Xt −mt.
Suppose that At is a process satisfying:

� each At is measurable with respect to {Xs : 0 ≤ s ≤ t};

� with probability one, the paths of At are left-continuous, that is, At =
At−;

� for every t <∞, ∫ t

0

E[A2
s] ds <∞.
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Then

Zt =

∫ t

0

As dMs

is a square integrable martingale with

E
[
Z2

t

]
= σ2

∫ t

0

E
[
A2

s

]
ds. (6.10)

Rather than assuming that As is left-continuous, we can assume that As

has cadlag paths, but then we change the definition in (6.9) to∫ t

0

As dXs =
∑
0≤s≤t

As− [Xs −Xs−] .

Proof of Proposition 6.4.1. If s < t, then arguing as before,

E[As (Mt −Ms) | Fs] = AsE[Mt −Ms | Fs] = 0, (6.11)

E[A2
s (Mt −Ms)

2] = E
[
E(A2

s (Mt −Ms)
2 | Fs)

]
= E

[
A2

s E[(Mt −Ms)
2]
]

= σ2 (t− s)E[A2
s]. (6.12)

For each t, the probability that Mt− ̸= Mt = 0. Therefore, with proba-
bility one, for all rational times t,Mt = Mt−. Suppose that As is a sim-
ple process that changes values only at times in {0, 1/n, 2/n, 3/n, . . .}.
Then with probability one, for all t, if j/n ≤ t < (j + 1)/n,

Zt =

∫ t

0
As dMs =

j−1∑
i=0

A

(
i

n

) [
M

(
i+ 1

n

)
−M

(
i

n

)]
.

This expression uses the fact Mt = Mt− for all rational t. Using this
expression and (6.11) and (6.12) we see that Zt is a square integrable
martingale satisfying (6.10).

We now assume that At is adapted, left-continuous, and uniformly
bounded, that is, with probability one, |At| ≤ C for all t. Define An

t

by

An
t = Aj/n if

j

n
< t ≤ j + 1

n
.
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Left-continuity implies that with probability one for all t

At = lim
n→∞

An
t ,

and hence ∫ t

0
As dMs = lim

n→∞

∫ t

0
An

s dMs.

Using uniform boundedness, one can interchange limits and expecta-
tions to get (6.11) and (6.12).

Finally to remove the boundedness assumption, we let Tn = inf{t :
|At| = n} and let At,n = At∧Tn . As n → ∞, At,n → At, and we can
argue as before.

Example 6.4.2. Suppose Xt is a CPP with Lévy measure µ satisfying∫ ∞

−∞
e2y dµ(y) <∞.

Let f(x) = ex and St = f(Xt) = eXt which we can consider as a simple model
of an asset price with jumps. This is an analogue of geometric Brownian
motion for jump processes. Note that

f(x+ y)− f(x) = ex h(y) where h(y) = ey − 1,

and hence

Lf(x) =

∫ ∞

−∞
[f(x+ y)− f(x)] dµ(y) = rex,

where

r =

∫ ∞

−∞
h(y) dµ(y) <∞.

Note that

St − St− = St− h(Xt −Xt−). (6.13)

In particular, the jump times for S are the same as the jump times for X.
Let

X̂t =
∑
s≤t

h(Xt −Xt−)
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be the CPP with X̂0 = 0 that takes a jump of size h(y) whenever Xt takes a
jump of size y. This process has Lévy measure µ̂ where

µ̂(h(V )) = µ(V ), (6.14)

with mean m̂ = r. If Ŷt = X̂t − r t is the compensated CPP, we can write
(6.13) as

dSt = St− dX̂t = St− dŶt + r St− dt = St−

[
dŶt + r dt

]
.

Since St is piecewise continuous, it does not matter in the dt integral whether
we write St or St−. However, we must write St− in the dX̂t and dŶt integrals.

If r = 0, that is, if ∫ ∞

−∞
[ey − 1] dµ(y) = 0,

then X̂t and hence St are actually martingales. If r ̸= 0, we let S̃t = e−rt St =
eXt−rt. Since t 7→ e−rt is differentiable, we can use the product rule

dS̃t = St d[e
−rt] + e−rt dSt = S̃t− dŶt.

Example 6.4.3. We will proceed backwards through the last example to
solve the exponential differential equation for compound Poisson processes.
Suppose X̂t is a CPP whose Lévy measure µ̂ satisfies µ̂{x : x ≤ −1} = 0 and∫ ∞

−1

x2 dµ̂(x) <∞.

Let

m̂ =

∫ ∞

−1

x dµ̂(x) <∞,

and let Ŷt = X̂t − m̂ t be the compensated CPP which is a square integrable
martingale. Let µ be the measure as defined in (6.14) and let Xt denote the
corresponding process as in the previous example. In other words, if X̂t has
a jump of size y, then Xt has a jump of size h−1(y) = log[1 + y]. Then the
solutions to the exponential differential equation

dZt = Zt− dX̂t, dMt =Mt− dŶt,

are
Zt = Z0 e

Xt , Mt = Z0 e
Xt−m̂t.
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Note that we can write

Zt = Z0 exp

{∑
0<s≤t

log[1 + (X̂s − X̂s−)]

}
.

Example 6.4.4. More generally, the equations

dZt = At− Zt− dXt, dMt = At−Mt− dYt

where X is a CPP with compensated process Yt = Xt −mt, have solutions

Zt = Z0 exp

{∑
0<s≤t

log[1 + As− (Xs −Xs−)]

}
,

Mt = Zt exp

{
−m

∫ t

0

As− ds

}
= Zt exp

{
−m

∫ t

0

As ds

}
.

6.5 Change of measure

Suppose Xt is a CPP defined on the probability space (Ω,F ,P) with Lévy
measure µ and corresponding filtration {Ft}. We would like to do the ana-
logue of the Girsanov theorem to change the measure.

Suppose that strictly positive martingale Mt is a strictly positive mar-
tingale with respect to {Ft} with M0 = 1. As before, we can define a new
probability measure Q by saying that if V is Ft-measurable, then

Q[V ] = E [Mt 1V ] .

If we let Pt, Qt denote P, Q restricted to Ft, then Pt and Qt are mutually
absolutely continuous with

dQt

dPt

=Mt,
dPt

dQt

=
1

Mt

.

If ν is a another measure on R, we can ask if we can find a martingale so
that under the measure Q, Xt is a CPP with Lévy measure ν. A necessary
condition for this to hold is that µ and ν are mutually absolutely continuous
measures on R. Indeed, if V is a subset of R with µ(V ) > 0, ν(V ) = 0, then
Xt under P has positive probability of having Xs −Xs− ∈ V for some s ≤ 1,
while this has zero probability under Q.
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Maybe a bit surprising is the fact that the converse holds. Suppose ν, µ
are mutually absolutely continuous and let f = dν/dµ which we assume is
strictly positive. With respect to P, Xt satisfies

P{Xt+∆t −Xt ∈ V } = µ(V )∆t+ o(∆t),

and we would like

Q{Xt+∆t −Xt ∈ V } = ν(V )∆t+ o(∆t),

which would give

Q{Xt+∆t −Xt ∈ V }
P{Xt+∆t −Xt ∈ V }

=
ν(V )

µ(V )
+ o(∆t).

To get this we choose

Mt = exp

{∑
s≤t

f(Xs −Xs−)− rt

}
, r = ν(R)− µ(R).

Suppose we model an asset price by St = eXt where Xt is a CPP, and
suppose that ν is any measure equivalent to µ with∫ ∞

−∞
[ey − 1] dν(y) = 0.

Then Q is equivalent to P, and (see Example 6.4.2) S is a martingale with
respect to Q. In particular, there are many different measures Q that are
equivalent to P that make St a martingale. This is in contrast to the case
when Xt is a Brownian motion where such a measure is unique.

6.6 Generalized Poisson processes I

The generalized Poisson process is like the CPP except that the jump times
form a dense subset of the real line. Suppose that µ is a measure on R. We
want to consider the processXt that, roughly speaking, satisfies the condition
that the probability of a jump whose size lies in [a, b] occurring in time ∆t
is about µ[a, b] ∆t. The CPP assumes that

µ(R) =
∫ ∞

−∞
dµ(x) <∞,
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and this implies that there are only a finite number of jumps in a bounded
time interval. In this section we allow an infinite number of jumps (µ(R) =
∞), but require the expected sum of the absolute values of the jumps in an
interval to be finite. This translates to the condition∫ ∞

−∞
|x| dµ(x) <∞. (6.15)

This implies that

µ{x : |x| > ϵ} <∞ for every ϵ > 0, (6.16)

but it is possible for µ{x : |x| > 0} to be infinite.
To be more specific, let µϵ denote the measure µ restricted to jumps of

absolute value strictly greater than ϵ. For each ϵ, we have a compound process
with Lévy measure µϵ which can be written as

Xϵ
t =

∑
0≤s≤t

(Xϵ
s −Xϵ

s−).

Let us write
V ϵ
t =

∑
0≤s≤t

∣∣Xϵ
s −Xϵ

s−
∣∣ ,

which is a CPP with measure µ̄ϵ defined by

µ̄ϵ(a, b) = µϵ(a, b) + µϵ(−b,−a), ϵ ≤ a < b <∞.

In other words V ϵ
t has the same jumps as Xϵ

t except that they all go in the
positive direction. As ϵ ↓ 0, V ϵ

t increases (since we are adding jumps and they
are all in the same direction) and using (6.15), we see that

lim
ϵ↓0

E [V ϵ
t ] = t

∫ ∞

−∞
|x| dµ(x) <∞.

Hence we can define
Vt = lim

ϵ↓0
V ϵ
t

and E[Vt] <∞. Similarly, we can define

Xt = lim
ϵ↓0

Xϵ
t .
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Since |Xϵ
t | ≤ Vt, the dominated convergence theorem is used to justify inter-

changes of limits.
Let Tn be the set of times such that the process X

1/n
t is discontinuous,

and let

T =
∞⋃
n=1

Tn.

Since each Tn is finite, the set T is countable, but if µ(R) = ∞ , T will be
infinite and, in fact, dense in every interval. Even though there are jumps in
every interval, the paths are cadlag, that is, they are right continuous and
the limits

Xt− = lim
s↑t

Xs

exist for every s.
Calculating as in the previous section we can see the following.

