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Abstract. This book aims to give a self-contained proof of the 4 dimensional Poincaré
Conjecture and some related theorems, all due to Michael Freedman [7].
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Preface

My main goal writing this book is threefold. I want the book to be clear and simple
enough for any sufficiently motivated mathematician to be able to follow it. I want the book
to be self-contained, and have enough details that any sufficiently motivated mathematician
will be able to extract complete and rigorous proofs. And I want the book to be short
enough that you can get to the ‘good stuff’ without making too enormous a time investment.

Actually, fourfold — I want the book to be fun enough that people will want to read
it for pleasure. This pleasure is implicit in the extraordinary beauty of Freedman’s ideas,
and in the Platonic reality of 4-manifold topology itself.

I learned this subject to a great extent from the excellent book of Freedman–Quinn [9]
and Freedman’s 2013 UCSB lectures (archived online at MPI Bonn; see [8]), and the outline
of the arguments in this book owes a great deal to both of these. I taught a graduate course
on this material at the University of Chicago in Fall 2018, and wrote up notes as I went
along. As such, the main reason that there are not substantially more errors is due to the
careful eyes of the attendees of that course, especially those of Emmy Murphy, who kept
bringing me back to key points that I’d hitherto missed completely.

Date: March 27, 2019.
1



2 DANNY CALEGARI

1. The Poincaré Conjecture

The Generalized Poincaré Conjecture says that a closed simply-connected n-manifoldM
with the homology of an n-sphere is homeomorphic to an n-sphere. The adjective closed
for a manifold means compact without boundary, and for a space to have the homology of
an n-sphere is for its reduced homology to be equal to Z in dimension n, and 0 elsewhere.
Notice that stated in this way, the case n = 1 is vacuous, since there are no closed simply-
connected 1-manifolds. The Poincaré Conjecture is the special case that n = 3.

1.1. Homotopy spheres.

Lemma 1.1. For n > 1, a closed simply-connected n-manifold M has the homology of Sn
if and only if it is homotopy equivalent to Sn.

Proof. One direction is clear: π1(Sn) = 0 for n > 1, and homology is a homotopy invariant.
Conversely, suppose M is simply-connected, and the reduced homology is nontrivial and
equal to Z only in dimension n. By Hurewicz, πn(M) = Z and πk(M) = 0 for k < n. Thus
there is a map f : Sn →M inducing an isomorphism on πn, and therefore also on homology
in every dimension. Again, since M is simply-connected, by relative Hurewicz f induces
an isomorphism in πk for all k. Thus, by Whitehead, f is a homotopy equivalence. �

We can therefore reformulate the Generalized Poincaré Conjecture as the conjecture that
an n-manifold homotopy equivalent to the n-sphere is homeomorphic to the n-sphere.

1.2. Statement of results. One usually refines the Poincaré Conjecture slightly, depend-
ing on the category one is interested in. So: one asks how many oriented PL n-manifolds, or
how many oriented smooth n-manifolds, homotopic to Sn, are there are up to orientation-
preserving isomorphism?

The answers to these questions, up through dimension 12, are summarized in the follow-
ing table.

Table 1. closed manifolds homotopic to Sn by category

n = 1 2 3 4 5 6 7 8 9 10 11 12

TOP 1 1 1 1 1 1 1 1 1 1 1 1
PL 1 1 1 ? 1 1 1 1 1 1 1 1

DIFF 1 1 1 ? 1 1 28 2 8 6 992 1

In particular, the Generalized Poincaré Conjecture is known in every dimension. The
answers in the PL and DIFF case are unknown in dimension 4, but are known to be equal.

A smooth n-manifold M is said to be an exotic sphere if it is homeomorphic to Sn but
not diffeomorphic.

1.3. An exotic 7-sphere. The entries for 7 and 11 in the third row of Table 1.2 stand out.
A smooth oriented manifold M of dimension 7 always bounds a smooth oriented manifold
W of dimension 8, by Thom’s theory of cobordism. For a closed smooth oriented W of



THE 4 DIMENSIONAL POINCARÉ CONJECTURE 3

dimension 4n the Hirzebruch signature formula says that the signature σ(W ) is related to
the Pontriagin classes of the tangent bundle pj := pj(W ) by the formula

σ(W ) = L(p1, p2, · · · )[W ]

where L is a universal power series whose homogeneous term of degree 4n is a rational
polynomial Ln, where

L0 = 1, L1 =
p1
3
, L2 =

7p2 − p21
45

, L3 =
62p3 − 13p2p1 + 2p31

945
, · · ·

Now letW 4n be smooth and oriented with boundaryM . IfM is a homology sphere, every
Pontriagin class pj of W comes from a unique class in the relative cohomology H∗(W,M)
with the exception of the top class pn. Let Ln[W ] denote the polynomial in these relative
classes, setting pn formally to zero, and consider the difference σ(W ) − Ln[W ]. If W ′ is
another smooth oriented manifold with boundary M , we may glue W to −W ′ (i.e. W ′

with the opposite orientation) along M , and then apply the signature formula for closed
manifolds.

Now, σ(W ∪ −W ′) = σ(W ) − σ(W ′) because M is a homology sphere. Likewise, by
Mayer-Vietoris and the fact thatM is a homology sphere, pj(W ∪−W ′) = pj(W )−pj(W ′)
for every j < n (here we abuse notation, writing e.g. pj(W ) for the class in H4j(W ∪−W ′)
induced by inclusion W → W ∪ −W ′).

We deduce that

σ(W )− Ln[W ] = σ(W ′)− Ln[W ′] + Ln,n[W ∪ −W ′]

where Ln,n is the part of Ln involving only pn. For example,

L0,0 = 1, L1,1 =
p1
3
, L2,2 =

7p2
45

, · · ·

For a smooth oriented 7-manifold M which is a homology sphere, this implies that

2p21[W ]− σ(W ) mod 7

is independent of the choice of W .
Suppose therefore that we can find a smooth manifold M which is homeomorphic to

S7, and which smoothly bounds some W as above, but for which 2p21[W ] − σ(W ) is not
divisible by 7. It follows that M does not smoothly bound a ball, or else the difference
would be zero. Thus, such an M would be an exotic 7-sphere.

Milnor constructed such exotic 7-spheres as follows. Let M be a smooth S3 bundle over
S4. Then M smoothly bounds a D4 bundle over S4. The homology of M can be computed
from the Serre spectral sequence: there is a map d4 : Z → Z which is multiplication by
e, the Euler class of the bundle. Thus, M is a homology S7 (and in fact a homotopy S7)
provided e = ±1.

Oriented S3 bundles over S4 are classified up to homotopy by the class of the clutching
map S3 → SO(4,R). Now, SO(4,R) is double-covered by S3 × S3, which acts on S3 by
left and right multiplication of unit quaternions respectively. Thus, π3(SO(4,R)) = Z⊕Z,
and the homotopy type of M is determined by a pair of integers k, l where the clutching
map is homotopic to the map taking u ∈ S3 to the element v → ukvul ∈ SO(4,R). The
Euler number e and the class p1 in H4(W ) = H4(S4) = Z are linear in k and l. Thus by
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computing on two suitable examples, we get that e = k + l and p1 = 2(k − l) (up to a
choice of orientation).

Letting k, l be arbitrary with k+ l = ±1 and 2(k− l) 6= 0 mod 7, we obtain a homotopy
7-sphere which is not diffeomorphic to S7.

1.4. Handlebodies. How can we show Milnor’s manifolds are homeomorphic to S7 via
smooth techniques without showing (erroneously!) that they are diffeomorphic? The
answer is to use Morse theory.

If M is a closed, smooth manifold, a Morse function f : M → R is a smooth function
with isolated critical points, and at each such point p the Hessian Hf is a nondegenerate
quadratic form on TpM . This implies that near p, there are smooth local coordinates
x := x1, · · · , xn so that the function f has the form

f(x) = f(0) + x21 + · · ·+ x2k − x2k+1 − · · · − x2n
The index of the critical point is the number of negative eigenvalues of Hf .

We can obtain a nice description of the topology of M from this Morse function; to do
so requires us to discuss the theory of handles, which we now do.

Suppose N is a smooth compact manifold possibly with boundary, and let K be a
smooth Sq−1 embedded in N with a trivial normal bundle. A framing of K is a smooth
trivialization of a tubular neighborhood of K; i.e. a diffeomorphism to Sq−1×Dn−q taking
K to Sq−1 × 0.

A q-handle is a smooth product of disks Dq×Dn−q (note that its interior is diffeomorphic
to Dn). The core of the handle is Dq × 0 and the co-core is 0 × Dn−q. The boundary of
the q-handle is the union Sq−1 ×Dn−q ∪Dq × Sn−q−1; the first factor is the attaching part
of the boundary.

Now both N and the q-handle have a parameterized Sq−1×Dn−q in their boundary, and
we can glue these together. The result

N ′ := N ∪Sq−1×Dn−q Dq ×Dn−q

is said to be obtained from N by attaching a q-handle along the framed knot K. Note that
the homotopy type of N ′ does not depend on the framing but only on the knot K. Notice
that in this gluing the knot K is identified with the boundary of the core of the attaching
handle.

Although the interior of N ′ is smooth, the boundary has a ‘corner’ along Sq−1×Sn−q−1.
However, this corner can be smoothed in a canonical way to give N ′ the structure of a
smooth manifold with boundary; the details are neither difficult nor important.

Now we return to our smooth manifold M with its Morse function f . Enumerate the
critical points as p1, · · · , pm where f(pj) = tj and let’s suppose tj > ti if and only if j > i
(this can be obtained by reordering and a smooth perturbation). For each real t, define
Mt = f−1(−∞, t]. For t < t1 the manifold Mt is empty. The manifold M is obtained from
the empty manifold by an explicit finite process tied to the Morse function, as follows.

(1) If [s, t] is an interval disjoint from the tj, then the gradient flow induces a smooth
isotopy from ∂Ms to ∂Mt and a diffeomorphism from Ms to Mt.
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(2) If [s, t] is an interval with a single tj in the interior, and pj is a critical point of
index q, then Mt is obtained from Ms by attaching a q-handle.

In the latter case, we describe the framed attaching knot K for the q-handle as follows.
Recall that near a critical point of index q, the function f has the form

f(x) = f(0) + x21 + · · ·+ x2n−q − x2n−q+1 − · · · − x2n
In these local coordinates, the subspace where the first n − q coordinates are zero is the
descending manifold, and the subspace where the last q coordinates are zero is the ascending
manifold. Thus the descending manifold has dimension q, and the link of 0 in this manifold
is a sphere K of dimension q− 1. There is a natural framing of K, given by the translates
of the ascending manifold.

Now let’s return to Milnor’s homotopy spheres M . Milnor writes down an explicit
Morse function on M , and shows that it has exactly two critical points: a minimum
(where the index is 0) and a maximum (where it is 7). The complement of the maximum
is diffeomorphic to the interior of a single 0-handle, which is to say, it is diffeomorphic to
R7. SinceM is obtained from this complement by the 1-point compactification. we deduce
that it is homeomorphic to D7 ∪∞ = S7.

1.5. General Position. Smale’s theory of smooth manifolds depends on the use of two
powerful tools: Morse theory, and general position. We have discussed the first; now we
explain the second.

For integers a b both less than or equal to n, we let α : Ra → Rn and β : Rb → Rn

be affine linear injections. It is evident that there are an open dense set of choices of α
or β or both for which α(Ra) ∩ β(Rb) is an affine subspace of dimension a + b − n where
a + b − n < 0 means the intersection is empty. For such a generic choice we say these
subspaces are in general position.

Now for smooth manifolds Aa, Bb, Nn of these dimensions, we say that immersions
α : Aa → Nn and β : Bb → Nn are in general position if there are local charts around the
singular set diffeomorphic to the linear model. This means in particular that the intersec-
tion of Aa and Bb and the self-intersections of Aa are smooth immersed submanifolds of
dimension a+ b− n and 2a− n respectively.

Proposition 1.2. For smooth manifolds M , N (not necessarily connected, or with all
components of the same dimension) the set of immersions in general position is open and
dense in the space of immersions with the C∞ topology.

One application of general position is to Morse theory. Suppose p and q are critical
points of f with index a and b where f(p) < f(q) but a > b. Suppose further that
these critical points are adjacent, so that there are no critical r with f(p) < f(r) < f(q).
The ascending manifold of p has dimension n − a and the descending manifold of q has
dimension b. It follows that we can modify f slightly so that these manifolds are in general
position, and therefore disjoint. Then observe there is a subset of the descending manifold
of q diffeomorphic to Dq, with f(∂Dq) < f(p). We can easily modify f in a neighborhood
of this Dq, without creating new critical points or changing indices, so that at the end
f(p) > f(q).
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The conclusion is that we can build a Morse function on M which is self-indexing; this
means that every critical point p of index i has f(p) = i. In particular, the submanifold
Mi+1/2 can be isotoped (by pushing along descending flowlines) to a regular neighborhood
of a finite embedded CW complex of dimension ≤ i.

Notice that if f is Morse, so is −f , and if p is a critical point of f of index i, then p is
a critical point of −f of index n − i. It follows that we can split M with a self-indexing
Morse function into two submanifolds Mi+1/2,M −Mi+1/2, each of which can be isotoped
disjointly into disjoint regular neighborhoods of complexes of dimension ≤ i and ≤ n−i−1
respectively.

1.6. Engulfing. We now prove the following theorem: ifMn is a smooth homotopy sphere
of dimension at least 7, then it is homeomorphic to S7. This shows that Milnor’s examples
are exotic but not fake.

This theorem was first proved by Smale; we give his proof in the sequel. But first we
give an elegant argument due to Stallings (and independently Zeeman), discovered only
days after Smale’s announcement. The proof we give depends on an intermediate result —
the Schoenflies Conjecture — that was known at the time; we defer the proof of this result
until the next section.

Theorem 1.3 (Engulfing). Let M be a smooth homotopy sphere of dimension at least 7.
Then M is homeomorphic to S7.

Proof. Let f be a self-indexing Morse function on M . Then we can split M along a level
set between level bn/2c and bn/2c + 1 into pieces X and Y , each of which is isotopic to
a regular neighborhood of a subcomplex of dimension at most k ≤ bn/2c. We shall show
that X and Y are embedded (‘engulfed’) in the interior of disjoint balls BX , BY . From
this the theorem follows; for, ∂BX is a smooth Sn−1 contained in the interior of BY , and
the Schoenflies Conjecture says that the complement of BX ∩ BY in BY is homeomorphic
to a ball. Thus M is the union of two balls glued along their boundary, and is therefore
homeomorphic to a sphere.

It suffices to show that X and Y can be engulfed. Since M is a homotopy sphere, if
we remove a point p disjoint from X, the complement M − p deformation retracts to a
point. Thus the inclusion of X into M extends to a map CX → M . If this map were an
embedding, we could push the points of X by an isotopy along the intervals of the cone,
and produce an isotopy into a small neighborhood of a point; evidently this would imply
that X can be engulfed.

We can’t expect this map to be an embedding, but if we put it in general position, we
can arrange for the singular set to be (a regular neighborhood of) a subset Σ of CX of
dimension at most 2k − n + 2. The cone CΣ embeds in CX, and we can isotop X along
CX to a regular neighborhood of the image of CΣ. Thus we can repeat this procedure
with CΣ in place of X. Since the dimension of CΣ is at most 2k − n + 3, we can make
progress providing 2k − n+ 3 < k. This is true provided n ≥ 7, and we are done. �

In fact, asking for an embedding of CX is superfluous to engulf X: it is sufficient to ask
for a map which is an embedding on each X × t slice. For, this gives us a 1-parameter
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family of embeddings of X starting at the identity and ending inside a small ball; undoing
an ambient isotopy produces the engulfing ball.

General position implies that we can make progress providing 2k−n+ 2 < k, improving
on our naive count by one. Thus the argument extends to n ≥ 5.

1.7. Modifying Morse functions. Let M be a smooth manifold of dimension n. A
Morse function f : M → R gives a way to obtain M from the empty manifold by attaching
finitely many handles corresponding to the critical points as in § 1.4. It’s convenient to
move back and forth between the perspective of Morse functions and handlebodies. A
Morse function (equivalently a smooth handle decomposition) admits the following three
basic modifications:

(1) Birth–Death;
(2) Handle slide; and
(3) Whitney move.

We explain each of these modifications in turn.

1.7.1. Birth–Death. Morse functions form an open and dense subset of the space of smooth
functions on a compact manifold, but the space of Morse functions is not connected. If ft
is a generic 1-parameter family of smooth functions ft for which f0, f1 are Morse, there
are finitely many intermediate values 0 < s < 1 for which the Hessian of fs is degenerate
at some critical point p. Near p, the Hessian Hfs has 0 as an eigenvalue of multiplicity 1,
and there are smooth local coordinates xi and an ε so that for t ∈ (−ε, ε) we have

fs+t(x) = x21 + · · ·x2n−q − x2n−q+1 − · · · − x2n−1 + x3n − txn

Let’s look at what happens as t switches from negative to positive.
We compute ∂nf = 3x2n − t. When t < 0 this is strictly positive, so f has no critical

points near x = 0. When t = 0 the function gets a critical point at x = 0. The Hessian
Hf is degenerate, with ∂n as a zero eigenvector. When t > 0 this degenerate critical point
splits into a pair of nondegenerate critical points p± at xn = ±

√
t/3. The index at p−

is q and the index at p+ is (q − 1). For t > 0 there is an ascending flowline from p+ to
p− tangent to ∂n; in an intermediate level set the descending and ascending manifolds of
the critical points intersect transversely in exactly one point. When t passes through 0 in
the positive direction a pair of critical points are born, and when it passes in the negative
direction a pair of critical points die.

Near any point we may modify a Morse function so as to give birth to a pair p± of critical
points of any adjacent indices (q − 1), q. Conversely, when p± are a pair of critical points
with adjacent indices, and their descending and ascending manifolds intersect transversely
in an intermediate level in a single point, the Morse function can be modified in a neighbor-
hood of the flowline joining them so as to kill the pair. At the level of handlebodies, when
the attaching sphere of the core of a q-handle intersects the attaching sphere of the co-core
of a (q−1)-handle transversely in one point, we may remove the pair by a diffeomorphism.
One also says that a pair of handles geometrically cancel.

Birth–death is the only modification we consider that changes the number of critical
points.
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1.7.2. Handle slide. When we build up a smooth manifoldM as a handlebody by attaching
handles one by one, the diffeomorphism type of M only depends on the isotopy classes of
the attaching maps of the framed boundary spheres. If we attach h′ to N and then h, we
may replace h by a new h′′ whose attaching map is isotopic in ∂(N ∪h′) but not necessarily
in ∂N . A handle slide is a modification of this form.

Suppose h and h′ are a pair of (i+ 1) handles attached to an intermediate level ∂Mi+1/2

along framed neighborhoods of i-spheres S, S ′. Note that these framed neighborhoods are
disjoint in ∂Mi+1/2. Now, let α be an embedded arc in ∂Mi+1/2 from S to S ′. We can
extrude a finger from S and slide it along the arc α, all the way to S ′. Then we can slide
S over the core of the attaching handle h′; this replaces S with a new framed i-sphere S ′′
corresponding to a new (i + 1)-handle h′′ such that S ′′ is contained in the boundary of a
tubular neighborhood of S ∪ α∪ S ′. The handlebody obtained by attaching handles along
S ′ and S ′′ is diffeomorphic to the original handlebody; to see this, just ‘slide’ h over h′ to
produce h′′; this sliding can evidently be accomplished by isotopy.

This modification doesn’t change the number of critical points, but it changes the col-
lection of attaching spheres.

1.7.3. Whitney move. Let Aa and Bb be smooth submanifolds of Mn of complementary
dimension; i.e. so that a+ b = n. Let’s assume A and B are in general position, so A ∩B
is a finite collection of points. If A, B, M are oriented, each intersection point has a sign.
Let’s suppose there’s a pair of intersection points p, q of opposite sign. Let α and β be
embedded arcs in A and B respectively running between p and q. The union α ∪ β is a
loop γ.

A Whitney disk is a smooth embedded disk D with ∂D = γ, interior disjoint from
both spheres, together with a trivialization of its normal bundle ν and a splitting of this
trivialization ν = E1 ⊕E2 so that E1|α is some trivialization of the normal bundle to α in
A, and E2|β is some trivialization of the normal bundle to β in B. This trivializations is
called a framing and is part of the data of a Whitney disk.

If there’s a Whitney disk, it turns out we can push A over D by an isotopy to eliminate
the two points of intersection. To do this, cut out the unit normal disk bundle of α from
A and glue in the unit sphere bundle of E1 to produce a new A′.

