Let Σ be a finite set. Recall from the previous setup that we have an abelian group G acting on the set Σ^G of functions $G \to \Sigma$. For a function $\omega \in \Sigma^G$, this G-action is given by
$$(g \cdot \omega)(h) = \omega(g + h), \quad h \in G$$

For today, $G = \mathbb{Z}$, the integers with the group operation of addition. We will think of \mathbb{Z} as parametrizing the action of time. We set $\Omega := \Sigma^\mathbb{Z}$. We would like to put an interesting metric on Ω, to study the dynamics on Ω of the shift operator $\sigma : \Omega \to \Omega$, to study σ-invariant measures, and interesting invariant subdynamics of σ.

We label the elements of Σ with integers in order to distinguish them. Thus we write $\Sigma = \{1, \ldots, n\}$. Points of Ω will be represented as infinite strings of elements of Σ, together with a decimal point that marks which element of the string corresponds to $0 \in \mathbb{Z}$.

$$\Omega = \{\omega = \ldots \omega_{-2} \omega_{-1} \omega_0 \omega_1 \omega_2 \ldots : \omega_i \in \Sigma\}$$

Our convention will be that the element to the right of the decimal point corresponds to $0 \in \mathbb{Z}$. We also use ω_i to denote the value of the function ω at the integer i. The \mathbb{Z}-action on Ω has a natural interpretation in this representation. The \mathbb{Z}-action is specified by the action of the generator 1. We will denote the action of 1 by $\sigma : \Omega \to \Omega$. σ satisfies the formula
$$[\sigma(\omega)](n) = \omega(n + 1)$$

In the infinite string notation,
$$\sigma(\ldots \omega_{-2} \omega_{-1} \omega_0 \omega_1 \omega_2 \ldots) = \ldots \omega_{-2} \omega_{-1} \omega_0 \omega_1 \omega_2 \ldots$$

The effect of σ is to shift the decimal point one spot to the right, or equivalently, ω_0 is shifted one spot to the left. σ^k shifts the decimal point to the right k spots (for $k > 0$) and σ^{-1} shifts the decimal point to the left one spot.

A string ω is periodic if there is some $k \neq 0$ such that $\sigma^k \omega = \omega$. All periodic strings of period ℓ are constructed by taking a finite string $j_1 \ldots j_\ell$, $j_i \in \Sigma$, placing the decimal point at the beginning of this string, and then concatenating infinitely many copies of this finite string in both directions. Hence it will appear as
$$\ldots j_1 \ldots j_\ell \cdot j_1 \ldots j_\ell \ldots$$

We want to put a metric on Ω. Σ carries a natural metric, the discrete metric, for which the distance between $i, j \in \Sigma$ is given by δ_{ij}, the Kronecker delta that is 1 if $i = j$, and 0 otherwise. Up to scaling, this is the only metric on Σ which is invariant under all permutations of the set $\{1, \ldots, n\}$. We define a metric d on Ω by setting, for two strings ω, τ,
$$d(\omega, \tau) = \sum_{i = -\infty}^{\infty} \frac{1}{2|i|} (1 - \delta_{\omega_i, \tau_i})$$
Exercise: Prove this is a metric on $\Omega = \Sigma^\mathbb{Z}$ which induces the product topology.

The metric d compares the values of τ and ω at each integer, giving more weight to values closer to the decimal point. If $\tau_i = \omega_i$ for $|i| \leq m$, then

$$d(\tau, \omega) \leq \frac{1}{2^m}$$

whereas if $\tau_i \neq \omega_i$, then

$$d(\tau, \omega) \geq \frac{1}{2^{|i|}}$$

So two sequences are close if and only if they agree on all sufficiently small integers.

Comment: There is no particular reason for choosing the geometric sequence associated to $1/2$ in the definition of d. We could equally well have defined, for any choice of $0 < \lambda < 1$,

$$d_\lambda(\omega, \tau) = \sum_{i=-\infty}^{\infty} \lambda^{|i|}(1 - \delta_{\omega_i \tau_i})$$

What’s important, as we will see later, is that no matter what the choice of λ is, the collection of Hölder continuous functions $\Omega \to \mathbb{R}$ remains the same (though possibly with different Hölder exponents depending on λ).

A basis for the induced topology of this metric is given by cylinder sets. A cylinder set is a clopen subset of Ω determined by $j \in \mathbb{Z}$, and a finite word k_0, \ldots, k_ℓ.

$$C(j; k_0, \ldots, k_\ell) = \{ \omega \in \Omega | \omega(j+i) = k_i, i = 0, \ldots, \ell \}$$

The integer j centers us at the jth entry of the sequence; $C(j; k_0, \ldots, k_\ell)$ is the set of all sequences which start with the word $k_0 \ldots k_\ell$ from the jth spot.

Exercise: Let $\Sigma = \{1, 2\}$ have two elements. Let \mathcal{C} be the standard middle-thirds Cantor set inside of $[0, 1]$. Construct a biHölder homeomorphism between Ω and $\mathcal{C} \times \mathcal{C}$, where $\mathcal{C} \times \mathcal{C}$ carries the induced metric from the L^1 metric on \mathbb{R}^2.

Remark: Ω is always a Cantor set, in the sense that there is a homeomorphism from Ω to the standard middle-thirds Cantor set. Any metric space X which is compact, totally disconnected, and perfect is homeomorphic to a Cantor set, and Ω is easily seen to satisfy these properties, no matter what the choice of Σ is.