Proposition 6.6.1. Suppose Xt is a generalized Poisson process with Lévy
measure µ. Then

Ψ(s) =

∫ ∞

−∞
[eixs − 1] dµ(x),

E[Xt] = tm, m =

∫ ∞

−∞
x dµ(x),

Lf(x) =

∫ ∞

−∞
[f(x+ y)− f(x)] dµ(y),

Var[Xt] = E[(Xt −mt)2] = t

∫ ∞

−∞
x2 dµ(x).

One may worry about the existence of the integrals above. Taylor’s
theorem implies that

eixs − 1 = ixs− x2s2

2
+O(|xs|3).

Using this and (6.15) we can see that∫
|x|≤1

|eixs − 1| dµ(x) < ∞.
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Also, ∫
|x|>1

|eixs − 1| dµ(x) ≤ 2µ{x : |x| > 1} < ∞.

For the generator L we assume that f is C1 and hence for y near the
origin

f(x+ y)− f(x) = O(|y|).

Then, ∫
|x|≤1

|f(x+ y)− f(x)| dµ(y) < ∞.

Finiteness of the integral∫
|x|>1

|f(x+ y)− f(x)| dµ(y)

requires some assumptions on the growth of f at infinity.

We can relax the conditions somewhat by requiring (6.16) to hold but
replacing (6.15) with the weaker condition∫ 1

−1

|x| dµ(x) <∞. (6.17)

Indeed, if (6.16) and (6.17) hold we can write

µ = µ1 + µ2,

where µ1 is µ restricted to {|x| ≤ 1} and µ2 is µ restricted to {|x| > 1}. To
µ1 we associate the generalized Poisson process X1

t and to µ2 we associate
an independent CPP, and then set Xt = X1

t +X2
t . In this case it is possible

that E[|Xt|] = ∞. However, the formulas for Ψ and L are the same as above.

Example 6.6.1 (Positive Stable Processes). Suppose that 0 < β < 1 and µ
is defined by

dµ(x) = c x−(1+β) dx, 0 < x <∞,

where c > 0. In other words, the probability of a jump of size between x and
x+∆x in time ∆t, is approximately

c x−(1+β) (∆t) (∆x).
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Note that ∫ ∞

ϵ

c x−(1+β) dx =
c

β
ϵ−β,∫ 1

0

x dµ(x) = c

∫ 1

0

x−β dx =
c

1− β
<∞,∫ ∞

0

x dµ(x) = c

∫ ∞

0

x−β dx = ∞.

Therefore, µ satisfies (6.16) and (6.17), but not (6.15). The corresponding
generalized Poisson process has

Ψ(s) = c

∫ ∞

0

[eisx − 1]x−(1+β) dx.

With careful integration, this integral can be computed but we omit it. Using
the change of variables y = rx, we can see that if r > 0, then

Ψ(rs) = c

∫ ∞

0

[eirsx − 1]x−(1+β) dx = crβ
∫ ∞

0

[eisy − 1] y−(1+β) dy.

This implies that the distribution of rX1 is the same as that of Xrβ . In
particular, X1/n has the same distribution as n−1/β X1 and hence we can
write

X1 =
Z1 + · · ·+ Zn

n1/β
, Zj = n1/β [Xj/n −X(j−1)/n],

where Z1, . . . , Zn are independent with the same distribution as X1. The
process Xt is called the positive stable process with exponent β.

Example 6.6.2 (Gamma process). Suppose λ > 0 and µ is defined by

dµ(x) =
e−λx

x
dx, 0 < x <∞.

Note that ∫ ∞

0

dµ(x) = ∞,

∫ ∞

0

x dµ(x) <∞.

Using a table of integrals, we can see that the characteristic exponent is

Ψ(s) =

∫ ∞

0

[eisx − 1] dµ(x) =

∫ ∞

0

e(is−λ)x − e−λx

x
dx = log

λ

λ− is
.
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In other words, the characteristic function ofXt is ϕXt(s) = [λ/(λ−is)]t. This
is the characteristic function of a Gamma random variable with parameters
λ and t, that is, the density of Xt is

ft(x) =
λ

Γ(t)
(λx)t−1 e−λx, 0 < x < 1,

where

Γ(t) =

∫ ∞

0

xt−1 e−x dx,

is the Gamma function. Important values of t are the following.

� X1 has the distribution of an exponential random variable with rate λ.

� If n is a positive integer, then Xn has the distribution of the sum of
n independent random variables each exponential with rate λ. If Ns

is a Poisson process with rate λ with N0 = 0, then Xn has the same
distribution as inf{s : Ns = n}.

� If λ = 1/2 and n is a positive integer, then Xn/2 has a χ2 distribution
with n degrees of freedom, that is, it has the same distribution as

Z2
1 + · · ·+ Z2

n,

where Z1, . . . , Zn are independent, standard normal random variables.

The process Xt is called the Gamma process with parameter λ.

6.7 Generalized Poisson processes II

In the previous section, we assumed that the expected sum of the absolute
values of the jump was finite. There are jump Lévy processes that do not sat-
isfy this condition. These processes have many “small” jumps. Although the
absolute values of the jumps are not summable, there is enough cancellation
between the positive jumps and negative jumps to give a nontrivial process.

We will construct such a process associated to a Lévy measure µ satisying
the following assumptions.

� For every ϵ > 0, the number of jumps of absolute value greater than ϵ in
a finite time interval is finite. More precisely, if µϵ denotes µ restricted
to {|x| > ϵ}, then

µϵ(R) = µ {x : |x| > ϵ} <∞ for every ϵ > 0. (6.18)
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� All jumps are bounded in absolute value by 1, that is,

µ{x : |x| > 1} = 0. (6.19)

� The second moment of the measure is finite,

σ2 :=

∫ ∞

−∞
x2 dµ(x) <∞. (6.20)

Note that (6.20) can hold even if (6.15) does not hold.

Let

mϵ =

∫ ∞

−∞
x dµϵ(x) =

∫
ϵ<|x|≤1

x dµ(x),

which is finite and well defined for all ϵ > 0 by (6.18)–(6.20). For each
ϵ > 0, there is a CPP Xϵ

t associated to the measure µϵ and a correponding
compensated Poisson process M ϵ

t = Xϵ
t −mϵt.

Definition Suppose µ is a measure on R satisfying (6.18)–(6.20). Then the
compensated generalized Poisson process (CGPP) with Lévy measure µ is
given by

Yt = lim
ϵ↓0

M ϵ
t = lim

ϵ↓0
[Xϵ

t −mϵt]. (6.21)

Two important cases are the following.

� If ∫ ∞

−∞
|x| dµ(x) <∞,

then the (uncompensated) generalized Poisson process

Xt = lim
ϵ↓0

Xϵ
t ,

as in the previous section exists. In this case

Yt = Xt −mt,

where

m = lim
ϵ↓0

mϵ =

∫ ∞

−∞
x dµ(x).
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� If µ is symmetric about the origin, that is, if for every 0 < a < b the
rate of jumps with increments in [a, b] is the same as that of jumps in
[−b,−a], then mϵ = 0 for every ϵ and

Yt = lim
ϵ↓0

Xϵ
t .

Proposition 6.7.1. If Yt is a CGPP with Lévy measure µ, then

Ψ(s) =

∫ 1

−1

[eisx − 1− isx] dµ(x),

Lf(s) =

∫ ∞

−∞
[f(x+ y)− f(x)− yf ′(x)] dµ(y).

The latter quantity is defined provided that f is a C2 function. If also
E[f(Yt)2] <∞, then

Mt = f(Yt)−
∫ t

0

Lf(Ys) ds

is a square integrable martingale with

⟨M⟩t =
∑
s≤t

[f(Ys)− f(Ys−)]
2.

Proof. Let Xϵ = Xϵ
1 and M ϵ =M ϵ

1 = Xϵ −mϵ. Let Ψ
ϵ = ΨMϵ and note that

Ψϵ(s) = ΨXϵ(s)− imϵs =

∫
|x|>ϵ

[eisx − 1]dµ(x)− imϵs.

Since

mϵ =

∫
|x|>ϵ

x dµ(x),

we can write

Ψϵ(s) =

∫
|x|>ϵ

[eisx − 1− isx] dµ(x).

Using Taylor series, we see that |eisx − 1− isx| = O(s2x2), and hence (6.20)
implies that for each s,∫

|eisx − 1− isx| dµ(x) <∞.
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This allows us to use the dominated convergence theorem to conclude that

lim
ϵ↓0

Ψϵ(s) =

∫ 1

−1

[eisx − 1− isx] dµ(x).

Since Y = limϵ↓0M
ϵ, we can conclude that this limit equals Ψ(s).

The second equation is obtained by taking the limit of (6.6).

A particular case of the proposition is f(x) = x in which we conclude
that Yt is a square integrable martingale with

⟨Y ⟩t =
∑
s≤t

[Ys − Ys−]
2.

The same argument shows that the moment generating function also exists
and

E[esYt ] = exp

{
t

∫ 1

−1

[esx − 1− sx] dµ(x)

}
, s ∈ R.

In particular, E[esYt ] <∞ for all s, t. (This is in contrast to CCPs for which
this expectation could be infinite.)

We will establish existence of the limit in (6.21) both in L2 and with
probability one. Let us first consider the case t = 1. Let

Y ϵ = Y ϵ
1 = Xϵ

1 −mϵ.

It suffices to prove the existence of

Y = lim
ϵ↓0

Y ϵ.

Let Zn = Y 2−n − Y 2−(n+1)
, so that

Y =
∞∑
n=0

Zn.

The random variables Zn are independent, mean zero, and

∞∑
n=0

Var[Zn] < ∞.
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Therefore
∑

Zn converges to a random variable Y in both L2 and
with probability one (see Exercise 1.14). If 2−n ≤ ϵ < 2−n+1, then

E

[
(Y ϵ −

n∑
k=0

Zk)
2

]
≤
∫ 2−n+1

2−n

x2 dµ(x),

which goes to zero as n → ∞. Hence

lim
ϵ↓0

E
[
|Y ϵ − Y |2

]
= 0.

Convergence with probability one can be deduced from Lemma 6.3.3.

