A non obvious estimate for the pressure

Luis Silvestre
Middle of 2010

Abstract
In Euler and Navier Stokes equations, the pressure is related to the velocity by the formula
\[p = R_i R_j u_i u_j. \] We prove that if \(u \in C^\alpha \) then \(p \in C^{2\alpha} \).

1 Introduction

In Euler or Navier Stokes equation, the pressure is computed from the velocity by the formula
\[p = R_i R_j u_i u_j. \quad (1.1) \]
where \(R_j \) denotes the Riesz transform and repeated indexes are summed. Since the Riesz transforms are operators of order zero, it is generally understood that \(p \) would have the same regularity estimates as \(u \otimes u \) or \(|u|^2 \). Therefore, if \(u \in C^\alpha \), it is natural to obtain that also \(p \in C^\alpha \). The purpose of this note is to show that if \(\alpha \in (0, 1/2) \cup (1/2, 1) \), actually \(p \in C^{2\alpha} \), which seems somewhat surprising.

The case \(\alpha = 1/2 \) is a borderline case because in that case one would expect \(p \) to be Lipschitz. It is well known that that kind spaces do not get along well with singular integrals.

Note that (1.1) arises from the following equivalent formula
\[\Delta p = \partial_i \partial_j u_i u_j. \quad (1.2) \]
Even thought the most interesting cases for Euler or Navier Stokes equation are in dimension 2 and 3, we will present the proof in arbitrary dimension \(n \), since there is no difference in difficulty.

As a notational clarification, we denote by \([u]_{C^\alpha} \) the \(C^\alpha \) seminorm given by
\[[u]_C^\alpha = \sup_{x,y \in \mathbb{R}^n} \frac{|u(x) - u(y)|}{|x - y|^{1+\alpha}}. \]

The main result of this note is the following.

Theorem 1.1. Assume \(u \in C^\alpha \) for \(\alpha \in (0, 1/2) \cup (1/2, 1) \) is a divergence free vector field, and \(p \) be given by the formula (1.1). Then if \(\alpha \in (0, 1/2) \), we have for all \(x, y \in \mathbb{R}^n \),

\[|p(x) - p(y)| \leq C|x - y|^{2\alpha}[u]_{C^\alpha}^2, \]

where \(C \) is a constant depending on \(n \) and \(\alpha \). In addition, if \(\alpha \in (1/2, 1) \),

\[|\nabla p(x) - \nabla p(y)| \leq C|x - y|^{2\alpha-1}[u]_{C^\alpha}^2. \]

I came up with these estimates by 2010. Since I could not find a good application for them, I did send them for publication. However, the result was cited at least in [1] and [2] as a personal communication.

The rest of the article consists of the proof of Theorem 1.1
1.1 Subtracting constants

We start by the following simple observation. Since \(\text{div}\, u = 0 \), the value of \(\partial_i \partial_j (u_i - A_i)(u_j - B_j) \) does not depend on \(A \) and \(B \) for any two constant vectors \(A \) and \(B \). In particular, for any two points \(x_1 \) and \(x_2 \), we have
\[
\partial_i \partial_j u_i(x) u_j(x) = \partial_i \partial_j (u_i(x) - u_i(x_1))(u_j(x) - u_j(x_2)). \tag{1.3}
\]

1.2 The case \(\alpha \in (0, 1/2) \).

Let \(\Phi(y) = \frac{c_n}{|y|^n} \) be the fundamental solution of the Laplace equation, i.e. \(\Delta \Phi = -\delta_0 \).

For any two points \(x_1 \) and \(x_2 \), let \(\varphi(y) = \Phi(y - x_1) - \Phi(y - x_2) \). We multiply both sides of (1.2) by \(\varphi \) and integrate by parts. We obtain
\[
p(x_2) - p(x_1) = \int p(y)\Delta \varphi(y) \, dy = \int (u_i(y) - u_i(x_1))(u_j(y) - u_j(x_2))D^2\varphi(y) \, dy
\]

We assume that \(u \) has an appropriate decay at infinity so that the tail of integral is integrable. Assuming \(u \in L^2 \) is sufficient. The estimates below do not depend on any norm of \(u \) except \(|u|_{C^\alpha} \).