Actually when n ≥ 5, one can always find a framing whenever there’s an embedded D.
That’s because D is contractible, so its normal bundle is already trivial. Restricting this
trivialization to α and β gives the framing over ∂D, which can be thought of (relative to
a given trivialization of ν) as a loop in the Stiefel manifold Va−1(Rn−2) of oriented framed
Ra−1s in Rn−2. This is an iterated sphere bundle, where the fibers range from spheres of
dimension n − 3 to n − a − 1. Since n ≥ 5 we can choose a ≤ b so that n − a ≥ 3 and
n− a− 1 ≥ 2. Thus the Stiefel manifold is simply-connected, and the framing can always
be found.

When n = 4 things are more complicated. For instance, if a = b = 2 the Stiefel manifold
V1(R2) = S1 is not simply-connected. We’ll return to this in § 3.3.

1.8. The h-Cobordism theorem. The aim of this section is to prove the h-Cobordism
Theorem, due to Smale. This theorem says that if M and N are smooth simply-connected
closed n-manifolds that arise as the oriented boundaries of a smooth compact n+1 manifold
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W , and if the inclusions of M and N into W are homotopy equivalences, then W is
diffeomorphic to a product. We shall give Smale’s proof, using Morse theory. We begin
with some Morse function f : W → R for which M and N are regular values, and then
modify f so as to eliminate the critical points. Eventually we obtain a new Morse function
g with no critical points at all. The gradient flow of g exhibits W as a product.

Theorem 1.4 (h-Cobordism Theorem). Let n ≥ 5. Suppose W is a compact smooth
simply-connected (n+1)-manifold with oriented boundary ∂W = M∪−N , and suppose that
the inclusions of M and N into W are homotopy equivalences. Then W is diffeomorphic
to a product. Consequently M is diffeomorphic to N .

Proof. Evidently it suffices to consider the case that M , N and W are connected, since
otherwise we can work component by component.

Let f be a self-indexing Morse function on W with f−1(−1/2) = M and f−1(n+ 3/2) =
N . Each critical point of index i corresponds geometrically to an i-handle in a handle
decomposition of W . Each Wi+1/2 is obtained from Wi−1/2 by attaching i-handles; the
cores of these i-handles are the descending manifolds, and the co-cores are the ascending
manifolds. Their boundaries are (attaching) spheres of dimension i−1 and n−i in ∂Wi−1/2
and ∂Wi+1/2.

First we deal with i = 0. Attaching a 0-handle produces a new component. Only a
1-handle can join up different components, since S0 is the only disconnected sphere. Since
W is connected, for every 0 handle, some 1-handle must join it to another component. But
this 0–1 pair geometrically cancel, so we can eliminate them. At the end of this procedure
there are no 0-handles.

Now we deal with i = 1. Let h be a 1-handle. We’ll show that we can create a 2–3 pair
so that the 2 handle cancels h; in this way we can trade 1-handles for 3-handles.

How can we arrange this? The ascending sphere of h has codimension 1 in ∂W1+1/2. We
claim that there is a circle S in ∂W1+1/2 transverse to this ascending sphere in exactly one
point, and disjoint from the ascending sphere of every other 1-handle.

Actually, once we have cancelled all but one 0-handle, there is only one way to attach
the remaining 1-handles to its boundary, so ∂W1+1/2 is always a connect sum of Sn−2×S1s,
and the ascending spheres of the 1-handles are Sn−2 × point factors. In this picture, the
existence of the transverse circle S is clear.

Now, if π1(W ) is trivial, so is ∂W2+1/2, since handles of index 3 and greater don’t change
the fundamental group. The descending sphere of a 2-handle is a circle, and in dimension 3
and greater, two circles can be isotoped to be disjoint. So we can push S up along gradient
flowlines while avoiding all descending spheres of 2 handles by general position, so that it
comes to a new circle S ′ in ∂W2+1/2. Now, introduce a cancelling pair of handles of index
2 and 3, where the attaching circle of the 2-handle is in ∂W2+1/2. Since this manifold is
simply-connected, we can slide this attaching circle around until it is equal to S ′. Then
by construction, the descending sphere of this new 2-handle geometrically intersects the
ascending sphere of the 1-handle transversely in a single point in ∂W1+1/2 and we may
cancel the 1–2 handle pair, thereby ‘trading’ a 1-handle for a 3-handle.

Define relative chain groups Ci freely generated by the handles of index i, and boundary
maps ∂Ci+1 → Ci whose matrix entries are given by the algebraic intersection number
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of the boundary of the core of an (i + 1)-handle with the boundary of the co-core of an
i-handle. The homology of this chain complex computes the relative cellular homology of
W , which is therefore trivial in every dimension.

Let i be the least dimension in which there are handles. It follows that the boundary
map ∂Ci+1 → Ci is surjective. In the given basis the boundary map is expressed as a
matrix. Handle slides of i or i+1 handles change the bases for these chain groups in such a
way as to perform row and column operations on this matrix. Since the map is surjective,
we can perform such a sequence of operations until there is a pair hi+1, hi with algebraic
intersection ±1. The co-core of hi bounds an Sn−i in ∂Wi+1/2, and the core of hi+1 bounds
an Si. Call these spheres A and B. If the geometric intersection number of A and B is
1, we can cancel hi and hi+1. Otherwise there are a pair of intersection points of opposite
sign.

Join these points by arcs α and β in the two spheres, and let γ = α ∪ β. Now,
π1(∂Wi+1/2) = 1 if i > 1. We assume for the moment that i > 2 and n − i > 2. In
this case, removing A ∪ B doesn’t change the fundamental group so we can find an im-
mersed disk in the complement bounding γ. If n ≥ 5 then a disk in general position is
embedded, and the framing problem can be solved. Thus we can find a Whitney disk and
eliminate a pair of intersection points. After all but one intersection point is eliminated,
we can cancel hi and hi+1.

If i = 2 this argument is a little more delicate. Let SR be the boundary of the co-core
of h2 in ∂W2+1/2 and let SL be the boundary of the core of h2 in ∂W1+1/2. Let N be a
neighborhood of SL in ∂W1+1/2. For the moment by pushing other handles up, we assume
h2 is the single 2-handle beneath level 2 + 1/2. We also assume that we have traded all
the 1-handles for 3-handles, so that ∂W1+1/2 is simply-connected. Then ∂W1+1/2 − SL is
diffeomorphic by the gradient flow to ∂W2+1/2−SR. But π1(∂W1+1/2−SL) = π1(∂W1+1/2) =
1 because SL is a circle, and n > 3. Now we can repeat the argument above for i > 2.

Thus by induction we can eliminate all i handles of W of dimension ≤ n− 3. Likewise,
by replacing f by −f we can also eliminate all i handles of dimension ≥ 4 (remember that
W has dimension n+ 1). If n ≥ 6 we can therefore eliminate all handles and exhibit W as
a product. If n = 5 this method eliminates all handles of W except possibly in dimension
3; but if there are no handles of any other dimension, the handles of dimension 3 freely
generate the 3-dimensional relative homology of W , which by hypothesis must vanish.
Thus, a posteriori, we conclude there are no 3 handles, and the theorem is proved. �

Here is the application to the Poincaré Conjecture. Suppose Mn is a smooth homotopy
sphere. Remove two round balls from Mn and observe that the remainder forms an h-
Cobordism between the two boundary spheres. Thus, providing n ≥ 6, we can conclude
that this remainder is a (smooth) product, and M is homeomorphic to Sn.

The case n = 5 requires a modification of this strategy. One shows that an S5 and a
smooth homotopy S5 are smoothly cobordant. Then one surgers the cobordism until it is
an h-Cobordism.

2. Decompositions

This section is something of a detour. Smooth topology will play a big role in the eventual
proof of the 4-dimensional Poincaré Conjecture. We will work with handlebodies, and make
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crucial use of smooth tools like transversality. The main problem is the Whitney trick. If
we try to prove an h-Cobordism Theorem for 4-manifolds, we will need to deal with pairs
of smooth embedded 2-spheres which intersect algebraically once, but geometrically any
number of times. If we try to use a Whitney disk to eliminate some pairs of intersections,
we’ll run into trouble, because a disk in general position in a 4-manifold is typically not
embedded, but only immersed. Pushing a sphere over an immersed Whitney disk removes
some intersections, but possibly produces many more!

OK, maybe you can try to look for an embedded Whitney disk, but it turns out you
might be looking for a long time. Smooth Whitney disks can’t always be found. What can
be found are a sequence of more and more complicated objects — kinks, gropes, towers
and so on. The situation gets wilder and wilder with no apparent end in sight.

Decomposition theory is a tool for taming this wildness. It’s a remarkably powerful
tool. In § 2.3 we’ll see how it reduces the proof of the Schoenflies Conjecture to a few
paragraphs. But this power comes at a cost, and the cost is that we no longer get to see
explicitly what’s going on. The magician will take care of your rabbit problem — but she
won’t reveal her tricks.

2.1. Cellular subsets. Let f : D → E be a map between two disks. The fibers of f are
the point preimages. A fiber is nontrivial if its cardinality is greater than 1.

A subset F ⊂ D is said to be cellular if there are a nested sequence of closed disks
Di ⊂ D, each Di+1 contained in the interior of Di, such that ∩iDi = F .

Lemma 2.1. Let D and E be disks, and let f : D → E be a continuous map with a single
nontrivial fiber F = f−1(y) for some y ∈ E. Then F is cellular.

Proof. Let Ei be a nested sequence of small round neighborhoods of y contained in f(D),
with intersection y. Let ri : E → Ei be radial homeomorphisms shrinking points inwards,
but equal to the identity in a neighborhood of y. Define maps gi : D → D by setting
gi(x) = x for x ∈ F , and otherwise define gi(x) by the formula fgi(x) = rif(x); i.e.
gi = f−1rif . Because each ri is the identity near y, the same is true of gi on some open
neighborhood of F ; thus gi is continuous. The map gi is further injective, and therefore it
is a homeomorphism onto its image. So gi(D) = Di is a nested sequence of closed disks
and ∩iDi = F . �

Note that invariance of domain implies that D and E have the same dimension, since f
is open away from F .

2.2. Shrinkability.

Definition 2.2. A decomposition of a compact metric spaceX is a partition into nonempty
closed sets called the elements of the decomposition. A decomposition is upper semicon-
tinuous (hereafter USC) if for each element A and each positive ε there is δ, so that if
an element B intersects the ε-neighborhood of A, it is contained in the δ-neighborhood of
A. An element with more than one point is nondegenerate, and the set of nondegenerate
elements is the nondegeneracy set.

For a compact metric space X, upper semi-continuity is equivalent to the statement
that any Hausdorff limit of a sequence of decomposition elements is contained in (though
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not necessarily equal to) some decomposition element. If D is a decomposition of X, we
write X/D for the quotient space in which each element of D is crushed to a point. Upper
semi-continuity is equivalent to the condition that X/D is Hausdorff, in which case it is
metrizable. For the sake of brevity, we often assume that we have chosen a metric on X/D;
none of our conclusions will depend on the choice of metric.

The most important property of a decomposition we consider is called shrinkability.
In the sequel we let D be an USC decomposition of a compact metric space X, and let
q : X → X/D be the quotient map. Assume we have chosen metrics on X and X/D.

Definition 2.3. A USC decomposition D of X is shrinkable if for every ε > 0, there is a
surjective homeomorphism h : X → X satisfying

(1) qh is close to q: for any x ∈ X, the distance from q(x) to qh(x) is less than ε; and
(2) decomposition elements are small: for any decomposition element Y ⊂ X, the

diameter of h(Y ) is less than ε.

A quotient map q : X → X/D is approximable by homeomorphisms (hereafter ABH) if
there are homeomorphisms qi : X → X/D converging to q in the uniform topology.

Lemma 2.4. A USC decomposition D of X is shrinkable if and only if the quotient map
q : X → X/D is approximable by homeomorphisms.

Proof. Suppose q : X → X/D is ABH qi : X → X/D. For any ε there is i so that the
distance from q(x) to qi(x) is at most ε/2. Now, since q−1i is a homeomorphism between
compact metric spaces, there is a δ > 0 such that if A ⊂ X/D has diameter at most δ, the
diameter of q−1i (A) is at most ε. Now, without loss of generality, let’s suppose δ < ε, and
let j be such that the distance from q(x) to qj(x) is at most δ/2.

Then for any decomposition element Y , the image qj(Y ) has diameter at most δ, so
q−1i qj(Y ) has diameter at most ε/2. Furthermore, for any x ∈ X the triangle inequality
gives

d(q(x), qq−1i qj(x)) ≤ d(q(x), qj(x)) + d(qi(q
−1
i qj(x)), q(q−1i qj(x))) ≤ ε

This proves one direction.
Conversely, suppose D is shrinkable. We give an argument due to Edwards showing

that q is ABH. Consider the space of continuous maps from X to X/D with the uniform
topology (this is a Baire space), and let H denote the closure of the set of maps of the
form qh where h : X → X is a homeomorphism. Shrinkability implies (by conjugation)
that the subset Hε of H whose fibers all have diameter < ε is open and dense. Thus the
intersection H0 of all Hε is dense. But any element of H0 is a homeomorphism, so we are
done. �

Now let D be a decomposition of a disk D with a single nontrivial element X, and
suppose X is cellular. Let Di be nested disks with Di → X. For any ε, there is some i so
that q(Di) has diameter less than ε/2. It follows that for any homeomorphism hi : D → D
supported in Di the map qhi is ε-close to q. But since Di is a disk, there is certainly some
hi : D → D for which the diameter of hi(X) is less than ε. It follows that D is shrinkable,
and therefore D → D/D is a homeomorphism.

Putting this together we deduce:
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Corollary 2.5. If f : D → E is a map between disks with a single nontrivial fiber, then
f : D → f(D) is ABH.

It is straightforward to extend this Corollary to the case when f has finitely many
nontrivial fibers. Let’s suppose f : D → E has two nontrivial fibers F1, F2 mapping to y1,
y2.

There is an open neighborhood U of y1 avoiding y2, and a radial map r : E → U fixing y1.
Define a map g : D → D as before by f−1rf on D − F1, and the identity on F1. The map
g is not a homeomorphism, since it crushes F2 to the single point f−1rf(F2). But it is a
homeomorphism everywhere else. It follows by the Lemma that F2 is cellular, and evidently
so is F1. Thus the decomposition of D by fibers of f is shrinkable, and f : D → f(D) is
ABH. The general case of finitely many nontrivial fibers follows by induction.

The next Lemma can be used to show that an USC decomposition is shrinkable without
actually exhibiting a shrinking sequence.

Lemma 2.6 (Big Shrinking). Suppose we have a compact metric space X with an USC
decomposition D. Let q : X → X/D be the quotient map, and suppose for any ε > 0 there
is an open neighborhood U of the union of nontrivial elements, so that for each component
V of U the image q(V ) has diameter less than ε in X/D.

Now let Ui be a sequence of such neighborhoods for ε = 1/i. Suppose we can find a
sequence of homeomorphisms hi : X → X supported in Ui and fixing it componentwise, so
that for any decomposition element Y , the product gn := h1h2 · · ·hn(Y ) has diameter at
most 1/n in X. Then D is shrinkable.

Proof. Since X is metric, q is uniformly continuous, and therefore the sequence gn even-
tually satisfies the second bullet of shrinkability, though they will typically not satisfy the
first bullet: the gn will typically be uniformly far from q.

To remedy this, for any n ≤ m, let fn,m := g−1n gm = hn+1hn+2 · · ·hm. Now for any fixed
n the sequence fn,m eventually satisfies the second bullet of shrinkability, since this is true
of the sequene gm, and this property of a sequence is preserved by precomposition with
any fixed homeomorphism. On the other hand, for any n, any fn,m is supported in Un, and
therefore any sequence of fn,m with n→∞ eventually satisfies the first bullet. A diagonal
subsequence therefore satisfies both properties, and shows that D is shrinkable. �

Certain kinds of decomposition always satisfy the first hypothesis of the lemma.

Definition 2.7. An USC decomposition D of a compact metric space X is null if for any
ε > 0 there are only finitely many elements of D with diameter at least ε.

Note that a null decomposition has at most countably many nontrivial elements. If D
is null, we can always find a family of open neighborhoods Ui as in the hypothesis of the
lemma. We shall not use this fact in the sequel.

2.3. The Schoenflies Conjecture. In this subsection we prove the Schoenflies Conjec-
ture, following Brown. To first approximation, the Schoenflies Conjecture says that a
codimension one sphere in Sn (or Dn) bounds a ball. We’ve already used it in the proof of
the Engulfing Theorem 1.3. In that context the codimension one sphere and the ball were
smooth. As is well-known, and can be proved using the exponential map and an auxiliary
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Riemannian metric, smooth submanifolds have tubular neighborhoods; i.e. the embedding
extends (smoothly) to an embedding of some smooth vector bundle. A topological subman-
ifold might not have a tubular neighborhood; if it does we say it is collared. In this context,
a collared Sn−1 in Sn has a neighborhood homeomorphic to a product Sn−1 × [−1, 1].

Without the hypothesis that the sphere is collared, the Schoenflies Conjecture is false,
as we shall see in § 2.4.

Theorem 2.8 (Schoenflies Conjecture). Let S be a collared Sn−1 in Sn. Then S bounds a
closed ball on each side; equivalently there is a homeomorphism from Sn to itself taking S
to the round equator.

Proof. We would like to apply Corollary 2.5. Let N denote the collar of S, and fix a
homeomorphism φ : Sn−1 × [−1, 1] → N taking Sn−1 × 0 to S. Let D be a round open
disk in N and let E be a round open disk in Sn−1× [−1, 1] for which the closure of φ(E) is
contained in the interior of D. The complement of D in Sn is a closed disk, and is contained
in the complement of φ(E). Let ψ : Sn−1 × [−1, 1] → Sn be obtained by crushing each
boundary sphere to a point. The map φ−1 is defined on N −D, but the composition ψφ−1
extends to the entire disk Sn−D by crushing each component of Sn−N to a point. Since
E is a round disk in Sn−1 × [−1, 1] its image ψ(E) is a round disk in Sn so Sn − ψ(E)
is a closed disk. Thus ψφ−1 : Sn − D → Sn − ψ(E) is a map between closed disks, and
by construction it has exactly two nontrivial fibers. In particular, both components of Sn
minus the interior of N are cellular.

Now, let A be one component of Sn minus the interior of N , and let M be the compact
manifold A ∪ Sn−1 × [−1, 0] (say). Notice that M is one of the closed complementary
regions to S, and we are trying to prove that M is a ball. But now we know that A is
cellular, and therefore shrinkable in M . It follows that M → M/A is a homeomorphism.
Since M/A is the cone on Sn−1, we deduce that M is homeomorphic to Dn (and similarly
for the other complementary component).

The last claim of the theorem follows by coning. �

2.4. Wild spheres and crumpled cubes. It’s important in the proof of the Schoenflies
Conjecture that we only consider collared (also: tame) spheres. Alexander gave an example
of a wild S2 in S3 — the Alexander horned sphere — which does not bound a D3 on one
side. We describe a particular horned sphere Σ in R3 that bounds a compact subset B
whose interior is not simply-connected. The subset B is known as a crumpled cube.

It’s convenient for later applications to let our construction depend on a parameter
0 < λ < 1/2. It’s fine to think of λ as fixed for the moment; Figure 2 indicates the picture
when λ ∼ 0.49.

Embed two solid cylinders H0, H1 inside a bigger solid cylinder C as shown in Figure 1,
and let F denote the closed complement of C in S3.

If we parameterize each Hi as D2×[0, 1] we let Ci denote the ‘middle’ piece D2×[λ, 1−λ]
of each Hi, and let Fi denote Hi−Ci. There’s an affine isomorphism φi : C → Ci (in radial
coordinates) for each of i = 0, 1, and we can use this to build new solid handles Hij ⊂ Ci
for j = 0, 1 by the formula Hij = φi(Hj). There is likewise a middle piece Cij ⊂ Hij, a
complement Fij = Hij −Cij, and an affine isomorphism φij : C → Cij. Inductively we can
construct a Cσ, Hσ, Fσ and φσ : C → Cσ for each finite binary string σ.
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Figure 1. The handles H0 and H1 in C

Define E to be the closure of ∪σFσ where the union is taken over all binary strings σ.
The interior of E is an open ball; it is the increasing union of the interiors of ∪|σ|≤nFσ, each
of which is itself an open ball. The boundary of E is the wild sphere Σ. The complement
of the interior of E is the crumpled cube B; the interior of B is a 3-manifold with infinitely
generated π1, though B itself is simply-connected.

Figure 2. 2 stages in the construction of the wild sphere

The infinite intersection C = ∩σCσ is a Cantor set, consisting precisely of the points at
which the horned sphere Σ is not locally tame.