We now define Yq as in (6.21) for q ∈ D as the limit with probability
one. For other t we define

Yt+ = lim
q↓t

Yq, Yt− = lim
q↑t

Yq. (6.22)

Here we use the shorthand that when q is the index, the limit is taken
over D only. Define the jump time Tϵ to be the set of times s such that
Xϵ is discontinuous and T = ∪∞

j=1T1/j . With probability one each Tϵ
is finite and hence T is countable.

Proposition 6.7.2. With probability one, the limits in (6.22) exists
for all t. Moreover, they are equal unless t ∈ T .

Proof. Let

S2
ϵ = E

[
(Y − Yϵ)

2
]
=

∫
|x|≤ϵ

x2 dµ(x).

Let

M ϵ = sup
{
|Yq − Y ϵ

q | : q ∈ D, q ≤ 1
}
.

Using Lemma 6.3.3 (first for Y δ
t − Y ϵ

t and then letting δ ↓ 0), we can
see that

P{M ≥ a} ≤ S2
ϵ

a2
.

We can find ϵn ↓ 0 such that

∞∑
n=1

n2 S2
ϵn < ∞.
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Then if Mn = M ϵn , by the Borel-Cantelli lemma, with probability
one, for all n sufficiently large Mn ≤ 1/n and this inequality implies
that for all t, ∣∣∣∣∣lim sup

q↓t
Yq+ − lim

q↓t
Y ϵn
q+

∣∣∣∣∣ ≤ 1

n
.

Similar estimates hold for the liminf and for limits from the left.

We now define Yt for all t by Yt = Yt+, and then the paths of Yt are
cadlag.

6.8 The Lévy-Khinchin characterization

The next theorem tells us that all Lévy processes can be given as independent
sums of the processes we have described.

Theorem 6.8.1. Suppose Xt is a Lévy process with X0 = 0. Then Xt can
be written as

Xt = mt+ σ Bt + Ct + Yt, (6.23)

where m ∈ R, σ ≥ 0, and Bt, Ct, Yt are independent of the following types:

� Bt is a standard Brownian motion,

� Ct is a compound Poisson process with Lévy measure µC satisfying

µC{|x| ≤ 1} = 0,

µC(R) = µC{|x| > 1} <∞,

� Yt is a compensated generalized Poisson process with Lévy measure µY

satisfying

µY ({0}) = 0, µY {|x| > 1} = 0,∫ ∞

−∞
x2 dµY (x) <∞.
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The process Ct+Yt is called a pure jump Lévy process. We can summarize
the theorem by saying that every Lévy process is the independent sum of a
Brownian motion (with mean m and variance σ2) and a pure jump process
(with Lévy measure µ = µC + µY .)

We have not included the generalized Poisson process in our decomposi-
tion (6.23). If Xt is such a process we can write it as

Xt = Ct + X̂t

where Ct denotes the sum of jumps of absolute value greater than one. Then
we can write X̂t = Yt + m̂t where Yt is a compensated generalized Poisson
process and m̂ = E[X̂1], which by the assumptions is finite.

The conditions on µC , µY can be summarized as follows:

µ({0}) = 0,

∫ ∞

−∞
[x2 ∧ 1] dµ(x) <∞. (6.24)

To specify the distribution of a Lévy processes, one needs to give m ∈ R, σ >
0 and a measure µ satisfying (6.24). We then set µC to be µ restricted to
{|x| > 1} and µY to be µ restricted to {|x| ≤ 1}. We have already shown
that (m,σ, µ) determine a Lévy process. To prove the theorem, therefore, we
need to show that any Lévy process can be written like this.

We will not give the entire proof of this theorem, but let us sketch how
one derives it. Suppose Xt is a Lévy process. Suppose that the process has
jumps. For every a > 0, we can write

Xt = X̂t,a + Ĉt,a,

where Ĉt,a denotes the movement by jumps of absolute value greater than a

and X̂t,a denotes a Lévy process with all jumps bounded by a. For each a

one can show that Ĉt,a is a CPP independent of X̂t,a. We let a go to zero,
and after careful analysis we see that

Xt = Zt + Ct,1 + Yt,

where Yt is compensated generalized Poisson process and Zt is a Lévy process
with continuous paths. We then show that Zt must be a Brownian motion.
The following theorem is related and proved similarly.
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Theorem 6.8.2. (Lévy-Khinchin) If X has an infinitely divisible distribu-
tion, then there exist m,σ, µC , µY satisfying the conditions of Theorem 6.8.1
such that

ΨX(s) = ims− σ2

2
s2 +

∫
|x|>1

[eisx − 1] dµC(x)

+

∫
|x|≤1

[eisx − 1− isx] dµY (x).

We show how to prove this theorem and then prove another theorem
which is a key step in the proof of Theorem 6.8.1.

Here we will show that if X has an infinitely divisible distribution,
then the characteristic function of X can be written as ϕ(s) = eΨ(s)

where

Ψ(s) = ims− σ2s

2
+

∫
[eisx − 1− isx1{|x| ≤ 1}]µ(dx),

where m ∈ R, σ2 ≥ 0, and µ is a measure on R with µ{0} = 0 and∫
x2

1 + x2
µ(dx) < ∞.

We fix X and allow all constants to depend on the distribution of X.
Let s0 be such that |ϕ(s)− 1| ≤ 1/2, s ≤ s0.

Since X is infinitely divisible we can write

X = Y1,n + · · ·+ Yn,n,

where Y1,n, . . . , Yn,n are i.i.d. We write µn for the distribution of Y1.n
and νn = nµn. We let Ỹj,n = Yj,n 1{|Yj,n| ≤ 1} and let

m̃n = E[Ỹj,n], σ̃2
n = Var[Ỹj,n].

Let ϕn(s) = eΨn(s) denote the characteristic function of Y1,n and note
that ϕ(s) = ϕn(s)

n. It suffices to find m,σ2, µ and a subsequence nj

such that for |s| ≤ s0,

lim
j→∞

nj Ψnj (s) = ims−σ2s

2
+

∫
[eisx−1−isx1{|x| ≤ 1}]µ(dx). (6.25)
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Lemma 6.8.3.

� For all ϵ > 0, there exists Mϵ < ∞ such that for all n, νn{|x| ≥
Mϵ} ≤ ϵ.

� For every y > 0, there exists r < ∞ such that for all n, νn{|x| ≥
y} ≤ r.

�

sup
n

n[µ̃n + σ̃2
n] < ∞.

Proof. By symmetry it suffices to estimate νn{x ≥ r}. We first make
the easy observation that for every r < ∞, for all n sufficiently large
µn(−∞, 1) ≥ r/n. Indeed, if this were not true, then there exists a
subsequence nj such that with probability at least(

1− r

nj

)nj

∼ e−r

we would have Yj,nj ≥ 1 for j = 1, . . . , nj which implies that with
positive probability X = ∞.

Let M, r < ∞ and let qn = min{r/n, µn[M,∞)} and for n > 2/r
define δ±n to be the infimum (supremum) of all numbers such that

P{Y1,n ≥ δ+n } ≤ qn, P{Y1,n ≤ δ−n } ≤ qn.

Using this we can find a random variable with the same distribution
as Y1,n by the following.

� With probability 1 − 2qn choose from distribution ρ1 and with
probability 2qn choose from distribution ρ2.

� Distribution ρ2 satisfies ρ2(−∞, 1] = 1
2 , ρ2[M,∞) = 1

2 .

By focusing on the first time that one chooses from ρ2 we see that the
conditional distribution on a set of probability pn := 1− (1− qn)

n has
a “spread” of at least M − 1. Another way of saying this is that if x
is the median of the distribution of the sum of the remaining terms,
there is probability at last pn/4 of being less than x+1 and probability
at last pn/4 of being greater than x+M .

If a > 0, let rn = nP{a ≤ Y1,n} and assume rn ≥ 1. Using the first part
we can find b (independent of n, a) with P{a ≤ Y1,n ≤ b} ≥ rn/(2n).
If 0 < s < 1/2b, then

|1− eiys| ≥ c y2 s2, 0 ≤ |y| ≤ b.
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Find 0 ≤ s ≤ 1/2b such that |ϕ(s)| ≥ 1/e. We have for n sufficiently
large

|ϕn(s)| ≤ 1− cs2a2rn
2n

.

and hence

lim inf
n→∞

2ncs2a2rn ≤ 1.

Let Yn =
∑

j Ỹ1,n. Using the second part, we see that P{Ỹj,n =
Yj,n, j = 1, . . . , n} ≥ c, and hence the {Yn} are tight, that is, for
every ϵ > 0, there exists Kϵ such that for all n, P{|Yj,n| > Kϵ} < ϵ.
Chebyshev’s inequality gives

P
{
|Yn| ≤

n|m̃n|
2

}
≤ P

{
|Yn − nm̃n| ≥

n|m̃n|
2

}
≤ 4nσ̃2

n

n2m̃2
n

.

If nσ̃2
n is bounded and nj is a subsequence with nj |m̃nj | → ∞, then

we would have

lim sup
y→∞

P
{
|Ynj | ≥

nj |m̃nj |
2

}
= 1,

which contradicts the tightness of Yn. Suppose nj σ̃
2
nj

→ ∞. Then

tightness gives that |m̃nj |2 = o(σ̃2
nj
) and hence E[|Ỹ1,nj |3] ≤ E[Ỹ 2

1,nj
] ∼

σ̃2
nj
. To be a bit more precise, we would assume that

Yn − n m̃n√
nσ̃2

n

would approach a normal distribution. If nσ̃2
n → ∞ this would indicate

that Yn is not tight and one can make this precise with the Berry-
Esseen theorem (using the upper bound on the thrid moment). Hence
nσ̃2

n is bounded and hence n|m̃n| is bounded.

Using the lemma we can find a measure µ with µ{0} = 0 and a
subsequence nj such that for all bounded continuous functions f that
vanish in a neighborhood of the origin,

lim
j→∞

∫
f(x)νnj (dx) =

∫
f(x)µ(dx).
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By taking a subsubsequence if necessary we can also conclude that
there exists m̃, σ̃2 such that

lim
j→∞

nj m̃nj = m̃, lim
j→∞

nj σ
2
nj

= σ̃2.

We will assume that µ{−1, 1} = 0. If this is not the case, find b with
µ{−b, b} = 0 and do the proof similarly defining Ỹ1,n = Y1,n 1{|Ỹ1,n| ≤
b}. We will establish (6.25) with this µ, m = m̃ and

σ2 = σ̃2 −
∫
|x|≤1

x2 µ(dx).

