Lemma 11.1. Let \(f : [a, b] \rightarrow \mathbb{R} \) be continuous at \(p \in (a, b) \). Define functions \(m \) and \(M \) by:

\[
m(h) = \begin{cases}
\inf\{ f(x) \mid p \leq x \leq p + h \} & \text{if } h \geq 0, \\
\inf\{ f(x) \mid p + h \leq x \leq p \} & \text{if } h < 0
\end{cases}
\]

\[
M(h) = \begin{cases}
\sup\{ f(x) \mid p \leq x \leq p + h \} & \text{if } h \geq 0, \\
\sup\{ f(x) \mid p + h \leq x \leq p \} & \text{if } h < 0
\end{cases}
\]

Then \(\lim_{h \to 0} m(h) = f(p) \) and \(\lim_{h \to 0} M(h) = f(p) \).

Theorem 11.2 (The First Fundamental Theorem of Calculus). Suppose that \(f \) is integrable on \([a, b]\). Define \(F : [a, b] \rightarrow \mathbb{R} \) by

\[
F(x) = \int_a^x f.
\]

If \(f \) is continuous at \(p \in (a, b) \), then \(F \) is differentiable at \(p \) and

\[
F'(p) = f(p).
\]

Lemma 11.3. Suppose that \(f : [a, b] \rightarrow \mathbb{R} \) is integrable and that \(I \) is a number satisfying

\[
L(f, P) \leq I \leq U(f, P) \quad \text{for every partition } P \text{ of } [a, b].
\]

Then

\[
\int_a^b f = I.
\]

Theorem 11.4 (The Second Fundamental Theorem of Calculus). Let \(f \) be integrable on \([a, b]\). Suppose that there is a function \(F \) that is continuous on \([a, b]\) and differentiable on \((a, b)\) and such that \(f = F' \) on \((a, b)\). Then

\[
\int_a^b f = F(b) - F(a).
\]

Corollary 11.5 (Integration by Parts). Let \(f, g \) be functions defined on some open interval containing \([a, b]\) such that \(f' \) and \(g' \) exist and are continuous on \([a, b]\). Then

\[
\int_a^b fg' = [f(b)g(b) - f(a)g(a)] - \int_a^b f'g.
\]
Corollary 11.6 (Change of Variables). Let \(g \) be a function defined on some open interval containing \([a, b]\) such that \(g' \) is continuous on \([a, b]\). Suppose that \(g([a, b]) \subset [c, d] \) and \(f : [c, d] \longrightarrow \mathbb{R} \) is continuous. Define \(F : [c, d] \longrightarrow \mathbb{R} \) by \(F(x) = \int_c^x f \). Then

\[
\int_a^b f(g(x)) \cdot g'(x) \, dx = F(g(b)) - F(g(a)).
\]

Now, we prove another very important theorem that tells us about inverse functions and their derivatives. To get there we will need a few lemmas.

Exercise 11.7. Show that if \(f \) is strictly increasing or strictly decreasing on an interval, then \(f \) is injective.

Lemma 11.8. If \(f : (a, b) \rightarrow \mathbb{R} \) is continuous and injective, then \(f \) is either strictly increasing or strictly decreasing on \((a, b)\).

Hint: Assume \(f : (a, b) \rightarrow \mathbb{R} \) is continuous and injective. Fix two points \(x_1, x_2 \in (a, b) \) with \(x_1 < x_2 \). Let \(y, z \in (a, b) \) be any two points with \(y < z \). Define \(h : [0, 1] \longrightarrow \mathbb{R} \) by \(h(t) = f((1-t)x_2 + tz) - f((1-t)x_1 + ty) \). Consider \(h(0) \) and \(h(1) \) and show that they must have the same sign.

In Lemma 1.28 we saw that if \(f : A \longrightarrow B \) is bijective then there is a bijection \(g : B \longrightarrow A \), called the inverse function, such that \((g \circ f)(a) = a, \forall a \in A \), and \((f \circ g)(b) = b, \forall b \in B \).

Theorem 11.9. If \(f : (a, b) \rightarrow \mathbb{R} \) is continuous and injective, then the inverse function \(g : f(a, b) \rightarrow (a, b) \) is continuous.

We denote the inverse function \(g \) by \(f^{-1} \).

Theorem 11.10. Suppose that \(f : (a, b) \rightarrow \mathbb{R} \) is differentiable and that the derivative \(f' : (a, b) \rightarrow \mathbb{R} \) is continuous. Also suppose that there is a point \(p \in (a, b) \) such that \(f'(p) \neq 0 \). Then there exists a region \(R \subset (a, b) \) such that \(p \in R \) and \(f \) with domain restricted to \(R \) is injective. Furthermore, \(f^{-1} : f(R) \rightarrow R \) is differentiable at the point \(f(p) \) and

\[
(f^{-1})'(f(p)) = \frac{1}{f'(p)}.
\]

Hint: Remark 9.35 and Lemma 9.23 should be useful.

Exercise 11.11. Consider the function \(f(x) = x^n \) for a fixed \(n \in \mathbb{N} \). If \(n \) is even, then \(f \) is strictly increasing on the set of non-negative real numbers. If \(n \) is odd, then \(f \) is strictly increasing on all of \(\mathbb{R} \). For a given \(n \), let \(A \) be the aforementioned set on which \(f \) is strictly increasing. Define the inverse function \(f^{-1} : f(A) \rightarrow A \) by \(f^{-1}(x) = \sqrt[n]{x} \), which we sometimes also denote \(f^{-1}(x) = x^{1/n} \). Use Theorem 11.10 to find the points \(y \in f(A) \) at which \(f^{-1} \) is differentiable, and determine \((f^{-1})'(y) \) at these points.