We can think of each Fσ as a ‘finger’ extruded by the exterior into the interior. It grows
for a while, and then extrudes its own pair of smaller fingers Fσ0, Fσ1 which each extrude
their own pair of smaller fingers and so on. The fingers at every stage are geometrically
entangled with each other at some finite scale; in the limit the entanglement is topological
in nature.

Now consider how this construction depends on the parameter λ. The smaller λ is, the
stubbier the fingers Fσ are, and the slower their diameters shrink. Nevertheless, for any
two 0 < λ′ < λ the resulting spaces are obviously homeomorphic.
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On the other hand, if we take λ to 0, we can still construct the sequence Cσ as above, with
Cσ = Hσ at each stage. Now the diameters of the components of Cσ stay bounded below,
and for any infinite increasing sequence of binary strings σ1 ⊂ σ2 ⊂ . . . the intersection
∩iCσi is a tame arc from ∂C to one of the points in the Cantor set C from before.

The union of these tame arcs is an USC decomposition D. To see what the quotient
space is, shrink the elements of D to points by successively pushing in fingers Fσ with
bigger and bigger |σ|. Evidently the quotient space C/D is homeomorphic to the crumpled
cube B.

Since B and C are not homeomorphic, D is not shrinkable in C, although it is shrinkable
in the ambient S3. This is true even though the decomposition of C is null, and the
nontrivial elements are cellular.

2.5. Bing doubles and an exotic involution on S3. Now, although the crumpled cube
B is not a manifold, it does have a ‘boundary’ S2, namely the wild Alexander horned
sphere. It makes sense therefore to construct the double of B, denoted DB, by gluing two
copies of B together along their boundary spheres.

The double DB is obviously not a manifold — or is it?!? Wilder conjectured (!) and
Bing proved (!!) that it is! In fact, DB is homeomorphic to S3. There is an obvious
involution of DB that interchanges the two sides. Thus there is an exotic involution on
S3, one whose fixed point set is a wild S2.

We now give (a modification of) Bing’s argument, proving this. The double of the solid
cylinder C is evidently S3. We push the annulus A of the cylinder C slightly into its
interior; after doubling, A doubles to a torus T bounding a solid torus N . Each Cσ has
boundary disks contained in the boundary of C, so when we double it becomes a solid
torus Nσ with boundary torus Tσ. Notice that the core Kσ of every Nσ is an unknot in S3,
though it is knotted in Nσ′ where σ′ is the prefix of σ obtained by removing the last letter.

The intersection of a sequence ∩iNσi is a tame interval, obtained by doubling one of the
components of D. We define a new decomposition D′ of S3 whose components are the
doubles of the components of D. We shall show that D′ is shrinkable; this will imply that
S3 is homeomorphic to S3/D′ = D(C/D) = DB.

Theorem 2.9 (Bing). The decomposition D′ of S3 is shrinkable.

Proof. Let Ui denote the union of the open Nσ with |σ| = i. Then the components of
Ui nest down to the components of D′, and evidently satify the first property of the Big
Shrinking Lemma 2.6. It remains to find a sequence of homeomorphisms hi of S3, each
supported in Ui, whose compositions gi := h1h2 · · ·hi shrink all components of Nσ with
|σ| = i to diameter ≤ εi, for some εi → 0.

Our sequence will have the property that the image of each (shrunken) Nσ will be a
(very!) thin tubular neighborhood of a knot Kσ, so that the diameter of any decomposition
element in the image of Nσ can be estimated from the diameter of Kσ.

Now, the knot K is essential in N , but every other Kσ is inessential in N , and therefore
lifts to the universal cover of N , in which the preimage K̃ of K is a line. Since N can be
as thin as we like, we imagine Kσ being laid out somehow along this line. Measure length
along K̃ so that each fundamental domain has length 1.
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Consider the (rooted) binary tree of all finite binary sequences, and partially order it
by prefix of sequences. Each sequence σ has two children σ0, σ1 and is associated to a
component Nσ of U|σ|.

To each σ we will associate a number t and a cyclic word W in the letters L and R, and
write σ → (t,W ). The meaning of this is that Kσ consists of |W | segments of length t
aligned with K̃, where a segment labeled L goes ‘left’ and a segment labeled R goes ‘right’.
If we lay out K0 and K1 in the obvious way, we write

0→ (2−1, LR) and 1→ (2−1, LR)

If σ → (t,W ) then the length of Kσ is t|W |. The word W has as many Ls as Rs because
Kσ ‘closes up’. For each subword I of W let #L(I) and #R(I) denote the number of Ls
and Rs in I respectively. Let s(W ) be the maximum of |#L(I) −#R(I)| > 0 over all I.
Then the diameter of Kσ (i.e. the length of its projection to K̃) is ts(W ).

By induction we’ll suppose that W never has 3 or more Ls or Rs in a row. We call an
LL or an RR a chunk. The only chunkless words are (LR)k for some k. If W is chunkless,
the diameter of Kσ is t, no matter how big |W | is.

Now, we can always think of each segment of Kσ of length t as the concatenation of
two segments of length t/2. In our notation, σ → (t,W ) is equivalent to σ → (t/2,W ′)
where W ′ is obtained from W by replacing each L with LL, and each R with RR. If W is
chunkless, then W ′ consists entirely of chunks. We call this operation subdivision; we shall
apply it only to chunkless words.

Now, Kσ has two children, Kσ0 and Kσ1 . Here is how we lay the Kσi along Kσ. We split
Kσ into two segments A, B. Then Kσ0 goes once along A and then back along A−1, while
Kσ1 does the same with B. This can be arranged by a homeomorphism supported in Nσ.

At the level of words, we split W into two subwords A, B. We denote by A′ the word
obtained from A by reversing the order of letters, and exchanging Ls for Rs and vice versa.
With this notation, we have

σ0→ (t, AA′), σ1→ (t, BB′)

Notice that AA′ has twice as many chunks as A, and similarly for BB′; this is because
every chunk in AA′ is entirely contained in A or in A′. Let’s observe by induction that all
our words have an even number of chunks.

We claim that every W arising as above is either chunkless (and should be subdivided)
or has a pair of subwords A, B so that both AA′ and BB′ have fewer chunks than W . To
see this, enumerate the chunks around W in order, and split along the middle of a pair of
opposite chunks.

But now we are done: for any initial W , by repeatedly splitting, we obtain a finite
binary subtree with root word W , all of whose leaves have chunkless words. Subdivide
all the leaves, and continue. Eventually the diameters of all the leaves are as small as we
like. But any decomposition element is contained in some leaf, and therefore successive
application of homeomorphisms gives a big shrinking sequence. �
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Part of an inefficient splitting sequence

The graph above shows part of an inefficient splitting sequence. Actually, a judicious
choice of splitting ensures that for every σ with 2n < |σ| ≤ 2n+1 we have |Wσ| = 2n and
tσ = 2−n. Each Kσ has length 1 and diameter 21−n unless |σ| is a power of 2, in which case
the diameter is 2−n.

2.6. Embedded gropes. We have seen how the crumpled cube arises as an infinite inter-
section, by successively drilling out smaller and smaller fingers as they poke in. Now let’s
see how it arises as an infinite union.

Let’s start again with C, and let γ be a meridianal loop in ∂C. γ bounds a meridional
disk D in C dividing the top cap from the bottom. This disk intersects each of the handles
H0 and H1 transversely in two meridional circles. Tubing either H0 or H1 changes D into a
once-punctured torus τ . Note that the standard meridian and longitude of τ are meridians
of H0 and H1 respectively, and a thickened neighborhood of τ is equal to C − (H0 ∪H1).
We refer to the meridian and longitude of τ as γ0 and γ1.

Now, cut C0 and C1 out of H0 and H1. This has the effect of gluing 2-handles (i.e disks
D0, D1 to the meridian and longitude of τ , one on either side. But if we now drill Hi0, Hi1

out of each Ci, the disk Di intersects each of these handles transversely in two meridional
circles, and tubing produces once-punctured tori τ0, τ1 capping off γ0, γ1. A thickened
neighborhood of the various τi fills out the complement of the second stage construction of
the crumpled cube.

Continue inductively: for each once-punctured torus τσ with meridian or longitude γσi,
there is a once-punctured torus τσi that caps it off inside Cσ by tubing a disk around the
meridian of Hσi. For each i the union

Γi := ∪|σ|≤iτσ

is called an i-stage grope, and the infinite union is an infinite stage grope. We can think
of the infinite stage grope as a spine for the crumpled cube, since a tapering union of
neighborhoods of the τσ is precisely equal to the interior of B.

Algebraically, the fundamental group of each i-stage grope is free, and its abelianization
(i.e. H1) is freely generated by the γσ. Including each grope into the next stage precisely
kills all the H1, at the cost of introducing twice as much new H1. Thus the union (i.e. the
interior of the crumpled cube) has trivial H1, although its fundamental group is infinitely
generated.
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Figure 3. The grope is the spine of the crumpled cube.

Actually, we already know H1 of the crumpled cube interior is zero; this follows from
Alexander duality. For a reasonable subset X of Sn the homology of the complement of X
depends only on the homeomorphism type of X, and not on the way X sits in Sn.

2.7. S3/Wh is a manifold factor. SupposeK is a knot in S3 and N is a regular neighbor-
hood. The Bing double of K is the link consisting of a pair of unknots clasped nontrivially
in N , i.e. as K0 and K1 clasp in N in the proof of Theorem 2.9. If K is an unknot in S3,
then the union of K0 ∪K1 with a meridian of N is the Borromean rings.

Finite Bing doubling is a topological notion; the result of n-fold Bing doubling is a 2n-
component link in N whose isotopy class is well-defined. However the result of infinite
Bing doubling is a geometric notion — in fact that is the whole point of Theorem 2.9: the
result depends on the particular choice of embeddings of each successive Nσ0, Nσ1 in Nσ.
But however it is done, the complement is an open crumpled cube.

Now, if K is a knot in S3 and N is a regular neighborhood, the Whitehead double is
a single knot K1 in N clasping itself. If K is an unknot in S3, the union of K1 with a
meridian of N is the Whitehead link. Under iterated Bing doubling, the fundamental group
of the open complement gets more and more complicated; but under Whitehead doubling
(beginning with the unknot!) the complement at every stage is a solid torus.

Let Wh = ∩iN(Ki) denote the infinite intersection of all the N(Ki) obtained by succes-
sive Whitehead doubling of the unknot. Wh is called the Whitehead continuum. Since each
(closed) N(Ki) is compact and connected, so is Wh (however it is not path connected).
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Figure 4. The grope locked in complement with the horned sphere

The complement S3 −Wh is called the Whitehead manifold, and unlike the interior of the
crumpled cube, it is simply-connected, and even contractible. However it is ‘wild at infin-
ity’: its end is not homeomorphic to a product of a surface with an interval, and therefore
it is not homeomorphic to an open D3.

The one-point compactification of the Whitehead manifold is evidently equal to the
quotient S3/Wh, and is not homeomorphic to S3 (in fact, it is not even a manifold) since
the complement of the compactifying point has a wild end. Therefore the following is quite
surprising:
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Theorem 2.10 (Manifold factor). The product S3/Wh× R is homeomorphic to S3 × R.

Proof. We think of S3/Wh as the quotient by a decomposition whose only nontrivial el-
ement is the Whitehead continuum. Since the quotient is not S3, the nontrivial element
Wh is not cellular.

Let D denote the decomposition of S3 ×R with nontrivial elements consisting precisely
of the elements Wh × t for each t ∈ R. We shall show that D is shrinkable in S3 × R,
proving the result. Since our results on shrinking only hold for compact metric spaces,
technically we should first compactify S3 ×R by adding two points at infinity to form S4,
and extend the decomposition D trivially over these two points. It is evidently sufficient
to show that D is shrinkable in S4. This property will hold for the shrinking sequence we
now construct.

Wh is a nested sequence ∩iNi of closed solid tori in S3. Let’s think about why we
can’t shrink Ni in Ni−1 keeping S3 − Ni−1 fixed. The reason is topology (winding num-
ber): because the core of Ni is a nontrivial knot in Ni−1, any isotopy of this core in Ni−1
must intersect every meridian disk of Ni−1, so its diameter is uniformly bounded below.
Informally, we can’t undo the ‘clasps’ of Ni in 3-dimensions.

But we can undo these clasps in 4 dimensions. First, each N1 slice can be unknotted by
a tiny perturbation in N0 × R. To distinguish the R factor, and for the sake of brevity,
we refer to it as the ‘time’ coordinate (this is purely a notational convenience). In this
language, we unclasp N1 from itself by nudging one clasp very slightly forward into the
future, and the other very slightly back into the past. After the nudge, N1 will not clasp
itself, but it will clasp a ‘future’ N1 on one side, and a ‘past’ N1 on the other. Instead of
N1 clasping itself in a circle, we get a chain of successive N1s, each clasping the next, in
a slowly ascending spiral. Let’s let ε/4 be the size of the perturbations of each clasp in
the time direction, so that the projection of each N1 to the time coordinate after it’s been
nudged has total length ε/2.

Nudging adjusts points in N1×R by sliding each point×R slightly backward or forward
in time. Nudging extends to a self-homeomorphism ν of N0 × R, fixed on the boundary.

Figure 5. Folding the clasps of each N1 back and forth in time nudges the
union of all N1s into a collection of spirals

By the way, there’s not just one spiral, there’s a circle’s worth of them, filling the whole
of N1 ×R. Two slices ν(N1 × t), ν(N1 × s) are in the same spiral if and only if t− s is an
integer multiple of ε/2.
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After nudging, the next move will straighten out this and every other spiral so that its
projection to the S3 factor is small (let’s say for concreteness has diameter < ε/2) without
affecting the projection to the R factor.

The cylinder K0 × R ∈ S3 × R has polar co-ordinates (θ, t) where θ ∈ R/Z. Extend
these polar co-ordinates to a small tubular neighborhood of K0 × R containing N1 × R,
with closure contained in the interior of N0 × R.

We can ‘untwist’ every spiral simultaneously by the map
(θ, t)→ (θ − 2t/ε, t)

on our small tubular neighborhood. Twisting extends to a self-homeomorphism τ of N0×R,
once again fixed on the boundary.

In summary, first we nudge, then we twist. After doing this, every τν(N1) slice projects
to subsets of diameter at most ε/2 in both the R and the S3 directions. So τν(N1) has
diameter at most ε.

In other words, h1 := τν simultaneously shrinks all the N1 slices in S3 × R as small as
we like, while keeping (S3 −N0)× R fixed pointwise.

Figure 6. Screw top and bottom in opposite directions like you’re taking
the lid off a pickle jar

Take a sequence εi → 0, and repeat this operation for each i > 1 in place of 1 with
εi in place of ε. We get a sequence of self-homeomorphisms hi : S3 × R → S3 × R, each
supported in Ni−1 × R, as a composition of a nudge–and–twist hi := τiνi. Each Ni slice
gets smaller and smaller in diameter as we apply consecutive his.

Applying the Big Shrinking Lemma, we are done. �

As we shall see in § 3, products S3/Wh×R arise as the simplest kind of Casson handle.
Thus the fact that these products are standard is a big hint (if you’re still skeptical) that
the 4d Poincaré Conjecture might actually be true.

Remark 2.11. We didn’t seem to use many properties of the Whitehead link in the proof
of Theorem 2.10. This seems suspicious. But in fact, the proof really uses almost no
topological properties of the Whitehead link beyond the fact that the two components
have linking number zero.

The argument works just as well — even with links Li instead of knots Ki at each stage
— providing only that each component of Li is homologically (equivalently homotopically)
trivial in Ni−1 (i.e. has linking number 0 with the meridian of Ni−1). The proof is exactly
the same: successively nudge and twist each component of Ni−1×R by a homeomorphism
fixed on the boundary, which shrinks every Ni slice, and then apply Big Shrinking.
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2.8. Bing versus the world. We can produce many interesting decompositions D of S3

by starting with the unknot, and mixing Whitehead and Bing doubling at each stage. One
can even throw in various other kinds of doubling, e.g the Whitney doubling in § 3.9.3.

Let’s call a generalized double any operation which inserts a finite framed link in a neigh-
borhood of the core of a framed knot. Then the following generalization of Theorem 2.9 is
straightforward:

Theorem 2.12 (Bing beats anything). Let Λ := ∩iNi be obtained as the intersection of
a nested family of closed subsets of S3, where each Ni is a finite disjoint union of solid
tori, and where Ni is obtained from Ni−1 by applying a generalized doubling move to each
component of Ni−1. Suppose that generalized double moves are only allowed at stages n(i),
where every intermediate stage is Bing doubling of every component. Then there is an
integer m(i) depending on the particular sequence of doubles resulting in Nn(i) so that if
n(i + 1) − n(i) > m(i), the components of Λ form a shrinkable decomposition, and the
quotient of S3 by this decomposition is homeomorphic to S3.

In words, if we have enough Bing doubles between any other kind of doubles, the result
is shrinkable.

Proof. It suffices to isotop each finite stage so that successive diameters of every nested
sequence of components goes to 0.

Let N be a solid torus whose core has length T . Then for any ε > 0 the result of Bing
doubling N approximately 2T/ε times will produce components in N whose diameters are
at most ε as measured in N . Of course, this implies that the diameters are at most ε as
measured in S3.

Now, no form of doubling increases diameters, but some doubles will increase the length
of the core curve by some amount. But whatever the length of the core curves of the Nn(i),
they are all bounded by some finite T , and therefore for any ε, if we take m(i) to be of
order 2T/ε, the diameters of every component of the Nn(i+1) are bounded above by ε as
measured in S3. �

Such shrinkable decompositions literally arise as the frontiers of the Flexible handles we
shall construct in the sequel.

If N is a solid torus and N ′ is a union of solid tori in N obtained by a generalized doubling
of the core, the complement N −N ′ is called a drilled solid torus. Since the components in
a generalized doubling are framed, the drilled solid torus inherits framings of its boundary
tori. If Λ ⊂ S3 is obtained by recursive generalized doubling, the complement S3 − Λ is
exhibited in a natural way as a union of drilled solid tori.

2.9. Starlike and birdlike. A compact subset X of Rn is starlike with respect to a point
p, if it is a (closed) union of rays ending at p. A set is starlike equivalent if there is a
(compactly supported) self-homeomorphism of Rn taking it to a starlike set. A starlike
equivalent set is cellular.

Remember that a decomposition is null if there are only finitely many elements with
diameter bigger than any fixed ε. In particular, a null decomposition is countable. Not
every null decomposition of Dn is shrinkable, even if all components are cellular.
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Example 2.13 (2-Bing). We produce a nested sequence of 2-component links in S3, just as
in the construction of the Bing decomposition, with the difference that the clasped links at
each stage wind twice around the core of their parent torus. The decomposition elements
consist of the infinite nested intersections.

These elements are all cellular, since each solid torus is unknotted in the previous one.
Moreover, the decomposition can be chosen to be null: call the two initial components B
and L. Each component corresponds uniquely to an infinite word in the alphabet B, L.

At each stage the union of the B and L components can’t be too small, but we can
arbitrarily insist that one of them (the L component) is as small as we like. No component
has bigger diameter that its parent. Thus we can arrange that any sequence with a B at
the nth stage has diameter (at this and subsequent stages) no bigger than 2−n. With this
choice, nontrivial decomposition elements correspond to sequences with finitely many B’s,
and there are only finitely many of these with diameter (ultimately) bigger than any fixed
ε.

Despite this example, Bean proved the following:

Theorem 2.14 (Starlike null is shrinkable). Let D be a null decomposition of Dn in which
every decomposition element is starlike equivalent. Then D is shrinkable.

Proof. Let X be starlike with respect to the origin (without loss of generality). Then X
is cellular, and therefore shrinkable in D. Since the decomposition is null, what’s wrong
with just shrinking the components of the decomposition one by one in order from biggest
to smallest?

The problem is that when we try to shrink some big decomposition element X, there
might be some other sequence of smaller and smaller decomposition elements Yi closer and
closer to X, so that any self-homeomorphism φ shrinking X must also stretch some Yi big.

With this in mind, we will show for any ε that there is a self-homeomorphism φ of Dn,
supported in an arbitrarily small neighborhood of X, and satisfying

(1) the diameter of φ(X) is at most ε;
(2) for every other decomposition element Y either the diameter of φ(Y ) is at most ε,

or no point of Y moves more than ε.
This will be sufficient for our needs, since for any Y , either φ(Y ) will not be much bigger
than Y , or it will be of size less than ε. This is evidently good enough to let us shrink
the decomposition elements one by one without accidently stretching one too much and
undoing our progress. Incidentally, to construct φ as above we will not need to use the fact
that every other Y is starlike-equivalent.

The homeomorphisms we construct will be radial; i.e. they take each ray centered at
the origin to itself. Furthermore, the restriction to each ray will be compactly supported,
and will be piecewise affine. Here’s the construction.