For the remainder we fix s with |s| ≤ s0 and allow constants to depend
on s. We note that

|ϕn(s)− 1| ≤ c/n,

and hence

ϕ(s) = [1 + ϕn(s)− 1]n = exp {n(ϕn(s)− 1)} [1 +O(n−1)],

Ψ(s) +O(n−1) = n [ϕn(s)− 1]

=

∫
[eisx − 1] νn(dx)

= isnm̃n +

∫
[eisx − 1− isx1{|x| ≤ 1}] νn(dx).

lim
j→∞

∫
|x|>a

[eisx − 1− isxgϵ(x)] νnj (dx) =

∫
|x|>a

[eisx − 1− isxgϵ]µ(dx).

Using µ{−a, a−1, 1} = 0 (to handle the discontinuity of the integrand
at x = ±a,±1), we can see that

lim
j→∞

∫
|x|>a

[eisx − 1− isx1{|x| ≤ 1}] νnj (dx)

=

∫
|x|>a

[eisx − 1− isx1{|x| ≤ 1}]µ(dx).

Also,
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∣∣∣∣∣
∫
|x|≤a

[eisx − 1− isx1{|x| ≤ 1}] νn(dx) +
s2

2

∫
|x|≤a

x2 νn(x)

∣∣∣∣∣
≤ c

∫
|x|≤a

|x|3νn(dx)

≤ c a

∫
|x|≤a

x2νn(dx)

≤ ca.

Also, as j → ∞, again using µ{±a,±1} = 0,∫
|x|≤a

x2 νnj (x) =

∫
|x|≤1

x2 νnj (x)−
∫
a<|x|≤1

x2 νnj (x)

= o(1) + σ̃2 −
∫
a<|x|≤1

x2µ(dx).

By taking a → 0 at an appropriate rate, we see that

lim
j→∞

∫
[eisx − 1− isx1{|x| ≤ 1}] νnj (dx)

= −s2

2

[
σ̃2 −

∫
x2 1{|x| ≤ 1}]µ(dx)

]
+

∫
[eisx − 1− isx1{|x| ≤ 1}] ν(dx).

Theorem 6.8.4. Suppose Xt is a Lévy process with continuous paths.
Then Xt is a Brownian motion.

Proof. All we need to show is that X1 has a normal distribution. Let

Xj,n = Xj/n −X(j−1)/n,

Mn = max {|Xj,n| : j = 1, . . . , n} .

Continuity of the paths implies that Mn → 0 and hence for every
a > 0, P{Mn < a} → 1. Independence of the increments implies that

P{Mn < a} =
[
1− P{|X1/n| ≥ a}

]n
≤ exp

{
−nP{|X1/n| ≥ a}

}
.
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Therefore, for every a > 0,

lim
n→∞

nP{|X1/n| ≥ a} = 0. (6.26)

This implies that there exists a sequence an ↓ 0 with

lim
n→∞

nP{X1/n ≥ an} = 0. (6.27)

We claim that all the moments of X1 are finite. To see this let J =
max0≤t≤1 |Xt| and find k such that P{J ≥ k} ≤ 1/2. Then using
continuity of the paths, by stopping at the first time t that |Xt| = nk,
we can see that

P{J ≥ (n+ 1)k | J ≥ nk} ≤ 1/2,

and hence

P{J ≥ nk} ≤ (1/2)n,

from which finiteness of the moments follows. Let m = E[X1], σ
2 =

Var[X1], and note that E[X2
1 ] = m2 + σ2. Our goal is to show that

X1 ∼ N(m,σ2).

Let

X̃j,n = Xj,n 1{|Xj,n| ≤ an}, Zn =
n∑

j=1

X̃j,n.

Let ϕn denote the characteristic function of X̃j,n and hence [ϕn]
n is

the characteristic function of Zn. It follows from (6.27) that Zn → X1

in distribution, so it suffices to prove that for every s

lim
n→∞

[ϕn(s)]
n = exp

{
ims− σ2s2

2

}
.

Also, it is easy to check that E[Zn] → m,Var[Zn] → σ2 and hence

E[X̃1,n] =
m [1 + o(1)]

n
, E[X̃2

1,n] =

[
m2

n2
+

σ2

n

]
(1 + o(1)).

Also, since|X̃1,n| ≤ an,

E[|X̃1,n|3] ≤ an E[X̃2
1,n] = an

[
m2

n2
+

σ2

n

]
[1 + o(1)].
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(This estimate uses (6.27) which in turn uses the fact that the paths
are continuous.) Using these estimates, we see that for fixed s,

ϕn(s) = 1 +
ims

n
− σ2s2

2n
+ o

(
1

n

)
,

where the o(·) term depend on s. This implies that

lim
n→∞

ϕn(s)
n = lim

n→∞

[
1 +

ims

n
− σ2s2

2n
+ o

(
1

n

)]n
= exp

{
ims− σ2s2

2

}
.

6.9 Integration with respect to Lévy pro-

cesses

Suppose Xt is a Lévy process which by Theorem 6.8.1 we can write as

Xt = mt+ σ Bt + Ct + Yt.

We will define the integral ∫ t

0

AsXs

by

m

∫ t

0

As ds+ σ

∫ t

0

As dBs +

∫ t

0

As dCs +

∫ t

0

As dYs.

The first integral is a Riemann integral, the second is an Itô integral as
in Chapter 3, the third integral was defined in Section 6.4, and this leaves
us only the fourth integral to define. As we saw in Section (6.4), the third
integral does not have the properties we want unless we assume that At is
left continuous. The same problems exists for the fourth integral so we will
restrict to such processes.

Assume that Yt is a process with Lévy measure µ satisfying (6.18)–(6.20).
Then Yt is a square integrable martingale with E[Yt] = σ2 t (this is not the
same σ as in the previous paragraph). This will allow us to define∫ t

0

As dYs
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as an Itô integral as in Chapter 3.
We start with simple processes. Suppose At is a simple process as in

Section 3.2.2. To be specific, suppose that times 0 ≤ t0 < t1 < · · · < tn <∞
are given, and As = Atj t for tj ≤ s < tj+1. Then, we define

∫ t

0

As dYs =

j−1∑
i=0

Ati [Yti+1
− Yti ] + Atj [Yt − Ytj ].

With probability one, the paths of Yt are continuous at the times t1, . . . , tn so
the definition above does not care whether we choose the simple process As

to be right continuous or left continuous. The following proposition is proved
in the same way as Proposition 3.2.1.

Proposition 6.9.1. Suppose At, Ât are bounded simple processes adapted to
the filtration of the process Yt.

� Linearity. If a, b are constants, then aAt+ bÂt is also a simple process
and ∫ t

0

(aAs + bÂs) dYs = a

∫ t

0

As dYs + b

∫ t

0

Âs dYs.

Moreover, if 0 < r < t,∫ t

0

As ds =

∫ r

0

As dYs +

∫ t

r

As dYs.

� Martingale property. The process

Zt =

∫ t

0

As dYs

is a martingale with respect to {Ft}.

� Variance rule. Zt is square integrable and

Var[Zt] = σ2E
[
Z2

t

]
=

∫ t

0

E[A2
s] ds.

� Cadlag paths. With probability one, the function t 7→ Zt is cadlag.
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We now suppose that As is an adapted process with left continuous paths.
If Ãs is an adapted process with cadlag paths, we could take As = Ãs−. We

approximate As by a simple process A
(n)
s by choosing

A(n)
s = 2n

∫ j2−n

(j−1)2−n

Ar dr if
j

2n
< r ≤ j + 1

2n
.

The integral is defined by∫ t

0

As dYs = lim
n→∞

∫ t

0

A(n)
s dYs.

Let us give be more precise about this definition. Suppose that At

is a process with left continuous paths with right limits, that is, the
left continuous version of a processes with cadlag paths. Assume that
exists K < ∞ such that with probability one. |At| ≤ K for all t. Since
with probability one, the paths are left continuous, we know that

lim
n→∞

A
(n)
t = At.

SInce |A(n)
t | ≤ K, we can used dominated convergence (for Lebesgue

measure) to show that with probability one,

lim
n→∞

∫ t

0
|A(n)

s −As|2 ds = 0,

and dominated convegence for P to see that

lim
n→∞

E
[∫ t

0
|A(n)

s −As|2 ds
]
= lim

n→∞

∫ t

0
E
[
|A(n)

s −As|2
]
ds = 0.

As in the case for Brownian motion, we use the proposition to see that
for fixed t, the sequence of random variables

Z
(n)
t :=

∫ t

0
A(n)

s dAs,

is a Cauchy sequence in L2 and has a limit Zt in L2.

We use this method to define the integral at dyadic times t, an we
define it at other times by

Zt = lim
tn↓t

Ztn

where tn are dyadic rationals.
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6.10 Symmetric stable process

An important example of a Lévy process is the symmetric stable process.
A random variable X has a symmetric stable distribution with parameter
α ∈ (0, 2] if ΨX(s) = −|cs|α for some c > 0. If α = 2, this means that X
has a normal distribution with mean zero and variance 2c2. For 0 < α < 2
these distributions arise in Lévy processes that we call symmetric α-stable
processes. The term stable comes from the following property.

Proposition 6.10.1. If X has a symmetric α-stable distribution and
X1, . . . , Xn are independent random variables with the same distribution as
X, then X has the same distribution as

Y =
X1 + · · ·+Xn

n1/α
.

Proof. Using properties of characteristic functions, we get

ΨY (s) =
n∑

j=1

ΨXj
(s/n1/α) = nΨX(s/n

1/α) = ΨX(s).

Definition If 0 < α ≤ 2, then a Lévy process Xt is a symmetric stable
process if

Ψ(s) = −|cs|α

for some c > 0.

Proposition 6.10.2. Suppose 0 < α < 2, C > 0 and Xt is a Lévy process
with Lévy measure

dµ(x) =
C

|x|1+α
dx. (6.28)

Then Xt is a symmetric α-stable process with Ψ(s) = −Cbα|s|α where

bα = 2

∫ ∞

0

1− cos y

y1+α
dy <∞.

