1. (*) Read Dummit and Foote, Sections 8.3–9.3.

2. (*) Dummit and Foote, Section 8.2, #2–4.

3. Dummit and Foote, Section 8.2, #5:
 Let \(R = \mathbb{Z}[\sqrt{-5}] \). Define the ideals \(I_2 = (2, 1 + \sqrt{-5}) \), \(I_3 = (3, 2 + \sqrt{-5}) \), and \(I_3' = (3, 2 - \sqrt{-5}) \).

 (a) Prove that \(I_2, I_3, \) and \(I_3' \) are not principal ideals.

 (b) Prove that the product of two non-principal ideals may be a principal ideal by showing that \(I_2^2 = (2) \).

 (c) Prove that \(I_2I_3 = (1 - \sqrt{-5}) \) and \(I_2I_3' = (1 + \sqrt{-5}) \) are principal. Conclude that \(I_2^2I_3I_3' = (6) \).

4. Dummit and Foote, Section 8.2, #6:
 Let \(R \) be an integral domain, and suppose that every prime ideal in \(R \) is principal. This exercise shows that \(R \) must be a P.I.D.

 (a) Assume that the set of ideals of \(R \) that are not principal is non-empty, and prove that this set has a maximal element under inclusion.

 (b) Let \(I \) be an ideal which is maximal with respect to being non-principal, and let \(a, b \in R \) with \(ab \in I \) but with \(a \notin I \) and \(b \notin I \). Let \(I_a = (I, a) \) be the ideal generated by \(I \) and \(a \), let \(I_b = (I, b) \) be the ideal generated by \(I \) and \(b \), and define \(J = \{ r \in R \mid rI_a \subseteq I \} \). Prove that \(I_a = (\alpha) \) and \(J = (\beta) \) are principal ideals in \(R \) with \(I \subseteq I_a \subseteq J \) and \(I_aJ = (\alpha\beta) \subseteq I \).

 (c) If \(x \in I \), show that \(x = sa \) for some \(s \in J \). Deduce that \(I = I_aJ \) is principal, a contradiction.

5. Suppose \(R \) is an integral domain with Euclidean norm \(N \) satisfying the following two conditions:

 - For any natural number \(n \), the set \(\{0\} \cup \{ a \in R \mid N(a) < n \} \) is a subgroup of the additive group of \(R \).
 - For \(ab \neq 0 \), \(N(ab) \geq \max\{N(a), N(b)\} \).

 Then, prove that Euclidean division is unique with respect to \(N \): in other words, prove that for any pair \((a, b) \) with \(b \neq 0 \), there exists a unique pair \((q, r) \) subject to the conditions \(a = bq + r \) and \(r = 0 \) or \(N(r) < N(b) \).

6. Let \(k \) be a field. Let \(R \) the formal power series ring \(k[[x]] \). Define \(N \) on \(R \setminus \{0\} \) as follows: \(N(f) \) is the smallest \(n \) for which the coefficient of \(x^n \) in \(f \) is nonzero.

 (a) Prove that \(R \) is a Euclidean domain with Euclidean norm \(N \).

 (b) For \(a, b \) elements of \(R \), prove that \(N(a + b) \) cannot be bounded as a function of \(N(a) \) and \(N(b) \).

 (c) Prove that if \(a \) and \(b \) are two power series such that \(b \) does not divide \(a \) (and \(b \neq 0 \)), there are infinitely many pairs \((q, r) \) for which \(a = bq + r \) and \(N(r) < N(b) \).

7. Let \(R \) be a ring with 1. For \(a \) a unit in \(R \), consider the map:

\[\varphi_a : x \mapsto axa^{-1} \]
(a) Prove that φ_a is an automorphism of R.
(b) Prove that the map $a \mapsto \varphi_a$ is a homomorphism from the multiplicative group of units in R to the automorphism group of R.
(c) Suppose the additive group of R is generated by all the multiplicative units. Prove that if L is a left ideal of R with the property that $\alpha(L) \subseteq L$ for all automorphisms α of R, then L is a two-sided ideal of R.

8. (a) Suppose R is an integral domain that is a Noetherian ring (i.e., every ideal in R is finitely generated). Prove that if r is a nonzero non-unit of R, we can write $r = up_1^{k_1} \cdots p_n^{k_n}$ where u is a unit and p_i are irreducibles. (Hint: Imitate the proof for principal ideal domains).
(b) Suppose R is an integral domain. Prove that if a nonzero non-unit $r \in R$ can be written as $up_1^{k_1} \cdots p_n^{k_n}$ where all the p_i are prime and u is a unit, then any two factorizations of r into irreducibles are equal up to ordering and associates.
(c) Use parts (a) and (b) along with the fact that in a Bezout domain, every irreducible element is prime, to show that every principal ideal domain is a unique factorization domain.

9. Suppose O is a quadratic integer ring, with N the algebraic norm. Prove that if a is a prime element of O, then $|N(a)|$ is either prime (as a natural number) or the square of a prime. Give examples where $|N(a)|$ is prime and examples where $|N(a)|$ is the square of a prime.

10. Dummit and Foote, Section 8.3, #5:
Let $R = \mathbb{Z}[\sqrt{-n}]$, where n is a square-free integer greater than 3.
(a) Prove that 2, $\sqrt{-n}$, and $1 + \sqrt{-n}$ are irreducibles.
(b) Prove that R is not a U.F.D. Conclude that the quadratic integer ring O is not a U.F.D. when $D \equiv 2, 3 \pmod{4}$ and $D < -3$.
(c) Give an explicit ideal in R that is not principal.

11. (*) Dummit and Foote, Section 9.1, #1–7, 9, and 16.

12. Dummit and Foote, Section 9.1, #10:
Prove that the ring $\mathbb{Z}[x_1, x_2, x_3, \ldots]/(x_1x_2, x_3x_4, x_5x_6, \ldots)$ contains infinitely many minimal prime ideals.

14. A combination of Dummit and Foote, Section 9.2, #10, 11:
Let $f(x), g(x) \in \mathbb{Q}[x]$ be two non-zero polynomials, and let $d(x)$ be their gcd.
(a) Given $h(x) \in \mathbb{Q}[x]$, show that there are polynomials $a(x), b(x) \in \mathbb{Q}[x]$ such that $a(x)f(x) + b(x)g(x) = h(x)$ if and only if $d(x)$ divides $h(x)$.
(b) If $a_0(x)$ and $b_0(x)$ are particular solutions to the equation in part (a), show that the full set of solutions is given by:
\[
\begin{align*}
a(x) &= a_0(x) + m(x) \frac{g(x)}{d(x)} \\
b(x) &= b_0(x) - m(x) \frac{f(x)}{d(x)}
\end{align*}
\]
as $m(x)$ ranges over all polynomials in $\mathbb{Q}[x]$.
(c) When $f(x) = x^3 + 4x^2 + x - 6$ and $g(x) = x^5 - 6x + 5$, find $d(x)$ and at least one pair of solutions for $a_0(x)$ and $b_0(x)$ when $h(x) = d(x)$.