Let Xi be a sequence of closed disks, each contained in the interior of the previous one,
and with ∩Xi = X. Since X is starlike, we can choose such a Xi which is likewise starlike
from the origin. We choose the Xi satisfying the following conditions:

(1) X1 does not intersect any decomposition element Y of size > ε/2; and
(2) No Y intersects both Xi −Xi+1 and Xi+2 for any i.
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Let Bi be a sequence of round closed balls of radius ri centered at the origin, such that
(1) ri → ε; and
(2) 0 < ri − ri+1 < ε/8.
Now, define Zi := Xi ∪Bi for each i. Each Zi is a starlike disk, and ∩Zi = X.
We shall define φ to be the unique radial homeomorphism so that for each ray r and each

i, the radial segment r ∩ (Zi−Zi+1) is taken affinely to the radial segment r ∩ (Bi−Bi+1)
for all i < n, while Zn is taken radially to Bn. Notice that any point x ∈ Bi −Xi moves
no more than ε/8.

We now check that φ as above satisfies the desired properties, i.e. that for every Y ,
either φ moves no point of Y more than ε, or the diameter of φ(Y ) is less than ε.

The proof falls into a small number of cases, all straightforward to analyze.
(1) If Y has diameter > ε/2 then it doesn’t meet any Xi. Thus every point is in some

Bi −Xi, and therefore moves no more than ε/8.
(2) If Y has diameter ≤ ε/2 but still has every point in some Bi − Xi, then it is still

true that no point moves more than ε/8.
(3) If Y has diameter ≤ ε/2 and no point is in any Bi −Xi, then there is some index

j so that every point in Y is in Xj − Xj+2. It follows that φ(Y ) is in Bj − Bj+2,
an annulus of thickness at most ε/4. If x, y ∈ Y are arbitrary, let x′, y′ in ∂Bj+2

be on the rays containing x, y. Note that the distance from x′ to y′ is less than the
distance from x to y, which is bounded by ε/2. On the other hand, the distance
from x′ to φ(x) is at most ε/4, the thickness of the annulus, and similarly for y′
and φ(y). By the triangle inequality the distance from φ(x) to φ(y) is at most ε.

(4) If Y has diameter ≤ ε/2 with points x, y such that x is in Xj − Xj+2 and y is in
Bj − Bj+2, define x′ and y′ in ∂Bj+2 as before. It is still true that the distance
between x′ and y′ is no more than the distance from x and y. And it is still true
that the distances from x′ to φ(x) and from y′ to φ(y) are bounded by ε/4. So the
diameter of φ(Y ) is at most ε.

�

It’s important to stress that the condition of being starlike-equivalent does not just refer
to the topology of a decomposition element, but how it sits in the ambient space.

A set is birdlike if it is ‘recursively starlike’: i.e. there are finitely many starlike retractions
that shrink to a point. Denman and Starbird [4] observed that birdlike equivalent null
decompositions are shrinkable too:

Theorem 2.15 (Birdlike null is shrinkable). Let D be a null decomposition of Dn in which
every decomposition element is birdlike equivalent. Then D is shrinkable.

Proof. We restrict attention to the case of a polyhedral birdlike set, since this is the only
case we will need for applications.

As in the proof of Theorem 2.14, we only need to show for any ε > 0 that we shrink a
single big birdlike (bigbird-like?) component to diameter ε without increasing the diameter
of any other component by size ε. Furthermore, we don’t actually need to exhibit a
homeomorphism performing this shrinking; it’s enough to exhibit a map which is ABH,
since an approximating homeomorphism will do the job.
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The point of this is that we can replace the radial affine map φ on each Zi − Zi+1 by a
new map that merges some of the radial segments. In its intrinsic path metric as a subset
of Euclidean space, a (polyhedral) birdlike set X is CAT(0) so if we fix a point p in the
interior, there is a unique geodesic segment in X (which is PL in the ambient space) from
any q ∈ X to p.

Using this geodesic flow, we can build a new ‘radial’ function in a neighborhood of X
whose gradient trajectories are obtained by first flowing at unit speed along the intervals
of a product collar into X, and then flowing in X to p. If we define balls and radial affine
maps with respect to this function, the proof works exactly as above. �

2.10. Ball to ball theorem. The last substantial shrinking result we need for the Poincaré
Conjecture is the ball to ball theorem, due to Freedman.

Theorem 2.16 (Ball to ball). Let f : Dn → Dn be onto, and let the associated decom-
position of Dn be null. Further, let’s suppose that the singular image (the image of the
nontrivial elements) is nowhere dense. Let’s also suppose that there’s a closed subset E
of Dn containing ∂Dn, so that the restriction of f to E is a homeomorphism. Then f is
ABH, where the approximating homeomorphisms can be chosen to agree with f on E.

Notice that we do not assume the decomposition is cellular.

Proof. Let’s denote the nontrivial elements by Xi mapping to xi. Since the decomposition
is null, there’s a largest nontrivial element X mapping to x.

Let U be a tiny open ball around x, and let B be tiny closed round ball containing x
whose boundary avoids the singular image. Let U ′ and B′ be the preimages of U and B
under f .

If we knew B′ was a ball, we could replace f |B′ by any homeomorphism f ′ : B′ → B
agreeing with f on ∂B′ and eliminate the largest nontrivial element of the decomposition.
But we don’t even know that X is cellular.

Let σ : Dn → B be a radial homeomorphism squeezing Dn − U down to B − U while
staying fixed on U . If it made sense to conjugate σ−1 by f we would get a homeomorphism
f−1σ−1f : B′ → Dn, and then we could choose any homeomorphism h : Dn → B agreeing
with σf on E, and replace f by hf−1σ−1f on B′. Notice that this map restricts to a
homeomorphism h on U ′ and agrees with f on Dn −B′.

But this doesn’t make sense as written, because f is not a homeomorphism, so f−1 is
not a map; it’s a relation. Nevertheless we have well-defined maps σ−1f : B′ → Dn and
fh−1 : B → Dn, and we can form the fiber product ∆ ⊂ B′ ×B.

Now, ∆ as so defined might contain product regions Xi× h(Xj) whenever xi = f(Xi) =
σ−1f(Xj) = σ−1xj. Since the singular image is nowhere dense, we can perturb σ very
slightly so no such coincidences occur for Xi, Xj ⊂ B′−U ′; this ensures that the subset of
∆ in B′−U ′×B−U , though it has both horizontal and vertical segments, has no product
regions.

Since σ is the identity on U , we get product regions Xi × h(Xi) for all xi ⊂ U ; thus we
should replace ∆ by the graph of h−1 in U × U ′. Finally, we extend ∆ by the graph of f
in Dn −B′ ×Dn −B. This new ∆ has three properties:

(1) ∆ is as close as we like to Γf (they only differ in B′ × B, and B is as small as we
like);
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(2) The horizontal and vertical segments of ∆ ∩ (B′ × B) have projections to both
factors as small as we like.

(3) Away from horizontal and vertical segments, ∆ is the graph of an injective function.
If Q is the quotient of ∆ obtained by crushing both horizontal and vertical segments
to points, then Q is a disk, and the singular image is nowhere dense in Q.

But now we can continue this process, inductively crushing the biggest horizontal or
vertical segment at each stage, converging in the limit to the graph of a homeomorphism
approximating f . �

3. Kinks and Gropes and Flexible Handles

The idea of the proof of the Poincaré Conjecture in dimension 4 is the same as the
proof in higher dimensions: we need to find embedded Whitney disks to promote algebraic
intersection information to geometric intersection information. We can find immersed
Whitney disks rather easily; by general position they intersect themselves in isolated points.
Somehow we need to replace these immersed disks with embedded ones.

3.1. Slice knots and signatures. In 3-dimensions the famous Haken lemma says that if
f : D2 → M3 is a singular map which is an embedding near the boundary, then we can
find a new g : D2 →M3 which is an embedding, and agrees with f near ∂D2. The new g is
obtained by cut-and-paste argument from f ; thus g(D2) can be found in any neighborhood
of f(D2).

The same sort of argument can’t be true in 4 dimensions: embedded Whitney disks can’t
be found ‘locally’.

Example 3.1 (Slice Knots). Let K be a knot in S3, which we think of as the boundary
of D4. Then K bounds a singular disk in D4, obtained by coning the knot to a point.
Actually, this disk is embedded. But it is not necessarily locally flat, and in fact K might
not bound a locally flat embedded disk at all. A knot which does bound a locally flat
embedded disk in D4 is said to be (topologically) slice.

It is a fact that some knots are not slice. In fact, a slice knot K has an Alexander
polynomial of the form f(t)f(t−1), a fact due to Fox–Milnor. The figure 8 knot (for
instance) has Alexander polynomial A(t) = −t+ 3− t−1. Since A(−1) is not a square, the
knot is not slice.

We now explain the observation of Fox–Milnor.
Let F be a Seifert surface for K. Then H1(F ) = Z2g where g is the genus, and there is

a Seifert pairing
S : H1(F )×H1(F )→ Z

given by S(x, y) = linking number of x with y+, where y+ is obtained by pushing y off R
in the ‘positive’ direction. Note that this linking number is also given by the algebraic
intersection of surfaces A, B in D4 bounding x and y+ respectively.

Lemma 3.2. If K is slice, there is subspace L of H1(F ) Lagrangian for S.

Proof. Build F ′ by gluing a slice disk D onto F . Then F ′ is a closed, embedded, locally
flat surface in D4. We can push it slightly into the interior. We claim that there is an
embedded 3-manifoldM in D4 that bounds F ′. If F ′ is smooth, this is easy. By Alexander
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duality, H1(D4 − F ′) = Z, so we can choose a map D4 − F ′ → S1 in general position
realizing the generator, and take the preimage of a regular point.

Now the kernel of H1(F
′)→ H1(M) is Lagrangian L for the intersection form. If x and

y are in L, they bound surfaces A and B in M . Push off y to y+, at the same time pushing
B off M to B+. Then B+ and A are disjoint, so S(x, y) = 0. �

The Alexander polynomial of a knot may be obtained from the Seifert pairing as A(K) :=
det(S − tST ) ∈ Z[t], up to sign and multiplication by a power of t. If K is slice, there are
A, B, C so that S = ( 0 A

B C ) and

A(K) = det

(
0 A− tBT

B − tAT C − tCT

)
= det(A− tBT ) det(B − tAT ) = f(t)f(t−1)

3.2. Immersions, framings and Euler classes. It’s important to find immersed disks
and surfaces in 4-manifolds.

Lemma 3.3 (Immersion exists). Let R be an oriented surface and let W be an oriented 4-
manifold. If f : R→ W is any map, then f can be homotoped to an immersion. Moreover,
if the restriction to some subsurface S is already an immersion, then f can be homotoped
to an immersion rel. S.

Proof. Since every surface can be immersed locally, we suppose f is already an immersion
on a subsurface S. Since we can replace W in the hypothesis by any neighborhood of
the image f(R), it suffices to show that some immersion extending f on ∂S exists. This
follows from the immersion theorem, which says (in the context where the domain has
smaller dimension than the range) that any bundle map T (R − S) → TW is homotopic
to an integrable bundle map — i.e. an immersion. There is also a relative version of this
theorem: the map can be homotoped rel. its restriction to a subset where it is already
integrable.

Now, f ∗TW is a trivial R4 bundle over ∂S. The immersion near the boundary gives a
loop in the Stiefel manifold V2(R4) of oriented 2-frames in R4. But V2(R4) is an S2 bundle
over S3 and is therefore simply-connected. So the bundle map over the boundary always
extends, and f can be approximated rel. boundary by an immersion. �

Actually, the same proof works whenever the target has dimension at least 4. The lemma
is false in dimensions 3 and 2. The most important special case will be to a closed surface
R for which f : R → W represents a homology class, and a map of a disk f : D2 → W
which is already an immersion on a collar neighborhood of ∂D.

Suppose R is a closed connected oriented surface, and suppose f : R → W is a smooth
immersion where W is oriented. The normal bundle ν is an oriented R2 bundle over R. A
framing of R is a trivialization. The obstruction to finding a framing is the self intersection
number of the class [R] in the 4-manifold ν; equivalently, it is the signed number of zeros
of a generic section of ν. We write this e(ν).

At each self-intersection point of f(R) the sign of the intersection is ±1; let’s let I(R) =∑
±1, the sum taken over all the self-intersection points. If we perturb f(R) normally to

f ′(R) in W , then f(R) and f ′(R) intersect e(ν) times at zeros of f ′ − f , but they also
intersect ±2 times at a self-intersection point of f(R). In other words,

[R] · [R] = e(R) + 2I(R)
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where [R] · [R] is the intersection form in W . Notice that e(R) is well-defined mod 2, and
is equal to the evaluation of the second Stiefel-Whitney class w2 of W on [R].

Any connected oriented surface R with boundary can be framed, but if we have a framing
on the boundary, the obstruction to extending this over the interior is the relative Euler
number. We write this e(R). Any closed connected surface R can be framed in the
complement of a small disk D. On D the relative Euler class e(D) is equal to e(R).

An immersion can be modified locally by an interior twist. This inserts a new self-
intersection point with sign ±1, and changes the Euler class by ∓2.

If R has boundary, we can also modify R locally by a boundary twist. This changes the
relative Euler class by ∓1. The boundary twist doesn’t add a new self-intersection point for
R, but it changes the homology class of R rel. its boundary. If R is attached transversely
to S along ∂R, then the boundary twist adds a new intersection point of R with S. See
Figure 7.

Figure 7. Interior twist and boundary twist

We can think of both twists as a 1-parameter family of immersions of the interval (the
‘horizontal’ slices in the figure), moving from top to bottom. The boundary twist is easier
to understand: it is obtained by dragging the right hand tangent of D through a 2π
revolution perpendicular to the right edge, and dragging the rest of the interval along. If
we do this in R3 we get a ‘kink’ at angle π. But we can push this kink out into the 4th
dimension to straighten it. The framing along the (right hand) boundary evidently changes
by ±1. It introduces one new point of intersection with S. The interior twist is two copies
of the boundary twist, one obtained from the other by a rotation through 2π around the
boundary arc.

Here’s another picture of the interior twist. Start with two transverse planes in R4

intersecting D4. That’s the local picture near the self-intersection point. The link in
S3 = ∂D4 is a Hopf link L. Attach a collar S3 × [0, 1] to ∂D4. The intersection of our
surface with S3 × [0, 1/2) is a pair of linked cylinders L × [0, 1/2). In the level S3 × 1/2
we tube the components of the Hopf link together by an unlinking tunnel for L. Summing
these circles along this tunnel gives an unknot in S3×1/2 and we extend this by a product
to give an unknot in S3 × 1. This gives a framed disk properly immersed in D4 whose
boundary is an unknot; thus we can insert this picture locally in any surface.
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3.3. Whitney moves and finger moves. Let’s recall the definition of a Whitney disk.
Suppose we have immersed submanifolds Ap and Bq in W p+q and let’s suppose they inter-
sect transversely at two points x, y. Let α and β be embedded arcs in A and in B between
x and y, and let γ = α ∪ β.

An immersed Whitney disk D is a disk with the following properties:
(1) ∂D = γ;
(2) D is immersed and in general position with respect to itself and A ∪B;
(3) There is a splitting of the normal bundle νD as EA⊕EB where EA|A is the normal

bundle of α in A, and EB|B is the normal bundle of β in B.
An embedded Whitney disk is embedded, and must also be interior disjoint from A ∪B.

Let’s suppose we have an immersed disk D with ∂D = γ in general position with respect
to itself and A ∪B. When does it admit the desired splitting of the normal bundle?

Since α is an embedded arc in A, the normal bundle νA(α) is trivial. It sits as a (p− 1)-
plane bundle in νD along α, and splits off an orthogonal (q − 1)-plane bundle we call ξ.
The splitting νD = νA ⊕ ξ along α extends to a splitting over all of D. Thus we need to
compare the (q − 1)-plane bundles ξ and νB over β.

Since A is transverse to B, the (q − 1)-planes ξ|x and ξ|y have the same orientation
as νB|x and νB|y if and only if the points x and y have opposite sign, with respect to a
consistent choice of orientations for A, B and W in a neighborhood of D.

The trivialization can therefore be found if the bundles ξ|β and νB|β are isomorphic rel.
endpoints. The difference of any two trivializations agreeing at the endpoints is a based
loop in the Stiefel manifold V(q−1)(Rp+q−2) of (q− 1)-frames in Rp+q−2. Now, V1(Rp+q−2) is
a (p+q−3)-sphere, and each Vi(Rp+q−2) is a (p+q−2−i)-sphere bundle over Vi−1(Rp+q−2).
So the Stiefel manifold is simply-connected whenever p > 2. When p = 2 and q > 2 the
fundamental group is Z/2Z, but when p = q = 2 we have V1(R2) = S1 with fundamental
group Z.

For n = 4 and p = q = 2 there is a Z obstruction to finding a suitable framing for D,
which is just the relative Euler number. If this number is zero and the framing problem
can be solved, we modify A by cutting out a tubular neighborhood of α, gluing in a copy
of the sphere bundle of D in νA, and capping this off with a pushoff of Dp−1 × β (in the
direction of the outward normal of β in TD). This is the Whitney move.

If D is embedded, the result of the Whitney move is to remove the points x, y of intersec-
tion of A with B. Thus by a sequence of Whitney moves we can find new representatives
A and B with |A ∩B| = |[A] ∩ [B]|.

If D is immersed, then the result of pushing A over D will create two new intersections
of A for each intersection of D. If D is disjoint from B then this move at least reduces the
number of intersections of A with B.

Note that by applying enough boundary twists we can always solve the framing problem,
at the cost of introducing new intersections of D with A or B (or both). In the cases we’ll
consider, it will usually be possible for us to push these intersections off A or B.

The inverse of a Whitney move is a finger move. Let’s suppose A and B are surfaces,
and C is a surface with boundary on B. Suppose A intersects C transversely in a point
x, and y is a point on ∂C ∩ B. If C is connected, we can find an arc α in C from x to y,
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and push A along this arc and through B off of C. This removes the point of intersection
of A with C, but it creates two new points of intersection of A with B (of opposite sign).
When we push A off α, it drags a segment in ∂C along with it, sweeping out a tiny disk
W . This W is a Whitney disk, that can be used to cancel the two new intersection points.

Inserting a twist changes the framing, and a finger move changes self-intersection, but
neither move changes the homology class. There is a third move which does, called (framed)
sum. It’s the immersed analog of a handle slide. Given immersed framed surfaces A, B we
choose a path α from A to B, slide a finger of A along α, and then connect sum it with
B at the end and push off using the framing of B. This produces a new framed surface A′
representing the homology class of [A] + [B].

Here is one of the the main applications of a framed sum. If there is an immersed framed
sphere F that intersects B in exactly one point (such an F is called a geometric dual for
B), then for each p ∈ A ∩ B we can do a finger move of A along an arc in B from p to
F , and then do a framed sum with F to produce A′ intersecting B in fewer points. For
instance, if D is a disk with some boundary on B but otherwise disjoint from B, we can
frame D by doing some boundary twists, creating new intersections of D with B, then we
can push these intersections off B into copies of F .

It’s very useful for B to have a geometric dual. In § 3.5 we’ll explain how to systematically
produce and use them.

3.4. Accessories and Whitneys. Suppose there’s a framed immersed surface R with a
single self-intersection point p. There’s nothing to pair p with, so what do we do? There’s
another kind of disk we use in this context, called an accessory disk. Let’s explain.

Let α be an arc in R from p to itself. It forms a loop in W . If this loop is null-
homotopic in the complement of R, there’s an immersion D → W − R taking ∂D → α,
and maybe we can even find an embedded D. The normal to α in R is a line bundle.
At p these two normals don’t agree, but they are perpendicular, so there’s a canonical
one-parameter family of normals sweeping out a quadrant in the 2-plane they span. This
2-plane is perpendicular to D at p, so the net result of inserting this family of normals is
to give a section of the normal bundle to D over ∂D, and since W is orientable, this gives
a framing of ν(D) over ∂D. An extension of this to a framing over the interior of D is
called an accessory disk. If D is immersed but otherwise framed in this manner, it’s called
an immersed accessory disk.

A neighborhood of α∪D is D4 and R intersects the boundary of this neighborhood in an
unknotted 0-framed circle in the boundary S3. So we can cut this neighborhood out and
insert an embedded framed disk, and thereby eliminate the single self-intersection point.
We call this an accessory move. It’s nothing more than the inverse of an interior twist
move.