The condition 0 < α < 2 is needed to guarantee that µ as defined in
(6.28) satisfies (6.24). Since 1− cos(y) = O(y2) as y → 0, we can see that bα
is finite. In fact, it can be calculated

bα =
π

Γ(α + 1) sin(απ/2)
,
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where Γ denotes the Gamma function. The proof of the proposition is a
simple computation. We write

Ψ(s) = C

∫
|x|≤1

[eisx − 1− isx]
dx

|x|1+α
+ C

∫
|x|>1

[eisx − 1]
dx

|x|1+α
.

Using eisx = cos(sx) + i sin(sx) and the fact that µ is symmetric about the
origin, we see that

Ψ(s) = 2C

∫ ∞

0

cos(sx)− 1

x1+α
dx

= 2C|s|α
∫ ∞

0

cos(y)− 1

y1+α
dy = −Cbα|s|α.

Suppose Xt has a symmetric α-stable process with Lévy measure as in
(6.28) with C = 1/bα. It can be shown that X1 has a symmetric density gα,

P{a ≤ X ≤ b} =

∫ b

a

gα(x) dx.

This density is bounded. Unfortunately, except for the case α = 1, there is
no explicit form expression for the density. Despite this fact, it is known that

gα(x) ∼
1

|x|1+α
, |x| → ∞,

and hence

P{|X1| ≥ K} ∼
∫
|x|≥K

gα(x) dx =
2

αKα
.

This comes from the fact that the easiest way for |X1| to be unusually large
is for there to be a single very large jump, and the probability of a jump of
size at least K by time one is asymptotic to µ{|x| ≥ K}.

If α = 1, then bα = π and the corresponding Lévy measure is

dµ(x) =
1

π x2
.

The density of X1 is the Cauchy density

g1(x) =
1

π (x2 + 1)
.
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The easiest way to check this is to compute the characteristic function of gt
and obtain e−|s|.

Symmetric stable distribution arise as limit distributions for sums of sym-
metric random variables with “heavy tails”. The next proposition gives one
version.

Proposition 6.10.3. Suppose α, c > 0 and X1, X2, . . . are independent,
identically distributed random variables with a bounded density f satisfying
f(x) = f(−x) and

f(x) ∼ c

x1+α
, x→ ∞, (6.29)

where ∼ means the ratio of the two sides converges to one.

� If 0 < α < 2, and

Zn =
X1 + · · ·+Xn

n1/α
, (6.30)

then Zn converges in distribution to an α-symmetic random variable.

� If α > 2, and

Zn =
X1 + · · ·+Xn√

n
,

then Zn converges in distribution to a centered normal random variable.

� If α = 2, and

Zn =
X1 + · · ·+Xn√

n log n
,

then Zn converges in distribution to a centered normal random variable.

If α > 2, then Var[Xj] <∞, and hence the result is a restatement of the
central limit theorem.

We will prove the proposition for 0 < α < 2. Our first observation
is that if X1, X2, . . . are independent, identically distributed random
variables whose characteristic exponent Ψ satisfies

Ψ(s) = −r |s|α + o(|s|α), s → 0, (6.31)

then Zn as defined in (6.30) converges to an α-stable distribution. This
follows since for each s,

lim
n→∞

ΨZn(s) = lim
n→∞

nΨ(s/n1/α) = −r |s|α.
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Therefore, we only need to show that (6.29) implies (6.31).

Let ϕ denote the characteristic function of X1, and note that −Ψ(s) =
− log ϕ(s) ∼ ϕ(s) − 1 as s → 0. By changing variables, we see that if
s > 0,

ϕ(s)− 1 =

∫ ∞

−∞
[eisx − 1] f(x) dx

= 2

∫ ∞

0
[cos(sx)− 1] f(x) dx

= 2s−1

∫ ∞

0
[cos y − 1] f(y/s) dy

= 2sα
∫ ∞

0
[cos y − 1] s−(1+α) f(y/s) dy

We claim that

lim
s↓0

∫ ∞

0
[cos y − 1] s−(1+α) f(y/s) dy = cI,

where

I =

∫ ∞

0

cos y − 1

y1+α
dy,

from which (6.31) follows with r = 2cI. To see this, let ϵ = (2−α)/6 >
0 and note that∣∣∣∣∣

∫ s1−ϵ

0
[cos y − 1] s−(1+α) f(y/s) dy

∣∣∣∣∣ ≤ C s−(1+α)

∫ s1−ϵ

0
y2 dy

≤ Cs(2−α)/2 −→ 0.

Also, for y ≥ s1−ϵ,

f(y/s) = c (y/s)−(1+α) [1 + o(1)],

and hence

lim
s↓0

∫ ∞

s1−ϵ

[cos y − 1] s−(1+α) f(y/s) dy

= c lim
s↓0

∫ ∞

s1−ϵ

[cos y − 1] y−(1+α) dy = cI.

Proposition 6.10.3 only uses stable processes for α ≤ 2. The next propo-
sition that shows that there are no nontrivial stable process for α > 2.
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Proposition 6.10.4. Suppose 0 < β < 1/2, and X1, X2, . . . are independent,
identically distributed each having the same distribution as

X1 + · · ·+Xn

nβ
.

Then P{Xj = 0} = 1.

We use the following lemma to prove Proposition 6.10.4.

Lemma 6.10.5. Suppose X is a nonconstant random variable with
characteristic function ϕ. Then there exists ϵ > 0 such that if |s| ≤ ϵ,
then

|ϕ(s)| ≤ 1− ϵ s2.

Proof. Let us first assume that X is bounded with mean m and vari-
ance σ2 > 0. Then, the characteristic function satisfies

ϕ(s) = eims

[
1− σ2

2
s2 +O(|s|3)

]
, s ↓ 0,

and hence there exists ϵ > 0 such that

|ϕ(s)| ≤
∣∣∣∣1− σ2

4
s2
∣∣∣∣ , |s| ≤ ϵ.

For general nonconstant X, we can find a bounded interval I such
that P{X ∈ I} = ρ > 0 and such the variance σ2 of the conditional
distribution given X ∈ I is positive. Then,

ϕ(s) = ρE[eisX | X ∈ I] + (1− ρ)E[eisX | X ̸∈ I].

There exists ϵ > 0 such that if |s| ≤ ϵ, |E[eisX | X ∈ I]| ≤ 1− (σ2s2/4)
and hence

|ϕ(s)| ≤ ρ

(
1− σ2

4
s2
)
+ 1− ρ = 1− ρσ2

4
s2.

To prove Proposition 6.10.4, let ϕ denote the characteristic function
of Xj . Then

ϕ(s) = ϕ(n−β s)n.
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If the distribution of Xj is nontrivial, then there exists ϵ > 0 such that
for |s| ≤ ϵ,

|ϕ(s)| ≤ 1− ϵ s2,

and hence for every s ̸= 0,

|ϕ(s)| = lim
n→∞

|ϕ(n−β s)|n ≤ lim
n→∞

(
1− ϵ n−2β s2

)n
≤ lim

n→∞
exp

{
−ϵ s2 n1−2β

}
= 0.

Since ϕ is continuous at 0 with ϕ(0) = 1, this is a contradiction.
Therefore, P{Xj = c} = 1 for some c and since c = (c + · · · + c)/nβ,
c = 0.

6.11 Exercises

Exercise 6.1. Suppose F (t) = P{T ≤ t} is the distribution function of a
continuous random variable T . Define the“inverse” function G by

G(r) = sup{t : F (t) ≤ r}.

1. Suppose U is a random variable distributed uniformly on [0, 1]. Show
that G(U) has distribution function F .

2. Find G in the case that T is exponential with rate λ.

3. Use the waiting time method as described in Section 6.2 to sample
from a Poisson process Xt with rate λ = 3/2. Run at least 3000 trials
to estimate the distributon of X3.

4. Compare the simulations with the actual distribution for X3.

Exercise 6.2. Suppose Yt is a Poisson process with parameter 2.

1. Find P{Y3 ≥ 2}.

2. Find P{Y4 ≥ Y1 + 2 | Y1 = 4}.

3. Find P{Y1 = 1 | Y3 = 4}.
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4. Find a nonrandom function a(t) such that

Xt = Yt − a(t)

is a martingale, that is, if s ≤ t,

E[Xt | Fs] = E[Xt | Ys] = Xs.

Here Ft denotes the information in {Ys : s ≤ t}.

Exercise 6.3. Suppose Xt is a compound Poisson process with λ = 2, and
measure µ# is given by a N(0, 1) distribution. In other words, the process
jumps when a Poisson process of rate 2 jumps and when it jumps it chooses
a jump size from a N(0, 1) distribution.

� Find the function f so that the Lévy measure µ can be written as
dµ = f(x) dx.

� Find E[Xt].

� Find E[X2
t ]

� What is the generator L of the process Xt?

� Does there exist a process St such that for each t, St is measurable with
respect to Ft, the information in {Xs : 0 ≤ s ≤ t}, and such that

– With probability one, St is differentiable with respect to t,

– Mt = X2
t − St is a martingale

If so find it.

Exercise 6.4. Let Xt be as in Exercise 6.3 and let

Zt = exp{Xt}.

1. Find E[Zt].

2. Find a continuous process St, adapted to the information in {Ft}, with
St > 0 such that St is differentiable with respect to t (except at the t
at which Xt jumps) and

Mt = Zt − St

is a martingale? Explain why St is not differentiable at the jump times
of Xt.
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3. Does there exist a process At, adapted to the information in {Ft}, with
At > 0 such that At is differentiable with respect to t (except at the t
at which Xt jumps) and

Mt = ZtAt

is a martingale?

Exercise 6.5. Suppose Yt is a Cauchy process, that is, a Lévy process such
that Y1 has a Cauchy distribution. Show why the following statement holds:
for every r > 0 and t > 0,

P
{
max
0≤s≤t

Ys > r

}
(∗) 2P{Yt > r}.

Here (∗) is one of the following: >,=, <. Your task is to figure out which of >
,=, < should go into the statement and explain why the relation holds. (Hint:
go back to the derivation of the reflection principle for Brownian motion. The
only things about the Cauchy process that you should need to use are that
it is symmetric about the origin and has jumps. Indeed, the same answer
should be true for any symmetric Lévy process with jumps.)

Exercise 6.6. Suppose Xt is a Poisson process with rate 1 and let r > 0
with filtration {Ft}, and

S̃t = eXt−rt.

