1. Suppose $A, B \subset \mathbb{Q}$ and $A \cup B$ is open. Must A and B both be open? Must at least one of A and B be open?

2. Give an example of a collection of regions in \mathbb{Q} whose intersection is a single point in \mathbb{Q}.

3. Let X be a topological space and let $A \subset X$. We say that a collection \mathcal{U} of subsets of X is an open cover of A if

 - Each $U \in \mathcal{U}$ is open; and
 - $A \subset \bigcup_{U \in \mathcal{U}} U$.

 If $\mathcal{V} \subset \mathcal{U}$ is also an open cover of A, we say \mathcal{V} is a subcover of \mathcal{U}. Finally, if \mathcal{V} is a subcover of \mathcal{U} and \mathcal{V} is also a finite set, we say that \mathcal{V} is a finite subcover of \mathcal{U}.

 Consider the topological space \mathbb{Q} and the subsets A, B, and C of \mathbb{Q} defined by

 $$A := \{ n^{-1} \mid n \in \mathbb{N} \}, \quad B := \{ q \in \mathbb{Q} \mid 0 < q < 1 \}, \quad \text{and} \quad C := A \cup \{0\}.$$

 (a) Give an example of an open cover of A which has no finite subcover.

 (b) Give an example of an open cover of B which has no finite subcover.

 (c) Prove that every open cover of C has a finite subcover.

4. Corollary 3.20 of Script #3 stipulates that G must be nonempty. Is this stipulation necessary? Is it still true if we remove this hypothesis? Explain.