Here’s another way to describe it: an accessory move is an interior twist followed by
a Whitney move. In more detail: near a self-intersection point p with a null-homotopic
loop γ we introduce a new self-intersection point q by interior twist, so that p and q have
opposite signs. Join p to q by α. Then γα := αγα−1 can be perturbed to an embedded
bigon, and an accessory disk A for γ can be perturbed to a Whitney disk W for γα. Now
perform the Whitney move to eliminate p and q. Notice: if A is embedded then so is W .
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One important difference between the Whitney move and the accessory move is that the
former can be carried out by isotopy (resp. homotopy through immersions) if the Whitney
disk is embedded (resp. immersed) but the accessory move changes the Euler number of
R, and therefore can’t be carried out by a homotopy through immersions. By the way, a
homotopy through immersions is usually called a regular homotopy, but we won’t usually
use that term because it’s kind of opaque.

3.5. Transverse spheres. Let V be a smooth simply-connected 4-manifold, and suppose
H2(V ) contains a hyperbolic factor; i.e. a pair of (primitive) homology classes α, β with
α2 = β2 = 0 and α · β = 1. Since W is simply-connected, α and β are represented by
immersed two-spheres A, B.

One possibility is that A and B are embedded with trivial normal bundles, and intersect
transversely in a single point. This is precisely the case where V can be written as V ′](S2×
S2), and understanding V reduces to understanding the (simpler) manifold W ′.

Now, w2(A) = w2(α) = α2 mod 2, so the Euler class of the normal bundles of A and
B are even. Therefore we can trivialize these bundles by doing interior twists; this will
typically produce new self-intersections. Since α · β = 1, all but one of the intersections of
A with B come in pairs with opposite signs.

How can we use global information (e.g. the fact that π1(V ) = 0) to ‘improve’ this
geometric picture? Evidently we should start to look for Whitney disks.

Since V is simply-connected, we can find many immersed Whitney disks to pair oppo-
sitely oriented intersection points. But these disks might have many intersections with A
and B, and the result of Whitney moves might make things more complicated, not less.

It’s too much at this stage to ask for embedded Whitney disks, but at least we can ask
for Whitney disks whose interiors are disjoint from A∪B. This amounts to asking whether
π1(V − (A ∪B)) is trivial (one says in this case that A ∪B is π1-negligible).

Proposition 3.4. Suppose V is simply-connected, and suppose we have framed immersed
spheres A,B representing the generators α, β of a hyperbolic subspace of H2. Then we
can find new framed immersed spheres A,B representing α, β whose union is π1-negligible,
and all of whose intersections but one can be spanned by immersed Whitney disks interior
disjoint from A ∪B.

Proof. By Seifert-van Kampen, π1(V − (A∪B)) is (normally) generated by meridian loops
around A and B. Evidently, π1-negligibility is equivalent to the existence of geometric
duals: immersed spheres SA and SB where SA is disjoint from B and intersects A in one
point; and conversely. We shall modify A and B so that they admit geometric duals.
B itself is a sphere with A · B = 1 and B · B = 0, so it is already an algebraic dual.

Let’s let our first approximation to SA be B itself. Likewise we can let the initial SB be
A. The pairs A, SA and B, SB are algebraic duals, but not geometric ones. We improve
the geometric situation in a sequence of steps.

1. Pick a pair of points of A ∩ SA with opposite sign, and a Whitney disk W that might
intersect A and SA (not to mention B and SB) in isolated points. By disjoint finger moves,
we can push the intersections of W with A into A, and likewise with SA. This creates new
self-intersections of A and of SA, but makes W interior disjoint from both. Then we can
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push A over W to remove two points of A ∩ SA. After finitely many such moves, we can
get a new A and a new SA, each homologous to the old, and |A ∩ SA| = 1.

2. Since SA and B are homologous, and B · B = 0, they intersect in an even number of
points with opposite signs. A Whitney disk W for a pair of these intersections might cross
the new A, but we can push these intersections into B by finger moves (along an arc in
W ). Also, push intersections of SA with W through SA, and intersections of B with W
through B. At the end of this, W is interior disjoint from A, SA, B and we can push SA
across W to remove two intersections of SA with B. Repeat until SA and B are disjoint,
while preserving |A ∩ SA| = 1.

3. At this point we have constructed A,B, SA where |A∩SA| = 1 and |B ∩SA| = 0. Thus
the meridian of A is trivial in π1(V − (A∪B)). We can therefore construct a Whitney disk
W for each pair of intersections of B with SB which is disjoint from A. As in step 1. we
can push interior intersections of W off B and SB without creating new intersections with
A, then push B over W to remove two points of B ∩ SB. After finitely many steps we get
SB with |B ∩ SB| = 1.

4. Finally, since SB is homologous to A, and A·A = 0, we can pair up points of intersection
of SB with A. Each of these spans a Whitney disk that is disjoint from B. Push interior
intersections of W with A or SB into A or SB. Then push SB across W to reduce |A∩SB|
by two. Eventually, A and SB are disjoint.

After these four steps, |SX ∩ Y | = δXY for X, Y = A,B, and therefore A ∪ B is π1-
negligible in V .

The four steps taken so far are indicated in Table 2. Notice that every step takes framed
surfaces to framed surfaces; thus we can assume A,B, SA, SB as constructed are framed.

Table 2. Promoting algebra to geometry

* A SA SB B
A alg(0) alg(1)→1 1 alg(0)→4 0 alg(1)
SA alg(0) alg(1) alg(0)→2 0
SB alg(0) alg(1)→3 1
B alg(0)

It remains to construct (framed!) Whitney disks in V −(A∪B) for all but one intersection
point of A ∩B.

5. Once A∪B is π1-negligible, we can find disksW interior disjoint from both associated to
pairs of intersection points with opposite orientations. We must be careful: these disks are
not yet necessarily framed, and a boundary twist might produce a new point of intersection
of W with A (say). But we can tube this intersection along a path in A to the geometric
dual SA, and thereby push the intersection off A. Since SA is framed, we obtain (framed)
immersed Whitney disks interior disjoint from both A and B, pairing up all extraneous
intersection points. �

There is a relative version of Proposition 3.4, with essentially the same proof.



34 DANNY CALEGARI

Proposition 3.5. Let V be a simply-connected 4-manifold with boundary, and suppose
some α ∈ H2(V, ∂V ) represented by an immersed framed proper disk A has an algebraic
dual β in H2(V ) with w2(β) = 0. Then there is some framed A′ properly homotopic to A
which is π1-negligible and has a framed geometric dual.

Proof. Represent β by B, a sphere which is an algebraic dual to A. Note that we cannot
assume a priori that B is framed. Since w2(β) = 0, the Euler number of the normal bundle
is even, and we can frame B by performing finitely many interior twists.

Pair up intersections of A and B and span them by framed immersed Whitney disks that
might intersect A and B. Push intersections of b with each Whitney disk W off of W , and
then push A overW , eliminating two points of A∩B. After finitely many steps, |A∩B| = 1
so A is π1-negligible, and the new B is a framed geometric dual to A. Furthermore, the
new A is obtained from the old by homotopies. �

Insisting that w2(β) = 0 is overkill. If w2(β) = 1 we just need to know that α does not
represent w2. For, this implies there’s another sphere F with w2(F ) = 1 and α ∩ [F ] = 0,
and we can sum B to F to change its Euler number by an odd integer while staying
algebraically dual to A.

3.6. Casson Handles. We’re just getting started. In 1973–74 Andrew Casson delivered
a series of lectures in Cambridge and Paris introducing a powerful new infinite method in
4-manifold topology. This method produces some sort of weak substitute for an embedded
Whitney disk when only immersed ones can be easily found. Casson’s lectures were written
up by Cameron Gordon and published in [3].

Theorem 3.6 (Casson). Let V be a simply-connected 4-manifold with boundary, and sup-
pose some α ∈ H2(V, ∂V ) represented by an immersed framed proper disk A has an algebraic
dual β in H2(V ) with w2(β) = 0.

Then we can find a new framed properly immersed disk W0 homotopic to A with the same
boundary, and a sequence of open manifolds Ni ⊂ V which are the interiors of compact
manifolds with boundary N i ⊂ V and such that the following are true:

(1) N0 is a tubular neighborhood of W0;
(2) Each Nj is obtained from Nj−1 by attaching tubular neighborhoods of a finite col-

lection Wj of framed immersed Whitney disks properly embedded in V −N j−1, with
boundaries attached to disjoint embedded circles in ∂Nj−1;

(3) The self-intersections of the collection Wj−1 at each stage can be paired and joined
up by disjoint arcs to make framed loops which are the attaching circles of the Wj.

Proof. The idea is to induct on Proposition 3.5. The hypothesis implies that we can find
a framed proper disk W0 homotopic to the original A with a geometric dual SA; i.e. an
immersed framed sphere intersecting W0 transversely in one point. Let N0 be a tubular
neighborhood of W0.

The sphere SA implies that N0 is π1-negligible, so we can find contractible Whitney
circles for the self-intersections of W0, and span these by immersed Whitney disks W1 in
V −N0. Note that if an initial choice of bounding disk is not framed, and the obstruction
is odd, we can do a boundary twist, and then sum with the geometric dual SA to slide the
new intersection point off W0.
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Let’s write V1 = V −N0. This is a compact manifold with boundary. Each component
of W1 is a framed proper disk in V1. We’d like to apply Proposition 3.5 to each component
of W1. To do so we need to find an algebraic dual in V1 with even self-intersection number.

First of all, sinceW0 is an immersed disk in a 4-manifold, and V is simply-connected, the
fundamental group of N0 is freely generated by its self-intersection points. In particular,
each component of ∂W1 is homologically essential and primitive in W0, and therefore also
in ∂N0. For simplicity, suppose W1 consists of a single disk; multiple disks can be handled
consecutively. The fundamental class [W1] in H2(W1, ∂W1) ∈ H2(V1, ∂V1) has boundary
a primitive element in H1(V1) and therefore it already had primitive image in H1(∂V1).
Thus [W1] is essential and primitive in H2(V1, ∂V1), so by Lefschetz duality, there is a class
β ∈ H2(V1) with [W1] ∩ β = 1.

Let’s let B be a sphere in V1 representing β. If β2 is even, we can apply Proposition 3.5.
If β2 is odd, we can frame B in the complement of a small embedded 2-disk E ⊂ B. Now
take one point of intersection of B − E with W1 and push it off W1 until it creates two
points of intersection with W0 of opposite sign. Now push these points of intersection off
W0 by doing framed sums with SA. Let’s call the resulting surface B′−E, and let B′ be the
result of gluing back E. Note that B′ − E is framed, but B′ isn’t; in particular [B′] ∩ [B′]
is odd. But

[B′] ∩ [W1] = [B] ∩ [W1]− 1 + 2[SA] ∩ [W1] = [B] ∩ [W1]− 1 mod 2

is even. The existence of [B′] certifies that [W1] does not represent w2 in V1 after all, so
we can apply Proposition 3.5 with [B′]− [B] in place of [B]. This completes the induction
step. �

Remark 3.7. If in the proof of Theorem 3.6 it turns out that the collection Wj is embedded
at some finite stage, then we can take all Wk empty for k > j. In this case, N j is already
a 2-handle (we give a combinatorial proof of this in the next section).

The infinite union N := ∪∞i=0Ni is an open submanifold of V . It has an open S1 × D2

denoted ∂− in its frontier which is an open neighborhood of the original ∂A in ∂V . Every
π1(Ni) is free, and dies in π1(Ni+1); thus N is simply-connected. Likewise, the homology
of each Ni is killed by the attaching maps of the Wi+1. Thus N has the homology of a
point, and is therefore contractible. It turns out, though we shall not prove this, that N
has the proper homotopy type of an open 2-handle (rel. the attaching surface ∂−).

The space N is called a Casson handle. It’s more usual to denote it CH, and that’s
what we’ll do from now on.

3.7. Kirby diagrams. Smooth compact 4-manifolds can be described by handle decom-
positions. There is a visual convention for the display of such handle decompositions, called
Kirby diagrams. A Kirby diagram, formally, is a link in S3, each of whose components
is decorated either with an integer, or with a dot. The union of the dotted components
must be an unlink. The diagram represents a compact 4-manifold with boundary, obtained
from D4 by attaching 1-handles and 2-handles. A Dehn surgery diagram for the boundary
3-manifold is obtained from the Kirby diagram by replacing dots on circles with 0s.

Figure 8 shows a typical example. Here’s how to interpret it. We start with a D4,
represented by nothing at all. Since S0s can’t link in S3 there is only one way to attach
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-1

1

Figure 8. The Akbulut-Kirby sphere. Not a counterexample to the smooth
Poincaré Conjecture.

1-handles to D4. The result of attaching 1-handles is represented by an unlink on some
number n of components, each with a dot, and the 4-manifold is \nS1×D3 with boundary
]nS

1 × S2. Passing through one of the dotted circles is shorthand for passing ‘over’ one of
the S1 × S2 handles. In the figure there are two 1-handles.

Now attach finitely many 2-handles. These are represented by their attaching circles —
knots in the diagram, together with an integer label — the framing. In the figure there are
two 2-handles, with framings −1 and 1 respectively. These numbers should be interpreted
as follows. Suppose we have a circle K labeled by the integer n. The framing lets us push
off a parallel circle K ′. Choose the parallel such that link(K,K ′) = n. In other words,
the framing is measured relative to the longitude — the boundary of a Seifert surface for
K — where we’re thinking of K here as a knot in S3. By the way, the longitude framing
differs from the so-called ‘blackboard framing’ (where the pushoff K ′ is drawn disjointly
from K on the blackboard) by the writhe of the projection of K. So if K is an unlink,
these framings agree, and an unlink labeled by 0 represents a framed embedded S2 sitting
as the core in S2 ×D2.

Figure 8 is a smooth contractible 4-manifold with boundary S3. If we attach a 4-handle
we get a homotopy 4-sphere. It turns out this example is diffeomorphic to S4, but that’s
not so easy to see from the figure. This was demonstrated by Akbulut–Kirby [1], and
the example is known as the Akbulut–Kirby sphere (in fact, the cited article is known to
contain a gap, which by now has been filled).

3.8. Homology and handle slides. Suppose we have a Kirby diagram with no 1-handles
representing a 4-manifold W . If K and K ′ are two attaching circles, we can cone them
to the center of D4 to make disks, and then attach the core disks of the 2-handles to
build immersed spheres SK , SK′ in W . These spheres represent generators of H2(W ).
With respect to the intersection form on H2(W ), the self-intersection number [SK ] · [SK ]
is equal to the framing number (and similarly for SK′), and the algebraic intersection
[SK ] · [SK′ ] = link(K,K ′). This follows from the definition of the framing. Handle slides
are represented in these diagrams by doing a framed sum of the linking knots; i.e. pushing
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K along an arc to K ′ and tubing it to a framed pushoff. The framing number of K changes
by the framing number of K ′ under this move.

The 1-handles are a basis for C1(W ), the cellular chain group, and the 2-handles are a
basis for C2(W ). If Li are dotted circles representing the 1-handles hi and Kj are attaching
circles representing the 2-handles h′j then the coordinate of ∂h′j in hi is link(Kj, Li). Unless
these linking numbers are all zero, the class of h′j is not a 2-cycle and we can’t interpret the
framing number of Kj as a self-intersection number. If d is the greatest common divisor
of the linking numbers of Kj with the Li, then we may change the framing number of Kj

by any multiple of d by cutting out disks Di bounded by the Li and regluing by an integer
twist. This cut-and-paste move represents a diffeomorphism of W , so the resulting Kirby
diagram represents the same 4-manifold. Note that the various strands of the Kj running
through the Li might change the way they link in the diagram under this move.

With the same notation, Kj is the attaching circle of the core of h′j and Di (or the sphere
it represents) is the attaching sphere of the co-core of hi. It follows that if there are Di and
Kj which intersect geometrically once, the handle pair may be canceled. When Li and Kj

are represented by a Hopf link, and the framing on Kj is 0, the effect of this cancellation
on the rest of the diagram is to take the stuff linking Kj, and drag it over the stuff linking
Li with no change to the framing number of any component.

cancel 1 and 2 handles−−−−−−−−−−−−→

0

Figure 9. Cancelling a 1–2 handle pair

A tame embedded surface R in a 4-manifold is framed if the homology class it represents
has self-intersection number 0. As a special case, if it represents the zero homology class,
it’s always framed. For a smooth surface in a smooth 4-manifold one can see this by
mapping the complement of the surface to S1 and observe that a regular preimage is a
tame embedded 3-manifold M with ∂M = R. Then R is canonically framed by its normal
bundle in M summed with the normal bundle of M in W . Since we are interested in
framed spheres or surfaces, we almost exclusively consider diagrams in which every circle
is dotted, or has framing 0. And as it happens, the framed circles we come across will
typically be unknots.

3.9. Some simple diagrams. The 2-complexes that arise in the proof of the Poincaré
Conjecture are made of simple pieces. In this section we draw Kirby diagrams of these
simple pieces, so we can translate complicated 4-dimensional objects into pictures.

Each piece is attached to the previous pieces along a circle. In each diagram this circle
is indicated in red. The places in this piece where subsequent pieces will be attached
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are indicated by green and blue circles. The effect on the boundary is to replace the
complement of the red circle by a drilled solid torus associated to a generalized double in
the sense of § 2.8.

3.9.1. Kink with accessory disk. A 2-handle in isolation is just D4. The boundaries of the
core and the co-core form a Hopf link in S3, both components with the zero framing. A
2-handle with a single self-intersection is called a kink. The result of doing an interior twist
in a surface is to insert a kink.

Let’s draw a neighborhood of a 2-handle with a single kink, and see where the attaching
circle of an accessory disk should go. See Figure 10. A kink is homotopic to a circle
so a neighborhood is homeomorphic to S1 × D3. The first drawing is a low-dimensional
cartoon. The red arc represents the 2-dimensional core disk of the kinky handle, and the
blue circle represents the 1-dimensional attaching circle of the accessory disk. The second
drawing is more literal. A neighborhood of the intersection point is a D4, and the red disk
meets it in a Hopf link. A 1-handle connects up the two components of the Hopf link, and
the blue circle runs over this 1-handle. Lastly there are two Kirby diagrams related by a
(non-obvious) isotopy, coming from the symmetry of the Whitehead link that interchanges
the dotted circle and the red circle.

= = isotopy−−−−→

Figure 10. The red and blue circles with 0 framing are the attaching circles
of the kink and the accessory disk respectively.

This corresponds to a positive kink, because the Whitehead component has a right-
handed clasp. In a negative kink, the Whitehead component would have a left-handed
clasp.

3.9.2. Double kink with Whitney disk. Two kinks can be paired by a Whitney disk if they
have opposite signs. A neighborhood is homotopic to a wedge of circles, and is homeomor-
phic to the boundary connect sum \2S

1 ×D3.
Notice that the two self-intersections have opposite signs, as they must to admit a

Whitney disk. This translates into the two clasps in the red component having opposite
handedness.

3.9.3. Double kink with Whitney/accessory pair. Here’s a picture of a Whitney/accessory
pair in a double kink. In the 2-complex the disks go through same singularity point. When
we come to consider towers, we will find disks at the top with pairs of singularities; the
tower caps will consist of Whitney/accessory pairs.

We call the operation that replaces the unknotted dual of the red curve with the green
and blue curves a Whitney double.
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Figure 11. The red and green circles with 0 framing are the attaching
circles of the double kink and the Whitney disk respectively.

Figure 12. The green circle is Whitney, the blue circle is accessory.

3.9.4. Surface with caps. The effect on the boundary of attaching a kink in the construction
of a Casson handle is to first glue in a solid torus and then drill out a neighborhood of the
Whitehead double of the core. On the other hand, attaching a compact surface of genus 1
corresponds to gluing in a solid torus and drilling out a neighborhood of the Bing double
of the core; see Figure 13. Higher genus surfaces add parallel copies of the Bing link.

Figure 13. A surface of genus 1. This could be a stage in a grope.



40 DANNY CALEGARI

3.9.5. Casson handles. The simplest (infinite) Casson handle has an accessory disk with
exactly one self-intersection at each stage. This is represented by an infinite Kirby diagram
of successive Whitehead links.

thicken←−−−−

00

0

∂−

Figure 14. The first few stages of a Casson handle. The attaching handle is ∂−.

The Casson handle CH is attached to the boundary of V along ∂−, which recall is a
D2×S1. The remainder of ∂CH is denoted ∂+; as defined, it is an open infinite 3-manifold,
which is the result of interpreting the infinite Kirby diagram from before as an infinite Dehn
surgery diagram for a 3-manifold.

In the case of the simplest Casson handle, where the accessory disks have a single self-
intersection at each stage, this 3-manifold is just D2×S1−Wh. If we had enough geometric
control, we might be able to arrange for the Whitney disks to converge to a single point,
thereby compactifying the boundary to D2 × S1/Wh. Of course this is not a manifold.
But it is a manifold factor, and since we are in a 4-manifold we might hope to be able to
find a nearby genuine D2 × S1.