Note that \(D^2 \varphi \) contains some singular part (delta functions) at \(p \) and \(y = x_2 \). However, we have that \((u_i(y) - u_i(x_1))(u_j(y) - u_j(x_2)) \) vanishes for both \(y = x_1 \) and \(y = x_2 \), so we can ignore the singular part of \(D^2 \varphi \).

Let us compute the second derivatives of \(\varphi \). We start by computing \(D^2 \Phi \). We have \(D^2 \varphi(y) = D^2 \Phi(y - x_1) - D^2 \Phi(y - x_2) \), where
\[
\partial_{ij} \Phi(y) = \frac{|y|^2 \delta_{ij} - 2y_i y_j}{|y|^{n+2}}.
\]

In particular \(|D^2 \Phi(y)| \leq C|y|^{-n} \).

There is some cancellation between the two terms when \(y \) is far from \(x_1 \) and \(x_2 \). Let \(\bar{x} = \frac{x_1 + x_2}{2} \) and \(r = |x_1 + x_2| \). Then if \(|y - \bar{x}| > 5r \), by mean value theorem we have
\[
|D^2 \varphi(y)| \leq \frac{Cr}{|y - x|^{n+1}}.
\]

Therefore, we can estimate that part of the integral
\[
\int_{B_{\bar{x}}(\bar{x})} (u_i(y) - u_i(x_1))(u_j(y) - u_j(x_2))\partial_{ij} \varphi(y) \, dy \leq
\]
\[
\leq \|u\|_{C^\alpha} \int_{B_{\bar{x}}(\bar{x})} |y - x_1|^\alpha |y - x_2|^\alpha \frac{Cr}{|y - x|^{n+1}} \, dy
\]
\[
\leq \|u\|_{C^\alpha} \int_{B_{\bar{x}}(\bar{x})} |y - x|^{n+1-2\alpha} \, dy \leq C[u]^2 C^\alpha r^{2\alpha}
\]

Now we estimate the part of the integral where \(y \) is close to \(\bar{x} \).
\[
\int_{B_{\bar{x}}(\bar{x})} (u_i(y) - u_i(x_1))(u_j(y) - u_j(x_2))\partial_{ij} \varphi(y) \, dy \leq
\]
\[
\leq \int_{B_{\bar{x}}(\bar{x})} |u_i(y) - u_i(x_1)||u_j(y) - u_j(x_2)|(|D^2 \Phi(y - x_1)| + |D^2 \Phi(y - x_2)|) \, dy
\]
Note that we bound both terms, from $|D^2\Phi(y-x_1)|$ and $|D^2\Phi(y-x_2)|$, in the same way. Let us bound the first term. We use that $|u_j(y) - u_j(x_2)| \leq C[u]_{C^{\alpha}} r^\alpha$ in $B_{5r}(\bar{x})$.

$$\leq C r^\alpha \|u\|_{C^{\alpha}} \int_{B_{5r}(\bar{x})} (u_i(y) - u_i(x_1))|D^2\Phi(y-x_1)| \, dy$$

$$\leq C r^\alpha \|u\|_{C^{\alpha}}^2 \int_{B_{5r}(\bar{x})} |y-x_1|^\alpha \frac{1}{|y-x_1|^n} \, dy \leq C \|u\|_{C^{\alpha}}^2 r^{2\alpha}$$

Adding the two parts of the integral together, we obtain

$$p(x_1) - p(x_2) \leq C \|u\|_{C^{\alpha}}^2 r^{2\alpha}$$

which finishes the proof of the case $\alpha \in (0,1/2)$.

