Lecture 14
Area and
the Definite Integral

Math 13200

We return to the problem of defining the area of regions of the x-y plane.

Since we know how to find the area of polyhedral regions, we use them to define area in general.

Definition: Let R be a region in the plane. Suppose that there exists two sequences of polyhedral regions

$$ P_1, P_2, P_3, \ldots $$

$$ Q_1, Q_2, Q_3, \ldots $$

Such that $P_n \subset R$ and $R \subset Q_n$ for each n, and

$$ \lim_{n \to \infty} A(P_n) = \lim_{n \to \infty} A(Q_n) $$

Then we say that R is **(Riemann) measurable**, and define its area to be the above common value

$$ A(R) = \lim_{n \to \infty} A(P_n) = \lim_{n \to \infty} A(Q_n) $$

Two facts:

- Not all subsets of the plane are measurable in this sense. For example, the set of all points with rational coordinates is not.

- This definition of area satisfies the five axioms of area stated last lecture. The verification of this fact comes from limit properties, and the corresponding facts for polyhedral regions.

Example: Circle

We will find the area of a circle of radius r with this definition. Let P_n be the regular polygon inscribed in the circle, and let Q_n be the regular polygon circumscribed around the circle.
You will show in the homework that the area of P_n is equal to

$$A(P_n) = \frac{1}{2}nr^2 \sin \frac{2\pi}{n}$$

You will also show that

$$\lim_{n \to \infty} A(P_n) = \pi r^2$$

Similarly, we have

$$A(Q_n) = na^2 \tan \frac{\pi}{n}$$

and

$$\lim_{n \to \infty} A(Q_n) = \pi r^2$$

So, we conclude that the area of a circle is given by πr^2.

Riemann Sums

We will use the previous approach to measure areas cut out by the graphs of functions. For the rest of today’s lecture, we will assume our function $f(x)$ is positive.

Specifically, we will look at polyhedron regions that are made up of rectangles:
We will let the length of the rectangles go to 0 to approximate the area. To study such approximations, we will need some definitions.

A partition \(P = \{I_1, \cdots, I_n\} \) of an interval \(I = [a, b] \) is a collection of subintervals
\[
I_1 = [x_0, x_1], \quad I_2 = [x_1, x_2], \quad \cdots \quad I_n = [x_{n-1}, x_n]
\]
with \(a = x_0 \) and \(b = x_n \).

The \(i \)-th subinterval is \(I_i = [x_{i-1}, x_i] \).

For a given partition, the quantity \(\Delta x_i \) is defined to be
\[
\Delta x_i = x_i - x_{i-1} = \text{length of } I_i
\]

The norm \(\|P\| \) of a partition is the maximum of all the \(\Delta x_i \):
\[
\|P\| = \max_i \Delta x_i
\]

Thus, when \(\|P\| \) is small, all the subintervals of the partition are small. When \(\|P\| \) is big, at least one of the subintervals is big.

A sample \(\bar{x}_i \) of a partition \(P = \{I_1, \cdots, I_n\} \) is a choice of point for each interval \(I_i \):
\[
\bar{x}_i \in [x_{i-1}, x_i] = I_i
\]

For any partition, the left sample is the sample with \(\bar{x}_i = x_{i-1} \). The right sample is the sample with \(\bar{x}_i = x_i \). The midpoint sample is the sample with
\[
\bar{x}_i = \frac{x_i - x_{i-1}}{2}
\]

If \(f(x) \) is a function defined on \(I \), and \(P \) is a partition of \(I \), then the min sample is a sample such that
\[
f(\bar{x}_i) = \min_{x \in I_i} f(x)
\]
The **max sample** is defined similarly.

Examples.

First we will just do some examples of partitions/samples without functions (so the min/max samples are irrelevant). Consider the interval $[-4, 10]$. An example of a partition would be

\[[-4, 2] \quad [2, 2.5] \quad [2.5, 5] \quad [5, 7] \quad [7, 10] \]

What is the norm of this partition? Answer: 6

What is the left sample?

\[\bar{x}_1 = -4 \quad \bar{x}_2 = 2 \quad \bar{x}_3 = 2.5 \quad \bar{x}_4 = 5 \quad \bar{x}_5 = 7 \]

What is the midpoint sample? What is the right sample?

Consider the function $f(x) = 5 - x^2$ on $I = [-4, 10]$. What is the min sample? The max sample?

Suppose $f(x)$ is defined on an interval I, which has partition $P = \{I_1, \cdots , I_n\}$ and a sample $\bar{x}_i \in I_i$ for each i. The **Riemann sum** corresponding to f, P, \bar{x}_i is the value

\[RS_{f,P,\bar{x}_i} = \sum_{i=1}^{n} f(\bar{x}_i) \Delta x_i \]

Key point 1:

Some key points:
• The value of the Riemann sum is the area of the polygonal region composed of rectangles with base given by each subinterval I_i, and height corresponding to the point $(\bar{x}_i, f(\bar{x}_i))$ on the graph of f. Will call this the associated Riemann polygon. Thus, this gives an approximation of the area under the graph of f.

• If the sample is the min sample for f, then the corresponding Riemann polygon is contained in the area under the graph of f. Similarly, the Riemann polygon for the max sample contains the area under the graph of f. This mimics what we did with the area of a circle earlier.

• When the norm of the partition is small, the Riemann sum approximates the area under the graph better.

All of this motivates the following definition:

Suppose that f is a function defined on $I = [a, b]$. Suppose we have two sequences of partitions P_1, P_2, \ldots and Q_1, Q_2, \ldots of I. For the P_j, let \bar{x}_i be the min sample, and for the Q_j, let \bar{x}_i be the max sample. If

$$\lim_{j \to \infty} RS_{f, P_j, \bar{x}_i} = \lim_{j \to \infty} RS_{f, Q_j, \bar{x}_i}$$

Then, we say that f is integrable, and we denote the common value be denoted

$$\int_a^b f(x)dx = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(\bar{x}_i) \Delta x_i$$

This is called the definite integral from a to b.

• Jordan measure
• Jordan measure of circle
• Jordan measure of area under $y = x^2$.
• Definitions related to Riemann sums: partition, ith subinterval, Δx_i, sample points, sampled partition, norm of a partition
• Riemann sum of a function for a sampled partition, min/max sample (picture)
• Definition of integrable, definite integral; integrals with $a \geq b$.
• Connection between min/max sample and Jordan measure when $f \geq 0$.
• Geometric interpretation when f is non-positive.
• Integrability Theorem
• Negatively oriented integrals
• Interval Additive Property