We will now consider a notion of continuity that is stronger than ordinary continuity.

Definition 10.1. Let \(f: A \rightarrow \mathbb{R} \) be a function. We say that \(f \) is uniformly continuous if for all \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that for all \(x, y \in A \)

\[
\text{if } |x - y| < \delta, \quad \text{then } |f(x) - f(y)| < \epsilon.
\]

Theorem 10.2. If \(f \) is uniformly continuous, then \(f \) is continuous.

Exercise 10.3. Determine with proof whether the following functions \(f \) are uniformly continuous on the given intervals \(A \):

1. \(f(x) = x^2 \) on \(A = \mathbb{R} \)
2. \(f(x) = x^2 \) on \(A = (-2, 2) \)
3. \(f(x) = \frac{1}{x} \) on \(A = (0, +\infty) \)
4. \(f(x) = \frac{1}{x} \) on \(A = [1, +\infty) \)
5. \(f(x) = \sqrt{x} \) on \(A = [0, +\infty) \)
6. \(f(x) = \sqrt{x} \) on \(A = [1, +\infty) \)

Exercise 10.4. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be defined by \(f(x) = x^n \), for \(n \in \mathbb{N} \). Show that \(f \) is uniformly continuous if, and only if, \(n = 1 \).

Challenge: Let \(p : \mathbb{R} \rightarrow \mathbb{R} \) be a polynomial with real coefficients. Show that \(p \) is uniformly continuous on \(\mathbb{R} \) if and only if \(\deg(p) \leq 1 \).

Exercise 10.5. Let \(f \) and \(g \) be uniformly continuous on \(A \subset \mathbb{R} \). Show that:

1. The function \(f + g \) is uniformly continuous on \(A \).
2. For any constant \(c \in \mathbb{R} \), the function \(c \cdot f \) is uniformly continuous on \(A \).

We will now prove that continuous functions with compact domain are automatically uniformly continuous. To this end, first consider:

Lemma 10.6. Let \(f: A \rightarrow \mathbb{R} \) be continuous. Fix \(\epsilon > 0 \). By the definition of continuity, for each \(p \in A \) there exists \(\delta(p) > 0 \) such that for all \(x \in A \)

\[
\text{if } |x - p| < \delta(p), \quad \text{then } |f(x) - f(p)| < \frac{\epsilon}{2}.
\]

For each \(p \in A \), define \(U(p) = \{ x \in \mathbb{R} \mid |x - p| < \frac{1}{2} \delta(p) \} \). Then the collection \(\{ U(p) \mid p \in A \} \) is an open cover of \(A \).
Theorem 10.7. Suppose that $X \subset \mathbb{R}$ is compact and $f : X \rightarrow \mathbb{R}$ is continuous. Then f is uniformly continuous.

Corollary 10.8. Suppose that $f : [a, b] \rightarrow \mathbb{R}$ is continuous. Then f is uniformly continuous.

Definition 10.9. We say that a function $f : A \rightarrow \mathbb{R}$ is bounded if $f(A)$ is a bounded subset of \mathbb{R}.

Exercise 10.10. Show that if $X \subset \mathbb{R}$ is compact and $f : X \rightarrow \mathbb{R}$ is continuous, then f is bounded.

Exercise 10.11. Show that if f and g are bounded on A and uniformly continuous on A, then fg is uniformly continuous on A.

We are now ready to turn to integration.

Definition 10.12. A partition of the interval $[a, b]$ is a finite set of points in $[a, b]$ that includes a and b: $$a = t_0 < t_1 < \cdots < t_{n-1} < t_n = b.$$ If P and Q are partitions of the interval $[a, b]$ and $P \subset Q$, we refer to Q as a refinement of P.

We usually write partitions as ordered lists $P = \{t_0, t_1, \ldots, t_n\}$ with $t_{i-1} < t_i$ for each $i = 1, \ldots, n$.

Definition 10.13. Suppose that $f : [a, b] \rightarrow \mathbb{R}$ is bounded and that $P = \{t_0, t_1, \ldots, t_n\}$ is a partition of $[a, b]$. Define:

- $m_i = \inf \{f(x) \mid t_{i-1} \leq x \leq t_i\}$
- $M_i = \sup \{f(x) \mid t_{i-1} \leq x \leq t_i\}$

The lower sum of f for the partition P is the number:

$$L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}).$$

The upper sum of f for the partition P is the number:

$$U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}).$$

Notice that it is always the case that $L(f, P) \leq U(f, P)$.