More self-intersections in the accessory disks at each stage give rise to parallel Whitehead
doubles. The limiting 3-manifold is a solid torus minus Wh × Cantor set. The quotient
D2 × S1/(Wh × Cantor set) is also a manifold factor, and for the same reason, since
the shrinking construction in the proof of Theorem 2.10 can be applied component by
component.

3.10. Why Grope? Remember gropes? They’re back.
Suppose S is a framed surface in V with a pair of self-intersections, andW is an immersed

Whitney disk in V −S. We can push S overW and eliminate the self-intersections to create
S ′. Of course, S ′ might have new self-intersections, two for every self-intersection of W .

If we are determined to replace S with an embedded framed surface, we can do it —
providing we’re prepared to raise the genus. Push a finger of S along one boundary arc
α of ∂W , and do framed sum of S with itself. Let’s call the result R. The surface R has
two fewer self-intersections than S, but its genus is one higher. Notice that the meridian
of the finger bounds an immersed Whitney disk W ′ in V −S. The boundaries of the disks
∂W and ∂W ′ intersect transversely in a single point in R; i.e. they form an embedded
symplectic basis for a Z2 ⊂ H1(R).
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The Whitney disk W is still there in V − R, after nudging it slightly off α. It spans
a longitude of the new handle of R. And there’s a dual Whitney disk W ′, spanning the
meridian of the handle (it’s a tiny transverse disk to α). The disks W and W ′ are on
opposite ‘sides’ of R; this only makes sense if we are implicitly thinking of R in a three-
dimensional submanifold of V . Moreover, the interiors of W and W ′ are disjoint, and their
boundaries intersect transversely in a single point. The union R ∪W ∪W ′ is said to be a
1-stage capped grope. The grope is said to be S-like. R is the body and W ∪W ′ the caps.

We can recover the original configuration S ∪W by doing a Whitney move across W ′;
or we can recover S ′ ∪W ′ by doing a Whitney move across W . But there is a third move
called compression in which we cut out a tubular neighborhood of W ∪W ′ and replace it
by a single disk shaped somewhat like a saddle. This new disk is made from two copies of
each of W and W ′ together with a square which is the neighborhood of ∂W ∩ ∂W ′ in R.

Compression can be used to get rid of unwanted intersections of W and W ′ with other
surfaces. Suppose we have A intersecting W and B intersecting W ′. We can push A by a
finger move off W and into the gap between the new parallel copies of W ′, while pushing
B by a finger move offW ′, into the gap between the new parallel copies ofW . This creates
two new intersections of A with B, but removes the two intersections we started with.

Formally, an n-stage grope E in V consists of the following:

(1) A proper framed embedded compact surface with boundary R1;
(2) Let 3 ≤ j ≤ n. Then Rj is a union of framed compact surfaces with boundary,

properly and disjointly embedded in V − ∪i<jRi, so that the attaching circles ∂Rj

form a symplectic basis for H1(Rj−1). For j = 2, we only require that ∂Rj form a
symplectic basis for some subspace of H1(R1).

If S is obtained by compressing R1 along ∂R2, we say the grope is S-like. We are typically
interested in disk-like gropes, those for which ∂R2 form a complete symplectic basis for
H1(R1). The union E := ∪jRj is the body.

A capped n-stage grope in V is the same as E together with immersed Whitney disks W
(the caps) for a symplectic basis of Rn properly embedded in V −E. If E is disk-like, the
caps certify that E is π1-null. Finally, we say a (framed) grope is properly immersed if the
body is embedded and the caps are immersed interior disjointly from the body.

By the way, the number of accessory disks attached at each stage of a Casson handle
might increase, but it doesn’t have to. The simplest Casson handle has exactly one acces-
sory disk with exactly one self-intersection at each stage. But the number of surfaces in a
grope necessarily grows exponentially. See Figure 15.

This proliferation of horizontal complexity, so to speak, lets a grope do more with less
vertical complexity. We shall see an important example of this in § 3.11.

3.11. Transverse gropes. If E is a properly immersed capped grope, another properly
immersed sphere-like capped grope Et is transverse if there is one point where the bottom
stage of E intersects the bottom stage of Et transversely, and all other intersections are
between caps. If we totally contract Et, it becomes a sphere, and intersects the body of E
only once in the first stage.
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Figure 15. The simplest nine stage grope.

A capped grope E of height at least 2 can be thought of as being obtained from the first
stage surface by attaching capped gropes E± of height at least 1 to a standard meridian-
longitude basis of the first stage surface. Note that E± are always disk-like, whether E is
or not.

Lemma 3.8 (transverse grope). Let E be a capped grope of height at least 2. Then E+

admits a transverse grope E+
t of height at least 1.

Proof. We take two parallel copies of E−, one slightly in the past, the other slightly in the
future. Note that these parallel copies are disjoint from each other and from E except in
their caps. Push the boundary of E− down, and take a product with a timewise interval
to make an annulus, which glues up with the two parallel copies to make E+

t . Since E−
is disk-like, E+

t is sphere-like. Only the annulus intersects E+ transversely in one point in
the first stage. �

Example 3.9. Let W be a Whitney disk for intersections of A and B. Let p be a point
of A ∩ B. Then the intersection of A ∪ B with a nearby sphere is a Hopf link, and the
complement of this Hopf link is a torus that intersects W transversely in one point. The
torus can be capped by normal disks for A and B. The result is a capped sphere-like grope
Wt transverse to W .

3.12. Height raising for Gropes. In Freedman’s original proof of the Poincaré Conjec-
ture, one of the key steps is the Reimbedding Theorem, which says that inside the first
6-stages of a Casson handle, you can always find a 7-stage one (and then by induction, an
n-stage one for any n). The proof is very difficult. This is a place where gropes show their
advantages over Casson handles. The analogous result for gropes is called height raising.
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Proposition 3.10 (Grope height raising). Suppose E is a properly immersed capped grope
in V . Suppose further that E+ has height at least 1. Then E can be extended to an n-stage
capped grope in any neighborhood N of E, whose first stage agrees with that of E.

Proof. The hypothesis says in the extreme case that E+ is a (possibly disconnected) capped
surface, while E− consists entirely of caps. We express this by saying E± has height (1, 0)
(this is sometimes expressed colloquially by saying that E has height 1.5). We ignore the
bottom stage of E, since it plays no role. It starts disjoint from everything, and it will stay
that way throughout the argument.

For simplicity we assume E+ consists of a genus 1 surface R with caps A,B and E−

consists of a single cap W . Note that A,B,W are all framed, but immersed, and possibly
there are intersections of all three. We improve the situation in a series of steps.

1. Construct F , a sphere-like capped grope of height 1 as in Lemma 3.8 from two copies of
E+ and an annulus transverse to W at one point. The body of F intersects W in exactly
one point and is disjoint from R, but the caps of F might intersect each of W , A, B in
many points.

2. Create a large number of parallel copies of F , and contract their top stages one by one.
This produces a sequence of framed immersed spheres F ′1, F ′2, · · · , each of which intersects
W transversely in a single point, and are otherwise disjoint from everything else; i.e. E+,
F , other F ′j , and so on.

3. Slide intersections of the caps of F with W over some F ′i . The new F is disjoint from
W except at one point. Slide intersections of A, B with W over some F ′j . The new A, B
are disjoint from W . Thus W intersects only itself.

4. Slide self-intersections of W over parallel copies of F . At the end of this process, W is
replaced by a capped grope of height 1.

Thus we can go from (1, 0) to (1, 1). Repeat this with the roles of + and − alternately
exchanged. The heights of E± grow like

(1, 0)→ (1, 1)→ (2, 1)→ (2, 3)→ (5, 3)→ · · ·

in particular, they grow without bound (and at a geometric rate). �

We indicate how to reach the hypothesis of Proposition 3.10 from the hypothesis of
Theorem 3.6.

Proposition 3.11 (Immersed disk to small grope). Let V be a simply-connected 4-manifold
with boundary, and suppose some α ∈ H2(V, ∂V ) represented by an immersed framed proper
disk A with embedded boundary has an algebraic dual β in H2(V ) with w2(β) = 0.

Then there is a properly immersed capped disk-like grope E in V with the same boundary
as A, and whose complete compression is in the class of α, for which E± have height (1, 0).
Furthermore, there is a geometric dual SA for the first stage of E.

Proof. First, Proposition 3.5 says we can find a new framed immersed disk A′ representing
α with the same boundary as A with a geometrically dual framed sphere SA (so that
|A′ ∩ SA| = 1).
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We can transform A′ into a framed embedded surface R0 by pairing self-intersection
points of opposite sign, and tubing one side to the other by a finger move. Because A′ has
a geometrically dual sphere SA it’s π1-negligible, and the same is evidently true of R0: a
Whitney disk for each pair of intersections stays interior disjoint from R0. So we can find
framed immersed caps for R0. We have successfully constructed a grope E of height 1 to
replace A.

Let W and W ′ be Whitney disks for each half of a symplectic basis for H1(E). For
simplicity, let’s assume each consists of a single immersed disk. The interiors of W , W ′ are
disjoint from R0, but they might intersect themselves, each other, and SA.

We need to replace W by a capped surface whose body is disjoint from W ′ and from
the interiors of its own caps. The induction step in the proof of Theorem 3.6 implies
that we can replace W by a new W which admits a geometrically dual sphere SW with
|SW ∩W | = 1. We can push intersections of SA with W over copies of SW to make SA
disjoint from W . Then we can push intersections of W ′ with W down into R0 and over
SA so that W ′ is disjoint from W . Finally we can tube pairs of self-intersections of W to
make a new embedded surface R1. Immersed caps for R1 can be framed (with a boundary
twist if necessary) then pushed off R1 onto SW and off R0 onto SA so that the resulting
grope is properly immersed. �

Putting these propositions together we conclude:

Corollary 3.12 (Immersed disk to tall grope). Let V be a simply-connected 4-manifold
with boundary, and suppose some α ∈ H2(V, ∂V ) represented by an immersed framed proper
disk A with embedded boundary has an algebraic dual β in H2(V ) with w2(β) = 0.

Then there is a properly immersed capped disk-like grope E in V with the same bound-
ary as A, and whose complete compression is in the class of α, of any desired height.
Furthermore, there is a geometric dual SA for the first stage with |SA ∩ E| = 1.

Proof. Apply Proposition 3.11 to produce a grope E of height (2, 1) with a geometric dual
SA for the first stage, and then apply Proposition 3.10 to grow E as high as we want plus
one stage.

The geometric dual SA for the first stage of E might a priori intersect higher stages.
Here’s how to fix this up. Every body stage R+ of E above the first comes with a pair R−
on the other side of the same height. Taking two copies of this pair and an annulus, we
can construct a dual grope R+

t for every stage, with caps intersecting only the caps of E.
Any intersection of SA with R+ can be piped over copies of R+

t . Eventually this replaces
SA with a new (not necessarily properly) immersed grope, whose body is disjoint from the
body of E except for a single point at the first stage. Completely contract this grope to
obtain a new geometric dual SA intersecting the body of E in only one point in the first
stage, then contract the top stage of E so that the caps of E are disjoint from SA too. �

3.13. Towers. Let D be a standard properly embedded D2 in D4. We can create two
points of self-intersection by doing a finger move, producing an immersed disk D′. In more
detail, we let α be an embedded path in D2 between two points, and let β be a proper arc
in D4 −D between the same two points, so that α ∪ β bounds an embedded disk A.

Push D at one endpoint of α along β until it crosses itself. The finger move creates an
embedded model Whitney disk W . The disk A is called an accessory disk, and intersects
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W in one point. The operation that produces D′ (together with W and A) from D is
called a clean finger move. A model cleanly immersed grope cap is a disk obtained from an
embedded D by doing finitely many clean finger moves as above. The model tower caps
are the Whitney and accessory disks that arise. Notice that a model cleanly immersed
grope cap is the same as an ordinary immersed grope cap, except that it’s not allowed to
intersect other grope caps as it might in a properly immersed grope.

A tower has stories which are capped gropes, and whose caps are cleanly immersed grope
caps. A tower is S-like if the grope in the bottom story is S-like, and all the gropes in
higher stories are disk-like. A model one-story capped tower is obtained from a model
capped grope by doing finitely many clean finger moves in each grope cap and attaching
Whitney and accessory disks. The (n + 1)st story of a tower is obtained by replacing the
Whitney and accessory disks of the nth story by one-story capped towers.

The body of a capped tower is everything except for the Whitney and accessory disks in
the top story. Notice that the body includes the cleanly immersed grope caps in each story.
The Whitney and accessory disks in the top story are the tower caps. A tower is properly
immersed if the body is embedded, and the tower caps are immersed interior disjointly
from the body. Note that the grope caps at each stage in a properly immersed tower are
cleanly immersed but not literally embedded.

3.14. Height Raising for Towers. Heights and stories can be raised in towers as easily
as in gropes. For technical reasons (explained in § 3.15) we do not assume the ambient
4-manifold V is simply-connected. For this reason, it is not so useful to talk about π1-
negligibility, rather we focus on the somewhat orthogonal property of π1-nullity. A subset
X of Y is π1-null if the image of π1(X) in π1(Y ) is trivial. If X is a finite subcomplex of
a manifold Y then π1-nullity of X is the same as π1-nullity of a regular neighborhood.

Lemma 3.13 (Adding tower caps). Let E be a properly immersed capped grope of height
at least 2 which is π1-null and has a geometric dual sphere S for its first stage intersecting
E in exactly one point. Then after adjusting the caps, E can be extended to a properly
immersed capped one-story tower T and S adjusted so that it intersects T in exactly one
point.

Proof. The first step is to get the caps disjoint from each other. Construct sphere-like
properly immersed gropes E±t of height at least 1 which are geometric duals for the first
stage of E± but possibly intersect the caps of E. We construct an enormous number of
parallel copies of E±t and then contract their top stages one by one. This might introduce
new self-intersections of the caps of E, but at the end of this process we get arbitrarily
many disjoint parallel spheres S±i , each of which is a geometric dual for the first stage of
E± and is otherwise disjoint from E, even from its caps. Push self-intersections of the caps
of E down each other and over S±i . The result is a new properly immersed grope E, but
now each cap at the top layer intersects only itself (i.e. it is cleanly immersed).

Since the new E is contained in a neighborhood of the old, it is still π1-null. Thus we
can find immersed Whitney and accessory disks for the caps of E. These might intersect
the body of E but we can push these intersections down and over copies of S.

This gives us T , a properly immersed capped one-story tower. S still does not intersect
the capped grope E, but it might intersect the caps of T . Now, at this stage, the caps of T
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might intersect our S±i . So we throw these S±i away, construct a new collection of parallel
sphere-like transverse gropes E±t , then contract their top stages one by one. This produces
new S±i which are disjoint from S and from T except for one point in the body. Now we
can push intersections of S with the caps of T down to the second stage and over disjoint
S±i . �

Proposition 3.14 (Tower height raising). Suppose T is a properly immersed n-story disk-
like capped tower in V and suppose that the grope in the first story has height at least 3.
Then for any N the top story grope caps can be changed so that the tower extends to T ′,
a properly immersed (n+ 1)-story disk-like capped tower, whose top story has grope height
at least N .

Proof. Note that π1(T ) is generated by intersections amongst the tower caps of the top
story of T .

Let E be the grope in the first story of T , and let E± be the gropes beginning at the
second stage of E. If we create a transverse sphere-like grope E+

t from two copies of E−
and an annulus, then E+

t intersects the first stage of E+ transversely. But the grope caps
of E+

t intersect the grope caps of E− because these caps are not literally embedded, but
only cleanly immersed.

If this were the top story, the intersection points of the grope caps would have (immersed)
Whitney and accessory disks. Otherwise, they would have properly immersed capped
towers in place of these disks. Nevertheless, we can still do a ‘grope Whitney move’ by
cutting out a neighborhood of one Whitney arc and gluing in two copies of the next story.
Continue this inductively until the top of the top story, to obtain (S ′)±.

It is slightly inconvenient that the (S ′)± are transverse to the second stage of E and not
the first. We solve this problem by letting V ′ be equal to V minus a tubular neighborhood
of the first stage of E; then E± become disk-like capped gropes at the bottom stage of
capped towers T±, and now the E± each have geometric duals to their first stage.

Throw away the copies of the very top tower caps of T± in (S ′)± to obtain S±. Since
these top tower caps carry π1, it follows that S± are π1-null (in V ′). Contract the top stage
of S± so |S± ∩ T±| = 1. Notice S± are still π1-null in V ′.

Now apply grope height raising (Proposition 3.10) so S+ has height at least N + 2.
Push many parallel copies of S+ off itself and contract the top stories to get arbitrarily
many disjoint parallel height N + 1 properly immersed sphere-like capped gropes S+

i ,
each intersecting T+ only in single points in the first stage of E+. These new gropes are
contained in a neighborhood of S+ so they are all π1-null.

Take each self-intersection point in the tower caps (i.e. the Whitney and accessory disks)
on the + side and push them down to the first stage of E+, then pipe them off with the
new parallel gropes. The result has height N + 1 on the + side but does not yet have
tower caps, and furthermore the grope caps in the top story might intersect each other.
Contract the top story of these gropes. They now have height N , and the top story caps
are disjoint from each other. Because we got rid of intersection points in the tower caps,
and piped them into disjoint π1-null capped gropes S+

i , the new caps are π1-null.
Furthermore, their self-intersections come in pairs with (immersed) Whitney disks, be-

cause they were obtained by push off. Find immersed accessory disks using π1-nullity.
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Correct the framings by twists, then push self-intersections and new intersections with the
grope caps down to where they can be piped off with copies of S+

i .
Finally, switch the role of + and − to do the same on the − side. �

3.15. Squeezing towers. It seems that towers are as easy to produce as gropes but it is
not yet clear why we want the extra combinatorial complexity that comes with interrupting
our gropes every so often for a layer of cleanly immersed caps.

We want our gropes or towers to converge geometrically, so that their closure in the
ambient manifold V is homeomorphic to their end compactification. We’re going to arrange
this via squeezing: if X is a subspace of Y and N is a neighborhood of X we say Y can
be squeezed into N if there is an isotopy Y × [0, 1]→ Y starting at the identity, and with
Y × 1 lying in N .

If S is a compact surface with boundary, then S squeezes into a neighborhood of a
graph, consisting of the circles in a symplectic basis together with a finite number of arcs
to connect it. If S is the first stage of a grope E, then we can perform this squeezing
repeatedly, surface by surface. Finally, if T is a capped tower, we can squeeze all of T
into a graph Γ, consisting of circles generating π1 in the tower caps, together with trees
connecting up components.

Now in a 4-manifold, homotopy implies isotopy for graphs, and for their tubular neigh-
borhoods. So if Γ is π1-null, we can squeeze all of N(Γ) — and therefore all of T — into a
ball in V of radius ε.

This procedure works well for a finite story tower, but it’s important to be able to
performing a relative squeezing for infinite story towers, where each successive story is
squeezed tighter and tighter, leaving previous stages alone. Actually, once we’ve put the
top story components of a finite tower inside tiny disjoint balls, it’s more convenient to
grow successive stories from these components, using Proposition 3.14.

Let’s summarize this with a Lemma:

Lemma 3.15 (Squeeze the top stories). Let T be a properly immersed capped tower with at
least 2 stories. Then for any ε > 0, after possibly adjusting the tower caps, we can squeeze
the components of the top story into disjoint embedded balls, all of radius at most ε.

Proof. First, grow T to at least 3 stories using Proposition 3.14. If T ′ is a component of the
third story, then we can throw away the caps of T ′ to produce a (componentwise) π1-null
capped grope E, and then completely contract E to get new tower caps for the top story
of the original T . These new tower caps have the following two properties:

(1) because they are obtained by contraction, although they may have self-intersections
they do not intersect each other; and

(2) because components of E were π1-null, the new tower caps, and hence the new
tower itself, is π1-null.

Squeeze each component of the top story of the new T into a neighborhood of a graph,
and then using π1-nullity squeeze each graph neighborhood into a separate ball of radius
< ε. The rest of T moves by an ambient isotopy. �

Note that although the squeezed tower is π1-null in the ε-ball, lower stories might also
intersect that ball, and the squeezed tower might not be π1-null in the complement of



48 DANNY CALEGARI

them. But towers can be grown with no hypothesis on π1 of the ambient manifold, and by
throwing away the caps of an extra story and contracting, we can achieve π1-nullity, and
iterate the procedure, all while staying in the ε-ball.

If we try to do the same thing just with gropes, we can certainly use π1-nullity in a
simply-connected V to squeeze most of a grope into an ε-ball, and then continue to grow
the grope inside that ball, but we can never be sure that the result will be π1-null in the
ball in the complement of the lower stages. Thus we get stuck after squeezing once, with
no obvious way to squeeze again. Towers by contrast carry their own local certificate of
π1-nullity in the top story caps.