How might one construct an element ω of the shift space with dense orbit, i.e., such that $\{\sigma^k(\omega) : k \in \mathbb{Z}\} = \Omega$? Two procedures were suggested. First, we could enumerate all finite strings of numbers from Σ and concatenate them to form a sequence ω. Second, we could take a countable dense collection of points $\tau_j \in \Omega$, and form ω by concatenating successively longer strings of numbers from these points τ_j.

We change perspectives now to look at measures on Ω.

$$\mathcal{M}_*(\Omega) = \{ \text{Borel probability measures } \mu \text{ on } \Omega \text{ such that } \sigma_* \mu = \mu \}$$

Recall that $\sigma_* \mu = \mu$ is equivalent to saying that μ is invariant under σ,

$$\mu(\sigma^{-1}(A)) = \mu(A) = \mu(\sigma(A))$$

for every Borel set A. The second equality requires that σ is invertible. Invariance in this context means that the measure of a cylinder set $C(j; k_0, \ldots, k_\ell)$ does not depend on j.

The simplest examples of invariant measures for the shift are given by Bernoulli measures. Let

$$\Delta^{n-1} = \left\{ p \in \mathbb{R}^n : p_i \geq 0, \sum_{i=1}^n p_i = 1 \right\}$$
be the standard $n-1$ simplex in \mathbb{R}^n. A point $p \in \Delta^{n-1}$ will be referred to as a probability vector. Given a probability vector p, we define μ on cylinder sets by

$$
\mu(C(j; k_0, \ldots, k_\ell)) = \prod_{i=0}^{\ell} p_{k_i}
$$

and setting $\mu(\emptyset) = 1$, $\mu(\emptyset) = 0$. We’ve defined μ on cylinder sets now; we need to extend μ to be defined on the full Borel σ-algebra of Ω. The tool we will use for this is the Hahn-Kolmogorov extension theorem.

Some definitions: For a set X, a σ-algebra is a collection \mathcal{A} of subsets of X satisfying

1. $\emptyset \in \mathcal{A}$
2. $A \in \mathcal{A} \rightarrow X \setminus A \in \mathcal{A}$
3. For any countable index set I, if $A_i \in \mathcal{A}$ for every $i \in I$, then $\bigcup_{i \in I} A_i \in \mathcal{A}$.

The collection \mathcal{A} is called an algebra, if it satisfies 1,2, and the weaker condition 3’ that $\bigcup_{i \in I} A_i \in \mathcal{A}$ for any finite index set I.

The Hahn-Kolmogorov extension theorem says the following: Let \mathcal{A}_0 be an algebra, and let \mathcal{A} be the smallest σ-algebra containing \mathcal{A}_0. Let $\mu_0 : \mathcal{A}_0 \rightarrow [0, 1]$ be a function such that $\mu_0(\emptyset) = 0$, and μ_0 is finitely additive: for any disjoint sets $A_1, \ldots, A_n \in \mathcal{A}$,

$$
\mu_0 \left(\bigcup_{i=1}^{n} A_i \right) = \sum_{i=1}^{n} \mu_0(A_i)
$$

Suppose further that μ_0 is σ-additive: whenever we have a countable collection $\{A_i \in \mathcal{A} \}_{i \in I}$ such that $\bigcup_{i \in I} A_i \in \mathcal{A}$, we also have

$$
\mu_0 \left(\bigcup_{i \in I} A_i \right) = \sum_{i \in I} \mu_0(A_i)
$$

Then μ_0 extends to a measure on \mathcal{A}. Further, this extension is unique if μ_0 is σ-finite.

We can check that the measure μ constructed on the algebra generated by the cylinder sets satisfies these properties and so extends uniquely to a measure on the Borel σ-algebra of Ω. The uniqueness property of the Hahn-Kolmogorov extension theorem also means that, to check that μ is σ-invariant, it suffices to check that μ is σ-invariant when restricted to unions of cylinder sets, which is clear.

The second example is Markov measures. These are defined by two objects. As before, we have a probability vector $p \in \Delta^{n-1}$, but we also have an $n \times n$ stochastic matrix P. P being stochastic means that $P_{ij} \in [0, 1]$ for every i, j and $\sum_{j=1}^{n} P_{ij} = 1$. We assume also that $p \cdot P = p$, so that p is a left eigenvector of P with eigenvalue 1. Written out in sums, this says that

$$
\sum_{i=1}^{n} p_i P_{ij} = p_j
$$

for every i, j. P has the property that for every $q \in \Delta^{n-1}$, $p \cdot P \in \Delta^{n-1}$.

If we take a stochastic matrix P and assume that there is some $N > 0$ such that all of the entries of P^N are strictly positive, then it follows from the Perron-Frobenius theorem that there is a unique left eigenvector $p \in \Delta^{n-1}$ whose eigenvalue is the leading eigenvalue of P. We can deduce that the leading eigenvalue of P is 1 by observing that the column vector of all 1’s is a right eigenvector of P, and then noting that eigenvalues are preserved under transposition.
Using the pair \((P,p)\) of a stochastic matrix and an associated probability vector, we can define a measure \(\mu\) on cylinder sets by

\[
\mu(C(j;k_0,\ldots,k_\ell)) = p_{k_0} \cdot \prod_{i=0}^{\ell-1} P_{k_i,k_{i+1}}
\]

Exercise: Prove that \(\mu\) gives rise to a shift-invariant measure on \(\Omega\).