1.3 The case $\alpha \in (1/2, 1)$

When $\alpha \in (1/2, 1)$, $2\alpha > 1$ and the estimate obtained ($p \in C^{2\alpha}$) is actually a Hölder continuity result for ∇p. The proof is slightly different because instead of estimating $p(x_1) - p(x_2)$ we have to estimate $|\nabla p(x_1) - \nabla p(x_2)|$. For that we note that

$$\nabla p(x_k) = \int (u_i(y) - u_i(x_k))(u_j(y) - u_j(x_k))\nabla \partial_{ij} \Phi(y-x_k) \, dy$$

The kernel $\nabla \partial_{ij} \Phi(y-x_k)$ has a singularity of the form $|y-x_k|^{-n-1}$ and some singular part at $y = x_k$ of order one (derivatives of Dirac delta functions). However, note that $|(u_i(y) - u_i(x_k))(u_j(y) - u_j(x_k))| \leq C|y-x_k|^{2\alpha}$ and $2\alpha > 1$, therefore the singular part of $\nabla \partial_{ij} \Phi(y-x_k)$ can be ignored and the integral above is convergent.

We write $|\nabla p(x_1) - \nabla p(x_2)|$ in integral form and divide the integral as above in the domains $|y-\bar{x}| < 5r$ and $|y-\bar{x}| \geq 5r$. Let us start with the first of these integrals.

$$\int_{B_{5r}(\bar{x})} (u_i(y) - u_i(x_1))(u_j(y) - u_j(x_1))\nabla \partial_{ij} \Phi(y-x_1) - (u_i(y) - u_i(x_2))(u_j(y) - u_j(x_2))\nabla \partial_{ij} \Phi(y-x_2) \, dy \leq$$

$$\leq 2 \left| \int_{B_{5r}(\bar{x})} (u_i(y) - u_i(x_1))(u_j(y) - u_j(x_1))\nabla \partial_{ij} \Phi(y-x_1) \, dy \right| \leq C[u]_{C^{\alpha}}^2 \int_{B_{5r}(\bar{x})} |y-x_1|^{2\alpha} \frac{1}{|y-x_1|^{n+1}} \, dy \leq C[u]_{C^{\alpha}}^2 r^{2\alpha-1}$$

Now we analyze the part of the integral where y is far from \bar{x}.

$$\int_{B_{5r}(\bar{x})} (u_i(y) - u_i(x_1))(u_j(y) - u_j(x_1))\nabla \partial_{ij} \Phi(y-x_1) - (u_i(y) - u_i(x_2))(u_j(y) - u_j(x_2))\nabla \partial_{ij} \Phi(y-x_2) \, dy \leq$$

$$\leq \left| \int_{B_{5r}(\bar{x})} (u_i(y) - u_i(x_1))(u_j(y) - u_j(x_1))\nabla \partial_{ij} \Phi(y-x_1) - \nabla \partial_{ij} \Phi(y-x_2) \right|$$

$$+ \left| \int (u_i(y) - u_i(x_1))(u_j(y) - u_j(x_1)) - (u_i(y) - u_i(x_1))(u_j(y) - u_j(x_2)) \nabla \partial_{ij} \Phi(y-x_2) \, dy \right|$$

$$+ \left| \int (u_i(y) - u_i(x_1))(u_j(y) - u_j(x_2)) - (u_i(y) - u_i(x_2))(u_j(y) - u_j(x_2)) \nabla \partial_{ij} \Phi(y-x_2) \, dy \right|$$

$$\leq C[u]_{C^{\alpha}}^2 \int_{B_{5r}(\bar{x})} |y-\bar{x}|^{2\alpha} \frac{r}{|y-\bar{x}|^{n+2}} + r^\alpha|y-\bar{x}|^\alpha \frac{1}{|y-\bar{x}|^{n+1}} \, dy$$

$$\leq C[u]_{C^{\alpha}}^2 r^{2\alpha-1}$$
Adding the two parts of the integral together, we obtain

$$|\nabla p(x_1) - \nabla p(x_2)| \leq C[u]_{C^{\alpha}}^2 r^{2\alpha - 1}$$

which finishes the proof of the case $\alpha \in (1/2, 1)$.

References