1. Find a strictly positive martingale Mt with M0 = 1 such that S̃t is a
martingale with respect to the tilted measure Q given by

Q(V ) = E [1V Mt] , V ∈ Ft.

2. Is your choice of Mt and Q unique?

Exercise 6.7. Suppose f : R → R is a function that is right continuous at
every point. Let

Kf = sup{|f(x)| : 0 ≤ x ≤ 1}.

1. Give an example to show that it is possible that Kf = ∞.

2. Show that if f is a cadlag function, then Kf <∞.
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Exercise 6.8. Suppose Xt is a generalized Poisson process with Lévy mea-
sure µ given by

dµ(x) =
dx

x
, 0 < x < 1.

1. Is this a generalized Poisson process of Type I?

2. Find E[Xt],Var[Xt].

3. What is the probability that there are no jumps of size greater than
1/2 by time t = 2?

4. Let
f(t, x) = E

[
X4

t | X0 = x
]
.

Find the function g(x) such that

d

dt
f(t, x) |t=0= g(x).

Exercise 6.9. Suppose Xt is as in Exercise 6.8 and Bt is an independent
standard Brownian motion. Let Yt = Xt + t + 2Bt and answer the same
questions for Yt.

Exercise 6.10. Do Exercise 6.8 where

dµ(x) =
dx

|x|5/2
, 0 < |x| < 1.
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Chapter 7

Fractional Brownian motion

7.1 Definition

The assumptions of independent, stationary increments along with continu-
ous paths give Brownian motion. In the last chapter we dropped the conti-
nuity assumption and obtained Lévy processes. In this chapter we will retain
the assumptions of stationary increments and continuous paths, but will al-
low the increments to be dependent. The process Xt we construct is called
fractional Brownian motion and depends on a parameter H ∈ (0, 1) called
the Hurst index. It measures the correlation of the increments.

� When H > 1/2, the increments are positively correlated, that is, if the
process has been increasing, then it is more likely to continue increasing.

� When H < 1/2, the increments are negatively correlated, that is, if the
process has been increasing, then it is more likely to decrease in the
future.

� If H = 1/2, the increments are uncorrelated and the process is the
same as Brownian motion.

We will also assume that the process is self-similar.

� If a > 0, then the distribution of

Yt := a−H Xat

is the same as that of Xt. In particular, Xt has the same distribution
as tH X1.

237
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Our final assumption is that the process is a centered Gaussian process.

� For every t1, . . . , tk, the random vector (Xt1 , . . . , Xtk) has a joint normal
distribution with mean zero.

We normalize so that Var(X1) = E[X2
1 ] = 1 and hence

Var(Xt) = Var(tH X1) = t2H Var(X1) = t2H .

Definition If H ∈ (0, 1), the fractional Brownian motion with Hurst pa-
rameter H (fBmH) is the centered (mean zero) Gaussian process Xt with
continuous paths such that for all s, t,

E
[
(Xt −Xs)

2
]
= |t− s|2H .

Since
E
[
(Xt −Xs)

2
]
= E

[
X2

t

]
+ E

[
X2

s

]
− 2E [XsXt] ,

it follows that

Cov(Xs, Xt) = E [XsXt] =
1

2

[
s2H + t2H − |s− t|2H

]
. (7.1)

If H = 1/2, then fractional Brownian motion is the same as usual Brownian
motion.

As in the case of Brownian motion, we must show that such a process
exists. We will discuss this in the next section, but for now we assume it does
exist. If s < t, note that

E [Xs (Xt −Xs)] = E [XsXt]− E
[
X2

s

]
=

1

2

[
t2H − s2H − (t− s)2H

]
> 0, H > 1/2
= 0, H = 1/2
< 0, H < 1/2

.

Since Xt+δ −Xt ∼ N(0, δ2H), we can write roughly

|Xt+δ −Xt| ≈ δH .

In other words, the Hölder exponent of fBmH is given by the Hurst index H.
If H > 1/2, the paths are “smoother” than Brownian paths and if H < 1/2,
the paths are “rougher”.
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To determine correlations for large t, suppose t is large. Then

E[(Xs+1 −Xs)(Xs+t+1 −Xs+t]

= E[X1 (Xt+1 −Xt)]

= E[X1Xt+1]− E[X1Xt]

=
1

2

[
(t+ 1)2H + (t− 1)2H − 2t2H

]
∼ H (2H − 1) t2H−2.

The coefficient is positive for H > 1/2 and negative for H < 1/2. As t goes
to infinity the size of the correlation goes to zero like a power law.

7.2 Stochastic integral representation

We will give an expression for the fractional Brownian motion in terms of a
stochastic integral. It will be useful to consider time going from −∞ to ∞.
Suppose B1

t , B
2
t are independent standard Brownian motions starting at the

origin. If

Bt =

{
B1

t , t ≥ 0
B2

−t, t ≤ 0
,

then Bt is standard Brownian motion from time −∞ to ∞. The centering
B0 = 0 is rather arbitrary; we really think of this process as a collection of
increments {Bt−Bs} for s < t. Viewed this way, this is sometimes called white
noise. We let Ft denote the information contained in the random variables
{Bs −Br : r < s ≤ t}.

Suppose f(r, t) is a continuous (nonrandom) function, and let

Yt =

∫ t

−∞
f(r, t) dBr = lim

n→∞

∑
f

(
k

n
, t

)
∆B(k, n),

where
∆B(k, n) = B(k+1)/n −Bk/n,

and the sum is over all integers (positive and negative) with (k + 1)/n ≤ t.
Then Yt is a limit of centered normal random variables and hence is mean
zero with variance

E[Y 2
t ] =

∫ t

−∞
f(r, t)2 dr.
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We assume this is finite for each t. Moreover if s < t, we can write

Yt − Ys =

∫ s

−∞
[f(r, t)− f(r, s)] dBr +

∫ t

s

f(r, t) dBr.

The right-hand side is the sum of two independent normal random variables:
the first is Fs-measurable and the second is independent of Fs. Hence Yt−Ys
has a normal distribution. More generally, one can check that Yt is a Gaussian
process whose covariance is given for s < t by

E [YsYt] =

∫ s

−∞
f(r, s) f(r, t) dr.

If we make the further assumption that f(r, t) = ϕ(t−r) for a one-variable
function ϕ, then the process Yt is stationary and has the form

Yt =

∫ t

−∞
ϕ(t− r) dBr. (7.2)

Proposition 7.2.1. If

ϕ(s) = c sH− 1
2 ,

and Yt is defined as in (7.2), then Xt = Yt − Y0 is fBmH . Here

c = cH =

[
1

2H
+

∫ ∞

0

[(1 + r)H− 1
2 − rH− 1

2 ]2 dr

]−1/2

.

Proof. By construction, Xt is a Gaussian process with continuous paths.
Since Yt is stationary, the distribution of Xt − Xs = Yt − Ys is the same as
that of Xt−s = Yt−s − Y0. In particular, E[(Xt −Xs)

2] = E[X2
t−s]. Hence we

only need to show that E[X2
t ] = t2H . Note that

Xt =

∫ 0

−∞
[ϕ(t− r)− ϕ(−r)] dBr +

∫ t

0

ϕ(t− r) dBr.
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The random variables on the right-hand side are independent and

c−2Var

[∫ 0

−∞
[ϕ(t− r)− ϕ(−r)] dBr

]
=

∫ 0

−∞
[(t− r)H− 1

2 − (−r)H− 1
2 ]2 dr

=

∫ ∞

0

[(t+ r)H− 1
2 − rH− 1

2 ]2 dr

=

∫ ∞

0

[(t+ st)H− 1
2 − (st)H− 1

2 ]2 t ds

= t2H
∫ ∞

0

[(1 + s)H− 1
2 − sH− 1

2 ]2 ds,

c−2Var

[∫ t

0

ϕ(t− r) dBr

]
=

∫ t

0

(t− r)2H−1 dr =
t2H

2H
.

If we choose c as in (7.3), we get E[X2
t ] = t2H .

7.3 Simulation

Because the fractional Brownian motion has long range dependence it is not
obvious how to do simulations. The stochastic integral represetation (7.2)
is difficult to use because it uses the value of the Brownian motion for all
negative times. However, there is a way to do simulations that uses only the
fact that fBmH is a Gaussian process with continuous paths. Let us choose
a step size ∆t = 1/N ; continuity tells us that it should suffice to sample

Y1, Y2, . . .

where Yj = Xj/N . For each n, the random vector (Y1, . . . , Yn) has a centered
Gaussian distribution with covariance matrix Γ = [Γjk]. Given Γ we claim
that we can find numbers ajk with ajk = 0 if k > j, and independent standard
normal random variables Z1, Z2, . . . such that

Yn = an1 Z1 + · · ·+ ann Zn. (7.3)

In matrix notation, A = [ajk] is a lower triangular matrix such that Γ = AAT .
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This decomposition Γ = AAT is sometimes called the Cholesky decompo-
sition. We will now show that it exists by giving an algorithm for finding the
matrix. We start by setting

a11 =
√

Γ11.

Suppose we have found the first k − 1 rows of A. This is a lower triangular
(k − 1)× (k − 1) matrix. Suppose j < k. Then,

Γjk = E [YjYk] =

j∑
i=1

aji aki.

The coefficients ajk for j = 1, . . . , k − 1 can be found by solving these k − 1
linear equation in k − 1 unknowns (one uses the fact that Γ is nonnegatve
definite to show there is a unique solution), and then one sets

akk =

√√√√Γkk −
k−1∑
i=1

a2ki.

We see that this decomposition is unique if we impose the condition akk ≥ 0.
¿From a practical perspective, these computations are done with com-

puter packages. Note that one only needs to compute the coefficients ajk
once and store them. Then multiple simulations can be done using (7.3).

The Cholesky decomposition can be derived from the Gram-Schmidt
process. Consider the Hilbert space of mean-zero L2 random vari-
ables and let Hn denote the finite dimensonal subspace spanned by
Y1, . . . , Yn. Let Pn denote the projection onto Hn which is the same
as the conditional expectation,

PnX = E[X | Y1, . . . , Yn].

Then we define

Zn =
Yn − Pn−1Yn

∥Yn − Pn−1Yn∥2
.