Lemma 10.14. Suppose that P and Q are partitions of $[a, b]$ and that Q is a refinement of P. Then:

$$L(f, P) \leq L(f, Q) \quad \text{and} \quad U(f, P) \geq U(f, Q).$$
Theorem 10.15. Let P_1 and P_2 be partitions of $[a,b]$ and suppose that $f: [a,b] \to \mathbb{R}$ is bounded. Then:

$$L(f, P_1) \leq U(f, P_2).$$

Definition 10.16. Let $f: [a,b] \to \mathbb{R}$ be bounded. We define:

$$L(f) = \sup \{ L(f, P) \mid P \text{ is a partition of } [a,b] \}$$

$$U(f) = \inf \{ U(f, P) \mid P \text{ is a partition of } [a,b] \}$$

to be, respectively, the lower integral and upper integral of f from a to b.

Exercise 10.17. Why do $L(f)$ and $U(f)$ exist? Find a function f for which $L(f) = U(f)$. Find a function f for which $L(f) \neq U(f)$. Is there a relationship between $L(f)$ and $U(f)$ in general?

Definition 10.18. Let $f: [a,b] \to \mathbb{R}$ be bounded. We say that f is integrable on $[a,b]$ if $L(f) = U(f)$. In this case, the common value $L(f) = U(f)$ is called the integral of f from a to b and we write it as:

$$\int_a^b f.$$

When we want to display the variable of integration, we write the integral as follows, including the symbol dx to indicate that variable of integration:

$$\int_a^b f(x) \, dx.$$

For example, if $f(x) = x^2$, we would write $\int_a^b x^2 \, dx$ but not $\int_a^b x^2$.

Theorem 10.19. Let $f: [a,b] \to \mathbb{R}$ be bounded. Then f is integrable if and only if for every $\epsilon > 0$ there exists a partition P of $[a,b]$ such that

$$U(f, P) - L(f, P) < \epsilon.$$

Theorem 10.20. If $f: [a,b] \to \mathbb{R}$ is continuous, then f is integrable.

(Hint: Use Theorem 10.19 and uniform continuity.)

Exercise 10.21. Fix $c \in \mathbb{R}$ and let $f: [a,b] \to \mathbb{R}$ be defined by $f(x) = c$, for each $x \in [a,b]$. Show that f is integrable on $[a,b]$ and that $\int_a^b f = c(b-a)$.

Lemma 10.22. Let $f: [a,b] \to \mathbb{R}$ be bounded. Given $I \in \mathbb{R}$, $I = \int_a^b f$ if, and only if, for all $\epsilon > 0$, there is some partition P such that

$$U(f, P) - I < \epsilon \quad \text{and} \quad I - L(f, P) < \epsilon.$$
Exercise 10.23. Define $f : [0, b] \to \mathbb{R}$ by the formula $f(x) = x$. Show that f is integrable on $[0, b]$ and that $\int_0^b f = \frac{b^2}{2}$.

Exercise 10.24. Show that the converse of Theorem 10.20 is false in general.

Theorem 10.25. Let $a < b < c$. A function $f : [a, c] \to \mathbb{R}$ is integrable on $[a, c]$ if and only if f is integrable on $[a, b]$ and $[b, c]$. When f is integrable on $[a, c]$, we have

$$\int_a^c f = \int_a^b f + \int_b^c f.$$

If $b < a$, we define

$$\int_a^b f = -\int_b^a f,$$

whenever the latter integral exists. With this notational convention, it follows that the equation

$$\int_a^c f = \int_a^b f + \int_b^c f$$

always holds, regardless of the ordering of a, b and c, whenever f is integrable on the largest of the three intervals.

Theorem 10.26. Suppose that f and g are integrable functions on $[a, b]$ and that $c \in \mathbb{R}$ is a constant. Then $f + g$ and cf are integrable on $[a, b]$ and

(i) $\int_a^b (f + g) = \int_a^b f + \int_a^b g$,

(ii) $\int_a^b c \cdot f = c \int_a^b f$.

Theorem 10.27. Suppose that f is integrable on $[a, b]$. Then there exist numbers m and M such that:

$$m(b - a) \leq \int_a^b f \leq M(b - a).$$

Theorem 10.28. Suppose that f is integrable on $[a, b]$. Define $F : [a, b] \to \mathbb{R}$ by

$$F(x) = \int_a^x f.$$

Then F is continuous.