3.16. Convergent infinite towers. Putting together the conclusions of the previous few
sections we obtain the following:

Corollary 3.16 (Flexible handles exist). Let V be a simply-connected 4-manifold with
boundary, and suppose some α ∈ H2(V, ∂V ) represented by an immersed framed proper
disk A with embedded boundary has an algebraic dual β in H2(V ) with w2(β) = 0.

Then there is an embedded infinite tower T with the same boundary as A, and a (relatively
closed) neighborhood N of T so that the closure F := N is homeomorphic to the end
compactification of N , and whose frontier ∂F is equal to the end compactification of ∂N ,
and is furthermore homeomorphic to S3.

Proof. By Corollary 3.12 we can find a properly immersed disk-like capped grope E of any
desired height, with a geometric dual S for the first stage. By Proposition 3.13 we can
grow E to a 1-story properly immersed capped disk-like tower T .

By iterating Proposition 3.14 we can change the tower caps and extend T to a properly
immersed disk-like capped tower with 3 stories.

By iterating Lemma 3.15 and Proposition 3.14 we can push the components of the top
two stories into smaller and smaller disjoint balls and then continue alternately to grow
them and to squeeze them. The result is an embedded infinite tower F whose closure is
homeomorphic to its end compactification, and the same is true for a suitable (relatively
closed) neighborhood N which gets thinner and thinner (i.e. it tapers) as it gets closer to
the ends.

Now, by the small print in Proposition 3.14 all this can be achieved in such a way that
the story heights N1, N2, N3, · · · grow as fast as we desire. In particular, Theorem 2.12
implies that we can choose this sequence to grow fast enough that the frontier of N is the
complement of a shrinkable decomposition in S3. Since F is the end compactification of
N , its frontier is the end compactification of ∂N , which is S3. �

In these notes we’ll call F as above a flexible handle. This was Casson’s original termi-
nology for his handles, so you might think I’m asking for trouble. But in the first place no
one uses the term ‘flexible’ any more to refer to Casson handles, and in the second place F
can stand for Freedman (or, if you like, for Frank Quinn, who introduced the simplifying
technology of gropes in this context).

4. Proof of the 4 dimensional Poincaré Conjecture

Corollary 3.16 shows us that where we want a properly embedded disk, we can find a
flexible handle. By Tower Height Raising (Proposition 3.14) where there is one flexible
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handle there are many: if F is a flexible handle, and T ⊂ F is a finite subtower with at
least two stories, we can grow T inside any neighborhood N(T ) into another flexible handle
F ′.

4.1. Jigsaw Puzzles. Both D4 and F have boundary S3. We let Λ denote the set of limit
points of F . Thus Λ is a wild Cantor set in S3, and F is the end-compactification of F −Λ,
which is a closed (but not compact) regular neighborhood of a (noncompact) infinite story
tower T .

Both D4 and F have boundary S3. It is a rather surprising, but very useful fact that
there is a surjective map π : D4 → F which is a homeomorphism on the boundary. In fact,
something stronger is true:

Proposition 4.1 (Collapse a wild collar). There is a wild S3 × [0, 1] collar of ∂D4 and a
Cantor set Λ ⊂ S3 so that F is equal to the quotient of D4 by collapsing each point× I in
the collar to its endpoint.

Corollary 4.2 (Collared F is standard). Attach an S3× [0, 1] collar to ∂D4 and to ∂F to
create D and F. Then π extends by the identity on the collars to a surjective π : D → F
which is ABH. In particular, F is homeomorphic to D which is diffeomorphic to D4.

Proof. Shrink the fibers of the original π by pushing down endpoints in the new collar. �

We shall prove Proposition 4.1 in § 4.2 and 4.3. The strategy is to cut up F − Λ
into jigsaw pieces Ji, and then reassemble the pieces inside a standard handle so that the
complement is Λ × [0, 1]. In a sense to be made precise, this will be achieved by turning
handles inside-out: in § 4.2 the description is of an increasing union of 1-handles, whereas
in § 4.3 it is of the complement of a nested intersection of (families of) 2-handles.

For the sake of simplicity, we’ll assume every grope stage has genus 1, and every cap
stage has a single Whitney/accessory pair, although we really won’t use this simplifying
assumption in any meaningful way. The jigsaw piece associated to a genus 1 grope is
indicated by Figure 13 and the jigsaw piece associated to a Whitney/accessory pair is
indicated by Figure 12.

4.2. F − Λ as an increasing union of 1-handles. The inside view expresses F − Λ as
an increasing union of pieces Vi, each obtained from a 4-ball by attaching a collection of
1-handles. The jigsaw pieces are the differences of successive stages in the union.

Let V0 be a neighborhood of the attaching circle at the base of F , and for each n let Vn
denote a neighborhood of the union of the first n stages of the tower (some of these stages
are surfaces, some are cleanly immersed caps). Since every Vn has the homotopy type of
a graph, it’s homeomorphic to a boundary connect sum ]mS

1 ×D3s for some m. Likewise
∂Vn = ]mS

2 × S1 and π1(Vn) is free on m generators.
Each inclusion Vn−1 → Vn corresponding to a grope stage is homologically trivial; it

corresponds to the map Fm(n−1) → Fm(n) sending each generator of the first group to
the product of commutators of generators in the second group. However, each inclusion
corresponding to a cap stage is trivial on π1, since the (immersed) Whitney and accessory
disks kill the generators of the previous stages.

Let Jn := closure of Vn − Vn−1. It arises as a neighborhood of the nth stage of the
tower, and is therefore typically disconnected for n > 1. Each component is just a union
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of 1-handles, and therefore homeomorphic to a boundary sum \iS
1×D3 for some i (the is

can differ from component to component of the same Jn. The inclusion Jn → Vn induces
injections on π1 of each factor, to distinct conjugacy classes of subsets of the generators
of Vn. Figures 12 and 13 show how the core circle of a generator of π1 of Vn includes into
Vn+1 in a cap stage and a grope stage respectively. The jigsaw pieces are the components
of the various Jn. We call the first kind of jigsaw piece a Whitney piece and the second
kind a Bing piece.

4.3. D4 − (F − Λ) as a nested intersection of 2-handles. The outside view expresses
the complement of F − Λ in a 4-ball as a nested intersection of pieces Λi, each a disjoint
union of 2-handles properly contained in the previous ones.

Attaching a 1-handle to D4 gives the same result as drilling out an unknotted 2-handle.
We can think of each Vi stage therefore as D4 minus a tubular neighborhood of a collection
of properly embedded unknotted D2s; write this collection of 2-handles as Λi. Now, each
component of ∂Λi decomposes into ∂±Λi, where each ∂+Λi is a solid torus contained in
∂D4, and each ∂−Λi is a (linking) solid torus in the interior.

Each Λi+1 ⊂ Λi sits inside Λi in the following way: in the solid torus ∂+Λi there is a
finite collection of solid tori ∂+Λi+1, whose cores are either parallel Bing doubles (at a
surface stage) or Whitney doubles (as a cap stage) of the core of ∂+Λi. The components of
∂+Λi+1 get thinner and thinner, as their diameters get smaller and smaller in S3, but each
Λi+1 must crash through the co-core of Λi, since the Bing or Whitney cores are essential
links in the previous solid tori.

Let J ′0 be the difference D4−Λ0. This is a solid S1×D3 and can evidently be identified
with J0. For each i, let J ′i+1 be the difference J ′i+1 := Λi − Λi+1. Each component of J ′i+1

is a 2-handle from which we have drilled out a collection of 2-handles, the attaching solid
tori of which sit inside the attaching solid torus of the big 2-handle as neighborhoods of
Bing or Whitney doubles.

The components of ∩i≤nΛi attach to the boundary S3 in smaller and smaller circles,
limiting to points of Λ. But each 2-handle in Λi must extend like a very spiky icecream
cone all the way down into the core of Λ1. Taking a limit, the components of ∩iΛi become
thinner and thinner, and limit to intervals, and the entire intersection is equal to a product
Λ × [0, 1]. One set of endpoints Λ × 1 is the familiar Λ ⊂ S3; the other set lie on a wild
Cantor set somewhere in the interior ofD4. This wild Λ×[0, 1] lies in a wild collar S3×[0, 1];
this can be seen by inductively pushing the free boundary components of successive jigsaw
pieces deeper and deeper into the interior of D4 so that their union sits on a wild interior
S3.

This completes the proof of Proposition 4.1 and Corollary 4.2.

Remark 4.3. Proposition 4.1 by itself is not enough to deduce that F is standard.
Let B denote a crumpled cube, and let F = B × I. Then ∂F = S3 by Bing’s double

Theorem 2.9. We may exhibit this B × I as a sort of flexible handle made entirely from
grope stages. Dually, we may exhibit it as the complement of a nested sequence of 2-
handles. This shows how to realize B × I as a quotient of D4 by a Λ × [0, 1] in a wild
collar. But the interior of B × I is not even simply-connected! This example is one reason
why we must insert cap stages infinitely often into our towers.
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4.4. A plugged Design in D4. We shall now construct the Design. This is a common
subspace of a standard handle and a flexible handle; we denote it Γ. First we’ll obtain a
common subspace Γ′ of D4 and F called a plugged Design. Then Γ will be obtained from
Γ′ by removing countably many disks — the plugs.

What actually is Γ′? It’s an infinite dyadic rooted tree of flexible handles. Let’s denote
this tree by T.

The root and the edges of T are neighborhoods of 1-story towers. The tree T has a
(middle third) Cantor set of ends, one for each infinite embedded path starting at the root.
Each such path corresponds to a flexible handle built by assembling the neighborhoods of
the 1-story towers corresponding to its edges. Crucially, handles corresponding to different
paths have disjoint ends both in F and in Γ′.

We shall explain how to find a copy of Γ′ in D4 and in F . The jigsaw pieces in D4 and
in F act like a set of coordinates to ensure that the construction is the same on both sides.
As before there is an inside and an outside view of the tree. The inside view as seen from
F is to grow the tree, branch by branch and tower by tower. The outside view as seen
from D4 is to carve out the branches like a sculpture from a block of wood.

4.4.1. Growing Γ′ in F . Where can we find a dyadic tree T of flexible handles in F? Well,
we already have one flexible handle, namely F itself. The entire flexible handle F is ob-
tained as a tapered neighborhood inW of a 2-complex — an infinite story convergent tower.
To grow new handles inside F we need to make room. Leave the first story neighborhood
alone, then push the second and higher stories of the tower slightly into itself so that it
attaches to the first story neighborhood on the left side. We can then grow a disjoint tower
on the right side by repeated application of Proposition 3.14 and Lemma 3.15. Notice that
Lemma 3.15 ensures that the ends of the left and the right flexible handle are disjoint in
the original handle. We write the first story of F as B, and the two new flexible handles
as FL and FR. Notice that FL − B is a finite union of flexible handles, each of which has
as its first story a component of the second story of FL.

We now have a very stubby dyadic rooted tree. There is a root corresponding to the first
story, then two edges corresponding to the two infinite towers we’ve constructed. We now
repeat the process: for each of two towers, we push it slightly into itself so that it attaches
on the left side, and grow a disjoint tower on the right side in the space that this opens
up. We let BL and BR denote the union of B with the second story tower neighborhoods
of FL and FR respectively, and we denote the flexible handles that begin with BL (resp.
BR) by BLL and BLR (resp. BRL and BRR).

Repeat the process. Here’s the inductive step. We have a dyadic rooted tree of depth n
with 2n leaves, indexed by strings σ of length n in the alphabet {L,R}. There is a flexible
handle Fσ for each σ, and the ends of these flexible handles are all disjoint. If τ is the
prefix of σ obtained by removing the last letter, then Fσ is contained in Fτ and shares
the bottom (n− 1)-story tower neighborhoods with it. FτL is a copy of Fτ whose nth and
higher story neighborhoods are pushed slightly into Fτ , but the combinatorics of the tower
stages of FτR might differ considerably above the (n−1)st story. We write Bτ = FτL∩FτR,
a neighborhood of the (n− 1)-story tower at the bottom of Fτ . Now for each Fσ we push
Fσ above its nth stories over to the left, and grow a new flexible handle on the caps of the
nth story tower over on the right. After countably many steps we’ve built T and Γ′.
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Notice that every end of T corresponds to a Cantor set of ends of Γ′, those coming from
the associated flexible handle. The map from ends of T to Cantor sets in F is continuous
in the Hausdorff topology.

4.4.2. Whittling Γ′ out of D4. The construction of Γ′ in D4 is likewise rather painless. We
describe it inductively in terms of the picture of nested 2-handles.

We start with Λ0 ⊂ D4. The first gap g0 is a D4, the co-core of Λ0. Now, Λ1 is a union
of 2-handles in Λ0, and g0 intersects each of these 2-handles in its co-core. So removing g0
from Λ1 turns it into a union of S1×D3s. The collection Λ1 is a union of S1×D3s, but we
can proceed component by component, and therefore we temporarily suppress this point
for the sake of simplicity. Write (each component of) Λ1 as a product S1 × [0, 1] × D2.
Then g′1 is a (union of) S1 × [1/3, 2/3] × D2 sitting inside S1 × D3; removing it (them)
splits Λ1 into two copies: an ‘inner’ and an ‘outer’ one. Each of these corresponds to the
tower (actually, union of towers) corresponding to the components of FL, FR minus B. so
we construct a Λ1,L in the inner Λ1 and a Λ1,R in the outer Λ1, cut out their intersections
with g0 and g′1, and then let g′2 be the (union of) middle third solid annuli that bisect them
radially. And so on.

Notice that the combinatorics of how successive collections of 2-handles Λn,σ sit inside
Λn−1,τ depends on the precise combinatorics of Fσ − Bτ , which depends on precisely how
Fσ was grown in F .

The gap g0 is a 4-disk, but every component of every g′i is a solid S1×D3. Now, Γ′ is not
yet the design, and the components of g′i are not yet the gaps. Each gap will be obtained
from a component of a g′i by plugging the core with a D2, making it thereby contractible.
We shall find these disk plugs as a subset of Γ′ in § 4.6.

4.5. Pairing up gaps. What’s the complement of Γ′ in F? We claim it consists of a
collection of gaps h0 and h′i in bijection with g0 and g′i. This is obvious, since there is one
gap in D for every component of the frontier of Γ′; the analogous component of the frontier
of the Γ′ in F therefore bounds its own corresponding gap.

OK, this is kind of unsatisfactory. It would be nice to have a concrete picture of how
Γ′ embeds in F in such a way that we could see the complementary regions, and see how
they biject with the g′i. We can actually achieve this as follows.

Let’s think of F as a subset of D. Rather than think of it as D − Λ × I we think of
it as being obtained by ‘pushing’ in the solid tori nesting to Λ to lower and lower levels.
Thus we can let K1 ⊂ S3 be a solid torus neighborhood of the attaching core ∂−J0, then
successively let Kn ⊂ Kn−1 be the solid tori of the attaching handles of ∂−J1, and so on.
Think of D4 as a product D3 × [−1, 1], but now reimbed D3 × [0, 1] in a different way so
that it becomes part of the wild collar. Push each Kn× 1 vertically in the wild collar from
height 1 down to height 1/n. Then Λ := ∩iKi is pushed all the way down to height 0. Let
Kn := ∪i≤nKi × [1/i, 1]. Then K∞ := ∪nKn is the region we push S3 over to deformation
retract D to F . In particular, K∞ is a handle gap.

The gap corresponding to g0 is obtained from a ball in F by attaching a handle gap
K∞. The gaps corresponding to the solid tori g′1 are obtained from solid tori by attaching
partial handle gaps K∞ − K1, and each successive gap correpsonding to a solid torus in
g′n is obtained from a solid torus by attaching partial handle gaps K∞ − ∪i≤nKn. These
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budge up against each other in the way indicated in Figure 16. Notice how you can really
see how Λ×Cantor set is stretched out into the interior of F . The complement of the gaps
in both cases is Γ′.

Figure 16. The gaps in D4 and in F .

4.6. Finding disk plugs. The Design Γ is obtained from the plugged Design Γ′ by re-
moving the plugs. These plugs are a family of D2s which plug the holes in the S1 × D3

gaps. Now, each S1 × D3 gap in g′k intersects some D3 × t level where t ∈ Ik in a solid
torus which is a component of Kn. This Kn is a solid torus corresponding to a cap stage
in the nth story, so it is the Whitehead double of some parent solid torus. Thus it bounds
an obvious immersed disk in the parent torus, which intersects itself in an arc at the clasp
and a couple of meridian disks. Push one arc in the positive direction and the other in
the negative, so that they end at an interior point level of the vertical Cantor set. At
these levels the meridian disks lie in the complement of the gaps, so we have successfully
embedded a plug for the solid torus gap in Γ′. Remove a countable union of such plugs
from Γ′ in D4 and in F . The result is the Design Γ.

Remark 4.4. Freedman calls a plugged torus a red blood cell. The terminology platelet is
sometimes also used.

4.7. The Common Quotient. The union Γ together with a collar S3×I embeds in both
D and F. The complementary regions are the gaps. Since the gaps correspond, there is a
common quotient Q and projections

α : D→ Q and β : F→ Q

by crushing the gaps on either side.
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In D these gaps consist of countably infinitely many plugged solid tori, together with
one D4. We don’t know what these gaps are in F, and perhaps we’ll never know. Notice
that the collar stays embedded on both sides.

Proposition 4.5. Both α and β are ABH. Further, the homeomorphisms can be taken to
be the identity on the respective collars.

Proof. Virtually all the work is already done. The decomposition α is shrinkable because
it’s null and birdlike equivalent of depth 2. The depth 2 pieces are the plugged tori: the
plug is a disk and therefore starlike equivalent, and the quotient is obtained by rotating a
2d icecream cone through a torus in SU(2), and is therefore starlike equivalent. Now apply
Theorem 2.14 twice. We conclude α is ABH, and therefore Q is homeomorphic to D4.

It’s obvious that the decomposition for β has nowhere dense image: there are open
balls in Γ arbitrarily close to each decomposition gap. Since F is also a D4, and since
β : F → Q takes collars to collars by the identity, we can apply the Ball to ball theorem;
i.e. Theorem 2.16 and conclude that β is ABH. �

Corollary 4.6 (Flexible handles are standard). Let F be a flexible handle. Then F is
homeomorphic to an ordinary 2-handle D2×D2 relative to a neighborhood of the attaching
circle in its boundary.
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4.8. Poincaré. With Corollary 4.6 available, we can promote immersed Whitney disks to
embedded ones, and we obtain a topological form of the h-Cobordism theorem in dimension
4.

Theorem 4.7 (h-Cobordism). Suppose M , N are smooth simply-connected 4-manifolds
and W is a smooth h-Cobordism between them. Then W is homeomorphic to a product.

Proof. Start with a regular Morse function on W for which M and N are level sets. As in
the proof of Theorem 1.4 we cancel 0 handles with 1 handles, then trade 1 handles for 3
handles. Likewise, we cancel 5 handles with 4 handles then trade 4 handles for 2 handles.
SinceW is a homology product, the cellular chain map from 3 handles to 2 handles is given
by an invertible integer matrix. By handle slides, we can change bases so that this matrix
is the identity.

Let X be the middle level of W . Note that X is simply-connected because M is, and W
has no 1-handles. The descending manifolds of the 3 handles and the ascending manifolds of
the 2 handles give smooth embedded spheres; let α and β be homology classes representing
two of these spheres that span a hyperbolic subspace of H2. By Proposition 3.4 we can find
framed immersed spheres A, B representing α and β each with a geometric dual sphere
SA, SB. Actually, since A and B start out embedded, if we’re careful we can arrange for all
the spurious intersections to take place in the dual spheres, and keep A and B embedded.

Immersed Whitney disks for pairs of intersections of A with B can be constructed and
pushed off A and B into SA or SB. Then by Corollary 3.16 and Corollary 4.6 we can find
topological framed embedded Whitney disks to replace them, and use these to find a new
pair of framed embedded spheres A′, B′ intersecting geometrically in one point. Note we
can assume A′ and B′ are smooth near this point. Since the spheres are geometrically dual,
we can cancel a 2–3 handle pair. Once all the handles are cancelled W is revealed as a
product. �

Theorem 4.7 is especially useful in view of the following two theorems of Wall:

Theorem 4.8 (Wall; stable diffeomorphism). Let M and N be simply-connected smooth
closed 4-manifolds, and suppose M and N are homotopy equivalent. Then for some k the
manifolds M#kS

2 × S2 and N#kS
2 × S2 are diffeomorphic.

Proof. Without loss of generality we can pass to the case that M and N are connected.
SinceM and N are homotopy equivalent they have the same signature, and therefore there
is some smooth cobordism W from M to N . Represent a generator of π1(W ) by the core
of an embedded S1×D4. Attaching a (6-dimensional) 2-handle to this S1×D4 cuts it out
and replaces it with a D2× S3; after finitely many surgeries we obtain a simply-connected
cobordism W .