Since Hn is also the subspace spanned by Z1, . . . , Zn, we can write

Pn−1Yn =

n−1∑
j=1

ajn Zj ,

for unique scalars ajn, and we set ann = ∥Yn − Pn−1Yn∥2.
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Harmonic functions

8.1 Dirichlet problem

Recall that the Laplacian of a function f on Rd is defined by

∇2f(x) =
d∑

j=1

∂jjf(x).

The Laplacian is closely related to mean values of functions. The (spherical)
mean value of f on the sphere of radius ϵ about x is defined by

MV (x; ϵ, f) =

∫
|y−x|=ϵ

f(y) dσ(y)∫
|y−x|=ϵ

1 dσ(y)
,

where σ denotes (d − 1)-dimensional surface measure. The mean value can
also be described in terms of Brownian motion. Suppose Bt is a d-dimensional
Brownian motion starting at x and let

τϵ = inf{t : |Bt −B0| = ϵ}.

Since Brownian motion is rotationally invariant, the distribution of Bτϵ is
uniform over the sphere {y : |y − x| = ϵ}. Hence we can write

MV (x; ϵ, f) = Ex [f(Bτϵ)] . (8.1)

Proposition 8.1.1. Suppose f is a C2 function in a neighborhood of x ∈ Rd.
Then

∇2f(x) = 2d lim
ϵ↓0

MV (x; ϵ, f)− f(x)

ϵ2
.

243
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Proof. Without loss of generality, assume x = 0 and f(x) = 0, and write
MV (ϵ) for MV (0; f, ϵ). Let bj = ∂jf(0), ajk = ∂jkf(0). Taylor’s theorem
implies that

f(y) =
d∑

j=1

bj yj +
1

2

d∑
j=1

ajkyjyk + o(|y|2), y → 0,

where we write y = (y1, . . . , yd). Therefore,

MV (ϵ) =
d∑

j=1

bj MV (0; yj, ϵ) +
1

2

d∑
j=1

ajkMV (0; yjyk, ϵ) + o(ϵ2).

Note that MV (0; yj, ϵ) = 0 since yj is an odd function. Similarly,
MV (0; yjyk, ϵ) = 0 if j ̸= k. Linearity of the integral implies that

d∑
j=1

MV (0; y2j , ϵ) =MV (0;
d∑

j=1

y2j , ϵ) =MV (0; ϵ2, ϵ) = ϵ2.

Symmetriy implies thatMV (0; y2j , ϵ) =MV (0; y2k, ϵ), and henceMV (y2j , ϵ) =
ϵ/d. We therefore have

MV (ϵ) =
1

2

d∑
j=1

ajj (ϵ
2/d) + o(ϵ2) =

ϵ2

2d
∇2f(0) + o(ϵ2).

Definition Suppose f is a function defined on an open set D ⊂ Rd.

� f is harmonic in D if f is C2 and ∇2f(x) = 0 for all x ∈ D. f is
harmonic at x if it is harmonic in a neighborhood of x.

� A function f satisfies the (spherical) mean value property on D if for
every x ∈ D and every ϵ > 0 with {y : |x− y| ≤ ϵ} ⊂ D ,

f(x) =MV (f ;x, ϵ).

Proposition 8.1.2.
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� Suppose f is a harmonic function defined on an open set D ⊂ Rd. Let
Bt be a standard d-dimensional Brownian motion starting at x ∈ D
and let

τ = inf{t : Bt ̸∈ D}.

Then Mt := f(Bt∧τ ) is a local martingale for t < τ satisfying

dMt = ∇f(Bt) · dBt, t < τ.

� Suppose also that f is defined on ∂D so that f : D → R is a bounded,
continuous function. Then Mt is a bounded continuous martingale. If
P{τ <∞} = 1, then

f(x) = Ex [f(Bτ )] . (8.2)

Proof. The first statement follows from Itô’s formula. In fact, we already
did this calculation in Theorem 3.7.2. Since bounded local martingales are
martingales, the second statement follows from the optional sampling theo-
rem.

The expression (8.2) is a generalization of the mean value property (8.1).
It states that we can take mean values over sets other than spheres as long
as integrate with respect to the correct the measure. This measure is often
called harmonic measure (in D starting at x) and is defined by

hmD(V ;x) = Px{Bτ ∈ V }, V ⊂ ∂D.

Then (8.2) can be written

f(x) =

∫
∂D

f(y) hmD(dy;x).

The next proposition shows that we could use the mean value propery to
define harmonic functions. In fact, this is the more natural definition.

Proposition 8.1.3. Suppose f is a continuous function on an open set D ⊂
Rd. Then f is harmonic in D if and only f satisfies the mean value property
on D.

Proof. If f is harmonic, then f restricted to a closed ball of radius ϵ contained
in D is bounded. Therefore, the mean value property is a particular case of
(8.2).
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If f is C2 and satisfies the mean value property, then ∇2f(x) = 0 by
Proposition 8.1.1. Hence we need only show that f is C2. We will, in fact,
show that f is C∞.

It is a standard exercise in advanced calculus to show that for every δ > 0
we can find a nonnegative radially symmetric C∞ function ϕ = ϕδ such that
ϕ(y) = 0 for |y| ≥ δ and ∫

ϕ(y) dy = 1.

Here dy = dy1 · · · dyd. If x ∈ D with {y : |x − y| ≤ ϵ} ⊂ D, and ϕ = ϕϵ/2,
then the mean value property implies that

f(x) =

∫
f(x+ y)ϕ(y) dy =

∫
f(z)ϕ(z − x) dz. (8.3)

Since f is locally bounded and ϕ is bounded and C∞, we can differentiate
with respect to x by bringing the derivatives inside the integral.

The proof showed that we did not need to assume that f is continuous.
It suffices for f to be measurable and locally bounded so that derivatives can
be taken on the right-hand side of (8.3).

We will solve the classic Dirichlet problem for harmonic functions. Sup-
pose D is a bounded open set and F : ∂D → R is a continuous function.
The goal is to find a continuous function f : D → R that is harmonic in D
with f(x) = F (x) for x ∈ ∂D. Suppose that such a function f existed. Let
τ = τD = inf{t ≥ 0 : Bt ∈ ∂D}. Since D is compact, f must be bounded,
and hence

Mt = f(Bt∧τ )

is a continuous, bounded martingale. Arguing as in (8.2) we see that

f(x) = Ex [f(Bτ )] = Ex [F (Bτ )] . (8.4)

The right-hand side gives the only candidate for the solution. The strong
Markov property can be used to see that this candidate satisfies the mean
value property and the last proposition gives that f is harmonic in D.

It is a little more subtle to check if f is continuous on D. This requires
further assumptions on D which can be described most easily in terms of
Brownian motion. Suppose z ∈ ∂D and x ∈ D with x near z. Can we say
that f(x) is near F (z)? Since F is continuous, this will be true if Bτ is near



8.1. DIRICHLET PROBLEM 247

z. To make this precise, one defines a point z ∈ ∂D to be regular if for every
ϵ > 0 there exists δ > 0 such that if x ∈ D with |x− z| < δ, then

Px {|Bτ − z| ≥ ϵ} ≤ ϵ.

Theorem 8.1.4. Suppose D is a bounded open set such that each z ∈ ∂D
is regular. Suppose F is a continuous function on ∂D. Then there exists a
unique continuous function f : D → R that is harmonic on D and agrees
with F on ∂D given by (8.4).

Example 8.1.1. Let D be the annular region

D = {x ∈ Rd : r < |x| < R},

and let F (x) = 1 if |x| = R, F (x) = 0 if |x| = r. Then for x ∈ D,

f(x; r, R) = Ex [F (Bτ )] = Px{|Bτ | = R}.

We claim that

f(x; r, R) =
x− r

R− r
, d = 1,

f(x; r, R) =
log |x| − log r

logR− log r
, d = 2,

f(x; r, R) =
rd−2 − |x|d−2

rd−2 −Rd−2
, d ≥ 3.

One can check this by noting that∇2f(x) = 0 and f has the correct boundary
condition. The theorem implies that there is only one such function. Note
that

lim
R→∞

f(x; r, R) =

{
0, d ≤ 2
1− (r/|x|)2−d, d ≥ 3

,

lim
r↓0

f(x; r, R) =

{
x/R d = 1
1, d ≥ 2

. (8.5)

We have already seen the d = 1 case as the gambler’s ruin estimate for
Brownian motion.

Example 8.1.2. Let d ≥ 2. It follows from (8.5) that if x ̸= 0, then the
probability that a Brownian motion starting at x ever hits zero is zero. Let
D = {x ∈ Rd : 0 < |x| < 1}. Then 0 is not a regular point of ∂D, since
if we start near the origin the Brownian motion will not exit D near 0. Let
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F (0) = 0, F (y) = 1 if |y| = 1. Then, the only candidate for the solution of
the Dirichlet problem is

f(x) = Ex [F (Bτ )] = 1, x ∈ D.

If f(0) = 0, this function is not continuous at the origin.

If D = Ur = {x : |x| < r} is the ball of radius r about the origin, then the
harmonic measure hmUr(·;x) is known explicitly. It is absolutely continuous
with respect to (d− 1)-dimensional surface measure s on ∂Ur. Its density is
called the Poisson kernel,

Hr(x, y) =
r2 − |x|2

r ωd−1 |x− y|d
,

where

ωd−1 =

∫
|y|=1

ds(y)

denotes the surface area of the unit ball. If F : ∂Ur → R is continuous, then
the unique solution to the Dirichlet problem is

f(x) = Ex
[
F (BτUr

)
]
=

∫
|y|=r

F (y)Hr(x, y) ds(y). (8.6)

To verify this, one checks by direct computation the following facts:

� If y ∈ ∂Ur, the function h(x) = H(x, y) is harmonic on Ur;

� If x ∈ Ur, ∫
|y|=r

Hr(x, y) ds(y) = 1;

� For every ϵ > 0, there exists δ > 0 such that if x ∈ Ur, y ∈ ∂Ur and
|x− y| < δ, then ∫

|z|=r,|z−y|≥ϵ

Hr(x, z) ds(z) ≤ ϵ.

¿From these one concludes that f as defined by the right-hand side of (8.6)
is harmonic in Ur and continuous on U r.
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The reader may note that we did not need the probabilistic interpreta-
tion of the solution in order to verify that (8.6) solves the Dirichlet problem.
Indeed, the solution using the Poisson kernel was discovered before the re-
lationship with Brownian motion. An important corollary of this explicit
solution is the following theorem; we leave the verification as Exercise 8.1.
The key part of the theorem is the fact that the same constant C works for
all harmonic functions.

Theorem 8.1.5.

1. For every positive integer n, there exists C = C(d, n) <∞ such that if
f is a harmonic function on an open set D ⊂ Rd, x ∈ D, {y : |x−y| <
r} ⊂ D, and j1, . . . , jn ∈ {1, . . . , d} then∣∣∂xj1

· · · ∂xjn
f(x)

∣∣ ≤ C r−n sup
|y−x|<r

|f(y)|.

2. (Harnack inequality) For every 0 < u < 1, there exists C = C(d, u) <
∞ such that if f is a positive harmonic function on an open set D ⊂ Rd,
x ∈ D, {y : |x− y| < r} ⊂ D, then if |x− z| ≤ ur,

C−1 f(x) ≤ f(z) ≤ C f(x).

8.2 h-processes

Suppose h is a positive harmonic function on an open set D ⊂ Rd, and let
Bt be a standard Brownian motion starting at x ∈ D. Let τ = τD be the
first time t with Bt ̸∈ D. Then Mt = h(Bt) is a positive local martingale for
t < τ satisfying

dMt =
∇h(Bt)

h(Bt)
Mt dBt, t < τ.

Let τn be the minimum of τ and the first time t with h(Bt) ≥ n. Then Mt∧τn
is a continuous bounded martingale.

We can use the Girsanov theorem to consider the measure obtained by
weighting by the local martingale Mt. To be more precise, if V is an event
that depends only on Bt, 0 ≤ t ≤ τn, then

P∗(V ) = h(x)−1 E∗ [Mτn 1V ] .
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One can use the Girsanov theorem (more precisely, a simple generalization
of the theorem to d-dimensional Brownian motion), to see that

dBt =
∇h(Bt)

h(Bt)
dt+ dWt,

where Wt is a standard Brownian motion with respect to P∗. The process Bt

in the new measure P∗ is often called the (Doob) h-process associated to the
positive harmonic function h. It is defined for t < τ .

As an example, suppose that D is the unit ball, y = (1, 0, . . . , 0) ∈ ∂D
and

h(x) = ωd−1H1(x, y) =
1− |x|2

|x− y|d
,

is the Poisson kernel. Then the h-process can be viewed as Brownian motion
“conditioned so that Bτ = y”, where τ = τD. This is not precise because the
conditioning is with respect to a event of probability zero. We claim that the
P∗-probability that Bτ = y equals one. To see this, assume that B0 = 0 and
let

Tn = inf{t : h(Bt) = n3}, T ′
n = inf{t > Tn : h(Bt) = n}.

We claim that P∗{Tn < τ} = 1. Indeed, if we let τr = inf{t : |Bt| = r}, then
we can check directly that

lim
r↑1

P∗{h(Bτr) ≥ n3} = lim
r↑1

∫
|x|=1,h(rx)≥n3

h(rx) dσ(x) = 1,

and hence

lim
r↑1

P∗{Tn < τr} = 1.

Also, since h(BT ′
n
) = n−2 h(BTn),

P∗{T ′
n < τ} ≤ n−2,

∞∑
n=1

P∗{T ′
n < τ} <∞.

Therefore, by the Borel-Canelli lemma, we see that with P∗-probability one
for all n sufficiently large h(Bt) ≥ n for t ≥ Tn.
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8.3 Time changes

To prepare for the next section we will consider time changes of Brownian
motion. If Bt is a standard Brownian motion and Yt = Bat, then Yt is a
Brownian motion with variance parameter a. We can write

Yt =

∫ t

0

√
a dWs,

where Wt = a−1/2Bat is a standard Brownian motion. We generalize this by
considering Yt = Ba(t) where a is a strictly increasing continuous function.
We allow a(t) to be random, but it must be adapted to the Brownian motion.
In other words, for each t, the random time a(t) must be a stopping time for
the Brownian motion Bt. We will make the further assumption that a is a
C1 function, that is, we can write

a(t) =

∫ t

0

ȧ(s) ds,

where s 7→ ȧ(s) is a continuous nonnegative function. The assumption that
a(t) is strictly increasing implies that there are no open intervals on which
ȧ(s) is identically zero. If Y (t) = Ba(t), then Yt is a continuous local martin-
gale and we can write

Yt =

∫ t

0

√
ȧ(s) dWs,

where Wt is the standard Brownian motion

Wt =

∫ t

0

[ȧ(s)]−1/2 dBa(s). (8.7)

One can verify this is a standard Brownian motion by checking that is a
martingale with ⟨W ⟩t = t. More generally, if Xt satisfies the SDE

dXt = Rt dt+ At dBt,

and Yt = Xa(t), then Yt satisfies the SDE

dYt = ȧ(t)Ra(t) dt+
√
ȧ(t)Aa(t) dWt,

where Wt is the standard Brownian motion (8.7).
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Example 8.3.1. Suppose that Xt satisfies the Bessel equation

dXt =
r

Xt

dt+ dBt, X0 = 1,

where r ∈ R. This is defined for t < T = inf{s : Xs = 0}. For t < T , let
Lt = logXt. Then Itô’s formula shows that

dLt =
1

Xt

dXt −
1

2X2
t

d⟨X⟩t

=

(
r − 1

2

)
e−2Lt dt+ e−Lt dBt.

Consider the time change with ȧ(t) = e2Lt , and let Yt = La(t). Then Yt
satisfies

dYt =

(
r − 1

2

)
dt+ dWt,

where Wt is a standard Brownian motion. In other words, Yt is a Brownian
motion with variance parameter 1 and drift m = r− 1

2
. From this we can see

that Yt → ∞ if r > 1/2, Yt → −∞ if r < 1/2, and

−∞ = lim inf
t→∞

Yt < lim sup
t→∞

Yt = ∞,

if r = 1/2. One can use this to give another proof of Proposition 4.2.1. Note
that if r < 1/2, then in the new time, it take an infinite amount of time for
L = logX to reach −∞. However, in the original time, this happens at time
T <∞. In other words,

a(T ) =

∫ T

0

ds

ȧ(s)
= ∞.

8.4 Complex Brownian motion

If B1
t , B

2
t are independent standard Brownian motions then

Bt = B1
t + i B2

t

is called a (standard) complex Brownian motion. Note that this is the same
as a two-dimensional Brownian motion except that the point in the plane is
viewed as a complex number.
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Suppose f : C → C is a nonconstant holomorphic (complex differentiable)
function. We will consider Xt = f(Bt). Near any point z with f ′(z) ̸= 0, the
function looks like f(w) = f(z)+f ′(z) (w− z). Multiplication by f ′(z) is the
same as a dilation by |f ′(z)| and a rotation by arg f ′(z). A rotation of a stan-
dard two-dimensional Brownian motion gives a standard two-dimensional
Brownian motion and a dilation gives a Brownian motion with a different
variance. This leads us to believe that Xt is a time-change of standard Brow-
nian motion.

Let us make this more precise. Let

a(t) =

∫ t

0

|f ′(Bs)|2 ds.

We consider the time-change in which it takes time a(t) to traverse f (B[0, t]).
Equivalently, in time t one has traversed f (B[0, a−1(t)]).

Theorem 8.4.1. Let Yt = Xa−1(t). Then Yt is a standard complex Brownian
motion.

Proof. Write f = u+ iv,Xt = Ut + iVt, Yt = Ût + iV̂t. The Cauchy-Riemann
equations imply that ∂xu = ∂yv, ∂yu = −∂xv and

∇2u = ∂x∂xu+ ∂y∂yu = ∂x∂yv + ∂y(−∂xv) = 0.

Similarly ∇2v = 0. Since Ut = u(B1
t , B

2
t ) , Vt = v(B1

t , B
2
t ), then Itô’s formula

(see Theorem 3.7.2) gives

dUt = ∇u(Bt) · dBt = ∂xu(Bt) dB
1
t + ∂yu(Bt) dB

2
t .

dVt = ∇v(Bt) · dBt = ∂xv(Bt) dB
1
t + ∂yv(Bt) dB

2
t

= −∂yu(Bt) dB
1
t + ∂xu(Bt) dB

2
t .

Note that

d⟨U⟩t =
(
[∂xu(Bt)]

2 + [∂yu(Bt)]
2
)
dt

=
(
[∂xu(Bt)]

2 + [−∂xv(Bt)]
2
)
dt = |f ′(Bt)|2 dt,

d⟨V ⟩t = |f ′(Bt)|2 dt,
d⟨U, V ⟩t = 0.

Therefore, Ût, V̂t are martingales with quadratic variation t and hence are
standard Brownian motions. Since ⟨U, V ⟩t = 0, we also have ⟨Û , V̂ ⟩t = 0,
and hence Ût, V̂t are independent.
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The last theorem assumes that the function f is entire, that is, it is
defined and holomorphic on all of C. Suppose D is domain, that is, an open,
connected subset of C, and suppose that f is a nonconstant holomorphic
function on D. Let Bt be a complex Brownian motion, and let

τD = inf{t ≥ 0 : Bt ̸∈ D}.

Then the process Xt as above is defined for t < τD, and the process Yt is
defined for t < a(τD−) with the processes taking values in f(D).

Theorem 8.4.2. If f is a holomorphic function on a domain D, and Xt, Yt
are defined as above, then Yt, 0 ≤ t < a(τD−) is a standard complex Brownian
motion.

One very important case is when f maps D one-to-one onto f(D). Such
functions are often called conformal transformations. In this case f−1 is a
conformal transformation from f(D) to D, and

a(τD−) = inf{t : Yt ̸∈ f(D)}.

In particular, this shows that harmonic measure is a conformal invariant,

hmD(V ; z) = hmf(D)(f(V ); f(z)).

8.5 Exercises

Exercise 8.1. Use (8.6) to prove Theorem 8.1.5.

Exercise 8.2. Suppose D ⊂ C is a domain and ϕ is a harmonic function on
D (here we are also viewing D as a subset of R2). Let f : D → f(D) be a
conformal transformation and let

ψ(w) = ϕ(f−1(w)).

Show that ψ is a harmonic function on f(D) in two different ways:

� Do a direct computation to show that ∇2ψ = 0.

� Use the conformal invariance of harmonic measure and (8.2).