Since M,N and W are simply-connected, we may trade 1-handles for 3-handles and 4-
handles for 2-handles. Let X be the 4-manifold intermediate between the 2 and 3-handles.
Since M and N are simply-connected, the attaching circles for the 2-handles are trivial in
M , and likewise for the 3-handles; thus X is diffeomorphic to M#kS

2 × S2 on one hand,
and N#lS

2 × S2 on the other. Since M and N are homotopic, their homology has the
same rank, so k = l. �
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Theorem 4.9 (Wall; h-Cobordism exists). Let M and N be simply-connected smooth
closed 4-manifolds, and suppose M and N are homotopy equivalent. Then M and N are
h-Cobordant.

Proof. We give the sketch of a proof.
Let W be a simply-connected cobordism from M to N with only 2 and 3 handles, and

let X be as in the proof of Theorem 4.8. By creating new cancelling 2–3 handle pairs, we
may replace X by X#kS

2 × S2 for any k. If k > 0 then the intersection form Q(X) is
indefinite, and is therefore isomorphic to n(1)⊕m(−1) or n(±E8)⊕mH for some positive
integers n and m, with the constraint that n is even if Q(X) is even, by Rochlin’s Theorem.

Now, by Theorem 4.8 it follows that if we stabilize enough, the middle level becomes
diffeomorphic either to #nCP2#mCP

2 or #n/2K3#m−3n/2S
2 × S2 according to whether

Q(M) is odd or even.
We may cut along the middle level and then by an explicit construction, reglue by a

diffeomorphism in such a way that the 3 and 2 handles cancel algebraically. The resulting
W is an h-Cobordism. �

Corollary 4.10. Let M and N be smooth simply-connected closed 4-manifolds which are
homotopy equivalent. ThenM and N are homeomorphic. In particular, a smooth homotopy
4-sphere is homeomorphic to S4.

Proof. By Theorem 4.9 there is a smooth h-Cobordism betweenM and N . By Theorem 4.7
this cobordism is a topological product. �

4.9. Poincaré Again. Corollary 4.10 doesn’t yet prove the topological Poincaré Conjec-
ture. What if M is a homotopy 4-sphere which is not smooth, and perhaps admits no
smooth structure?

Freedman reasoned as follows. If M is a homotopy 4-sphere, then at the very least
M ′ := M − p is contractible. Therefore by obstruction theory it should admit some
smooth structure.

We explain this. If X is a topological manifold, the germ of a neighborhood of the
diagonal in X×X is a kind of topological substitute for the tangent bundle, and is classified
by a homotopy class of map from X to a space called BTOP. If X is smoothable, then
the map X → BTOP lifts to BO, the classifying space for metrizable vector bundles. The
converse is known to hold by the work of Kirby–Siebenmann either when the dimension
of X is at least 5 or when the dimension of X is 4 but X is noncompact. Since M ′

is contractible, there’s no obstruction to lifting its classifying map to BO, and since it’s
noncompact, it’s smoothable.

So: M ′ is a smooth 4-manifold, and one can check it’s proper homotopy equivalent to
R4. A careful analysis proves a proper version of Wall’s Theorem 4.9 and constructs a
smooth proper h-Cobordism W from M ′ to R4. Then one needs to show the following:

Theorem 4.11 (Proper h-Cobordism). LetM ,M ′ be smooth simply-connected 4-manifolds,
and let W be a proper smooth h-Cobordism between them. Then W is homeomorphic to a
product.

The proof is basically the same as the proof of Theorem 4.7 except one must be careful,
when constructing topologically embedded spheres, that they do not pile up on top of
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each other going out the end, or else the topological foliation of W by flowlines might
be incomplete and fail to exhibit it as a product. One needs to be able to promote an
immersed 2-handle to a flexible 2-handle without going too far away. This can be done by
proving controlled versions of the various steps in the proof of Corollary 4.6. The details
are not especially difficult, and are spelled out explicitly in [9].

Applying Theorem 4.11 we finally conclude:

Theorem 4.12 (Freedman, 4d Poincaré Conjecture). A closed 4-manifold M homotopic
to S4 is homeomorphic to S4.

4.10. Big exotic R4s. In this section we explain how to construct exotic R4s: smooth
structures on the topological manifold R4 that are not diffeomorphic to the standard struc-
ture. These exotic R4s have the following remarkable feature: they contain compact sets
K that are so big that there is no smooth S3 in this R4 separating K from infinity (i.e. K
can’t be smoothly engulfed). These exotic R4s are ‘big’ — they don’t smoothly embed in
ordinary smooth R4. In the next section we give a ‘small’ example which does.

Example 4.13 (Kirby). Start with W = CP2#10CP
2. Then Q(W ) = (1) ⊕ 10(−1). The

classification of indefinite forms says that every odd indefinite form is n(1) ⊕ m(−1) for
some positive n and m, so we can also write Q(W ) = −E8 ⊕ (−1) ⊕ H. We know using
flexible handles that the hyperbolic H is represented by a pair of embedded framed spheres,
intersecting transversely in one point. Let N be a topological neighborhood of this pair of
spheres. Then N is a smooth open manifold, homeomorphic to S2×S2−point. Now, since
open Flexible handles are diffeomorphic to subspaces of smooth handles, we can smoothly
embed N as a subset of S2 × S2, with complement the compact set K. The complement
R of the Flexible S2 ∨ S2 in S2 × S2 is a smooth open manifold homeomorphic to R4, and
contains K in its interior.

Suppose there were a smooth S3 in R separating K from infinity. Then because this S3

lies in N , we can transplant it back to W , and cut it out to produce W ′. Then glue back in
a smooth D4 to produceW ′′. This would be a closed, smooth simply-connected 4-manifold
with Q(W ′′) = −E8⊕ (−1) which is negative definite. But Donaldson showed that if M is
any simply-connected closed 4-manifold, then if Q(M) is definite it is isomorphic to n(1)
or n(−1). This contradiction shows that no smooth S3 in R exists, so R is an exotic R4.

The next example is algebraically more involved, but the input from smooth topology is
much simpler.

Example 4.14. Start with W = CP2#8CP
2. Let α be the homology class in H2(W ) repre-

senting the vector (3, 1, 1, · · · , 1) in the obvious basis. Then α2 = 1 and α⊥ is isomorphic
to −E8. One can see this explicitly: take as a basis for α⊥ the vectors

βi := (0i, 1,−1, 07−i) for i ≤ 7, β8 := (−14, 04)

where superscripts means repeat a vector entry. Evidently all βj are in α⊥. We compute

β2
i = −2 for all i, βi · βi+1 = 1 for i < 7, β3 · β8 = 1

and all other βi · βj = 0. This is a standard basis for −E8.
Now, α is represented by a smoothly embedded torus. But as is well-known (as the first

non-trivial case of the Thom Conjecture), α isn’t represented by a smoothly embedded
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S2 with framing 1, or else a neighborhood of this S2 would be a punctured CP2, and by
cutting it out and gluing in a D4 we’d get a smooth closed simply-connected manifold with
form −E8. This would already contradict Rochlin’s Theorem.

On the other hand, we know α is represented by a topologically embedded sphere S with
framing 1, and a smooth neighborhood N of this sphere smoothly embeds in CP2. The
complement of S in CP2 is a smooth manifold R, homeomorphic to R4, and containing
N as the complement of a compact set K. As in the previous example, if the smooth
structure on R were standard, we could separate K from S with a smooth S3, and get a
contradiction as in the previous paragraph.

4.11. Small exotic R4s. If U is any open subset of standard R4, and K is any compact
subset of U , there is a smooth sphere in U separating K from infinity. Thus, the exotic
R4s constructed in § 4.10 do not smoothly embed in standard R4.

Example 4.15 (Casson–Freedman). The input to this example is a compact counterexample
to the smooth 5-dimensional h-cobordism theorem, due to Donaldson [5]. He shows that
the two manifolds CP2#9CP

2 and the ‘Dolgachev surface’ L(2, 3) are not diffeomorphic.
Nevertheless, they are homotopy equivalent, and therefore smoothly cobordant by Wall.

Let’s describe these manifolds. Take two general cubics f = 0 and g = 0 in CP2 and
blow up the nine points of intersection. This is CP2#9CP

2, and it comes with a map to
CP1 defined by f/g. The fibers are cubic curves f − λg = 0, exhibiting CP2#9CP

2 as an
elliptic surface. The Dolgachev surface L(2, 3) is obtained by logarithmic transforms on
two smooth fibers with multiplicities 2 and 3. This is a 4-dimensional operation, rather
analogous to a Dehn surgery in 3-manifold topology.

A cobordism Y between these two manifolds exists by Wall. Since the manifolds are
simply-connected, we can arrange for all critical points to have index 2 or 3. In fact, it turns
out Y can be obtained by attaching exactly one 2-handle and exactly one (algebraically)
cancelling 3-handle to L. The middle level is therefore diffeomorphic both to L#S2 × S2

and (turning handles upside down) to #2CP2#10CP
2.

In this middle level X the core and the co-core of the two handles are a pair of smooth
embedded two-spheres A and B, each with self-intersection number zero, which intersect
each other algebraically once, and geometrically 2k + 1 times for some positive k. We can
make X − A − B simply-connected at the cost of increasing the number of intersections
of A with B. Thus the linking tori at the points of intersection are dual to a collection of
embedded Flexible handles, each spanning a bigon between a successive pair of intersection
points. Let W be an open neighborhood of A ∪ B together with these Flexible handles.
Since the Flexible handles are topologically standard, W is homeomorphic to an open
neighborhood of S2 ∨ S2 in S2 × S2. Let Z be the part of the cobordism intersecting the
middle level inW ; i.e. the union of the smooth gradient flowlines, together with the critical
levels. Since Z is obtained topologically by attaching 3-handles to the S2s in S2 × S2, it’s
homeomorphic to a product R4× I with Z0 := R4× 0 ⊂ L and Z1 := R4× 1 ⊂ CP2#9CP

2.
It turns out that Z smoothly embeds in S4 × I. To see this, build a Morse function on

S4× I with one cancelling pair of 2-3 handles, then perturb the core/co-core spheres in the
middle level so they intersect combinatorially in the same was as A and B, and span the
bigons with smooth Whitney disks. Now use the fact that Flexible handles smoothly embed
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in standard smooth handles. We now have two smooth manifolds Z0, Z1 homeomorphic to
R4 and embedded in smooth S4 and therefore also in smooth R4. We show that these are
(small) exotic R4s.

Suppose Z0 is standard. Then for a big enough smooth compact ball B0 ⊂ Z0 the
gradient flow is nonsingular on S3

0 := ∂B0 and gives us a smooth embedded S3
1 ⊂ Z1 ⊂

CP2#9CP
2 bounding a topological ball. The ball B0 is a smooth standard ball. Every

smooth standard ball in S4 has a smooth standard ball as complement, since we can shrink
B radially down to a standard ball in a chart. Therefore S4

0−B0 is a smooth standard ball,
and by the gradient flow we see that the region outside S3

1 is a smooth standard ball in S4
1 .

Thus the region inside S3
1 is a smooth standard ball B1 in Z1, and the cobordism Y gives

a diffeomorphism between L− B0 and CP2#9CP
2 − B1. By Hatcher’s proof of the Smale

Conjecture, every orientation-preserving diffeomorphism of S3 is smoothly isotopic to the
identity, so we get a diffeomorphism between L and CP2#9CP

2, contrary to Donaldson’s
theorem. This contradiction shows that Z0 is exotic.

4.12. Homology 3-spheres bound contractible 4-manifolds. We have seen that closed
simply-connected smooth 4-manifolds are classified up to homeomorphism by their inter-
section forms Q. By now many restrictions are known on which forms can be realized by
smooth manifolds. However in the topological world, we have:

Theorem 4.16 (Freedman, realization of forms). Let Q be a nondegenerate integral sym-
metric bilinear form. Then there is a closed simply-connected 4-manifold W with Q(W ) =
Q.

This follows from:

Theorem 4.17 (Freedman, homology 3-spheres bound). Every homology 3-sphere Σ bounds
a contractible 4-manifold V .

We give the proof of Theorem 4.16 assuming Theorem 4.17.

Proof. SupposeQ has rank n and let αi be a basis for Zn. Build a compact simply-connected
4-manifold W ′ by attaching 2-handles to knots Ki in S3 = ∂D4 in such a way that the
framing of Ki is equal to Q(αi, αi) and the linking number of Ki and Kj is Q(αi, αj). The
same diagram represents a Dehn surgery recipe for a closed 3-manifold Σ that arises as
the boundary of W ′. Each 2-handle can be coned to the center of D to form a 2-sphere in
W ′ representing an αi, and H2(W

′) = Zn in such a way that the intersection pairing on
H2(W

′) is equal toQ. Now for a 4-manifold with boundary, Lefschetz duality gives a perfect
pairing between H2(W

′) and H2(W
′, ∂W ′), so it must be that H2(W

′) → H2(W
′, ∂W ′) is

surjective. Since π1(W ′) = 1 we must have H1(∂W
′) = H1(Σ) = 0, and by Poincaré

duality, Σ is a homology 3-sphere.
By Theorem 4.17 there is a contractible V with ∂V = Σ. Gluing V to W ′ along Σ gives

W with Q(W ) = Q. �

The proof of Theorem 4.17 is reasonably straightforward, modulo two things: the exis-
tence of an embedded S2×S2 representing a hyperbolic pair, and a technical result due to
Kirby about isolated non-locally flat points in codimension one. We give a self-contained
proof of Kirby’s result in Appendix A.
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We now begin the proof of Theorem 4.17

Proof. The first step is to build a simply-connected homology cobordism W from Σ to
itself. This is a compact simply-connected 4-manifold W for which the inclusion of Σ into
W is a homology isomorphism.

Since Σ is 3 dimensional, it’s smooth, and so is Σ× I. Let γi be a collection of disjoint
knots in Σ generating π1, and push them into the interior. Since Σ is a homology sphere,
it makes sense to choose longitudinal framings of the γi corresponding to the boundaries
of Seifert surfaces R′i; push these (disjointly) into the interior too. The R′i are framed
in Σ, and therefore also in Σ × I. Attach (5-dimensional) 2-handles to Σ × I along the
framed knots γi to surger Σ × I to V . This drills out S1 × D3s and replaces them with
D2×S2s. EachD2 capsR′i to produce a closed framed surfaceRi, which intersects point×S2

transversely in exactly one point. Thus, H2(V ) is a direct sum of hyperbolics generated
by these Ri, S

2 pairs. These can be replaced by disjoint topological framed embedded S2s
meeting transversely in a single point. The boundary of a neighborhood of one of these
pairs is an S3, and if we cut out the punctured S2 × S2 it bounds and glue in D4 we’ll get
a new simply-connected W with the same homology as Σ× I.

Now, we can glue Z copies of W end to end to produce W ′. This 4-manifold is simply-
connected and has the homology of S3 so it is homotopic to S3 × R. Furthermore, it is
simply-connected at either end. Drilling out a ‘horizontal’ R from the original product
structure connects up these ends, and produces a contractible 4-manifold W ′′ in which
Σ − point is properly embedded. We’ve already seen that a contractible 4-manifold is
smoothable, and smoothly properly h-Cobordant to R4 (Theorem 4.11). Consequently W ′′

is homeomorphic to R4, and the 1-point compactification topologically embeds Σ in S4.
Now, this Σ is locally flat everywhere except possibly at the new point. But Theorem A.1
shows that the set at which a codimension one manifold is not locally flat has no isolated
points, at least if the ambient manifold has dimension at least 4. So Σ is tamely embedded
after all, and splits S4 into two compact 4-manifolds.

Observe that the construction above can be done perfectly symmetrically: in place of
W ′ we could take N copies of W glued end to end and then double along Σ. So there is an
involution of S4 that has Σ as a (tame) fixed point set! In particular both sides of Σ are
homeomorphic to the same compact 4-manifold V . Now, Seifert van-Kampen implies that
V is simply-connected because S4 is, and Meyer–Vietoris implies that H2(V ) = 0. Thus V
is homotopic to a point, and the theorem is proved. �

Example 4.18. There is a closed simply-connected 4-manifold W with Q = E8. This is
even, so if W were smoothable, it would be spin, and therefore by Rochlin’s Theorem
the signature would be divisible by 16. This is a contradiction, and shows that W is not
smoothable.
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Appendix A. Bad points in codimension 1

The purpose of this appendix is to give a self-contained proof of the following theorem
of Kirby:

Theorem A.1 (Kirby, No isolated bad points). Let N be a manifold of dimension n ≥ 4
and let Σ be a manifold of dimension n − 1 topologically embedded in N . Then the set of
points where Σ is not locally tame has no isolated points.

Codimension 1 is necessary of course, since the cone in D4 on a nontrivial knot in S3

gives a properly embedded D2 that fails to be tame at exactly one point.
The top level proof of Theorem A.1 is quite short and elegant, but along the way we

will need to appeal, recursively, to theorems of Letscher, Letscher–Cantrell, Cantrell, and
Cantrell–Edwards. It’s only at the bottom of the well that the hypothesis n ≥ 4 is used,
in the following form: there is no arc in Rn wild only at its endpoints. The Fox–Artin arc
is a counterexample to this claim if n = 3, and this counterexample percolates all the way
back up to Kirby’s Theorem: the boundary of a tapered neighborhood of the Fox–Artin
arc is an embedded S2 in R3 wild at exactly two points.

Let’s assume for the moment the following theorem of Cantrell:

Theorem A.2 (Cantrell, No bad sphere). Let n ≥ 4 and let a topological embedding
Sn−1 → Sn be locally tame except possibly at one point. Then it’s tame at this point too,
and consequently is isotopic to a round Sn−1.

We defer the proof to § A.2

A.1. Proof of Theorem A.1. In this section we give Kirby’s proof of his theorem.

Proof. Suppose f : Σ→ N is an embedding, and p ∈ Σ is an isolated point where f(Σ) is
not locally tame. Then p is in the interior of a Dn−1 ⊂ N so that p is the only point where
f(Dn−1) is not locally tame. Now cut Dn−1 down the middle into two disks D1 ∪D2, each
a standard Dn−1, each containing p in the boundary.

Write Ei = f(Di) and q = f(p), and restrict attention to E1 (say), dropping the sub-
script. We can assume E is contained in the interior of a ball Bn, and then includer that
ball into Sn. So without loss of generality, we can assume E ⊂ Sn. Now, E is locally flat
in Sn except possibly at q ∈ ∂E, and therefore F := E − q is locally flat in Sn − q = Rn.
The space F is homeomorphic to an (n− 1)-ball minus a point in its boundary; this is an
(n− 1)-half space Hn−1. We claim that any locally flat proper Hn−1 in Rn is standard; i.e.
there is a homeomorphism of pairs (Rn, F )→ (Rn, Hn−1).

Since F is locally flat it’s at least locally standard, so we can engulf more and more of
it gradually in a nice regular open neighborhood U so that U is homeomorphic to Rn, and
(U, F )→ (Rn, Hn−1). Further, we can find a slightly smaller closed neighborhood V ⊂ U so
that ∂V is homeomorphic to Rn−1 and is closed in U and in Rn. Any locally flat proper Rn−1
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in Rn is compactified to Sn−1 in Sn locally flat except perhaps at one point, so Theorem A.2
implies that (U, ∂V ) → (Rn,Rn−1) and at the same time, (Rn, ∂V ) → (Rn,Rn−1). Thus
∂V — and therefore U and therefore F — are unknotted in Rn, proving the claim. This
part of the proof, modulo Theorem A.2, is due to Letscher.

We now know that each of D1, D2 is individually locally flat in Rn, and furthermore the
disk ∂D1 ∩ ∂D2 is locally flat in each of ∂D1, ∂D2. We shall show that this implies D is
locally flat. Of course, the only point at which this is currently in contention is p.

Think of D as a diameter of B := Dn ⊂ Rn and introduce radial coordinates in a 2-
dimensional subspace transverse to D, so that D1 and D2 are the codimension 1 disks at
angles π and 0 respectively. To be consistent with Kirby we relabel them Dπ and D0. For
any α 6= β let W (α, β) be the positive wedge from angle α to angle β.

Choose extensions of the fi so that
(1) f2(B) ⊂ f1(Rn); and
(2) the interior of f2(D0) is disjoint from f1(W (π/2, 3π/2)).

Define f := f−11 f2 (this has no relation to the previous map denoted f). By hypothesis
(2), the disk f(D0) is contained in the wedge W (3π/2, π/2).

(argument continues)
�

A.2. Proof of Theorem A.2.

Proof. �

Appendix B. Quadratic forms and Rochlin’s Theorem

Theorem B.1 (Rochlin). LetW be a smooth closed simply-connected 4-manifold with even
intersection form. Then the signature of W is divisible by 16.
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