Problems and progress in understanding the Torelli group

Benson Farb, Univ. of Chicago

Ostende, June 2, 2005
Outline of talk

PART I: Combinatorial group theory
PART II: Pseudo-Anosov theory
PART III: Cohomology
The mapping class group

$\Sigma_g =$ closed, oriented surface of genus g

$\text{Mod}_g =$ the mapping class group of Σ_g

$= \pi_0(\text{Homeo}^+\Sigma_g)$

Some elements in Mod_g:

1. Dehn twists T_α
 (Dehn, Humphries) $2g + 1$ of these generate Mod_g.

2. Pseudo-Anosov homeomorphisms f

 $f^n(\alpha) \not\sim \alpha, \forall n, \alpha$.
The Torelli group

Definition (Torelli group): Let \mathcal{I}_g be the subgroup of Mod_g acting trivially on $H_1(\Sigma_g, \mathbb{Z})$:

$$1 \rightarrow \mathcal{I}_g \rightarrow \text{Mod}_g \rightarrow \text{Sp}(2g, \mathbb{Z}) \rightarrow 1$$

Some elements in \mathcal{I}_g:

1. Dehn twists:
 - T_γ about separating γ
 - $T_\alpha T_\beta^{-1}$ with $\{\alpha, \beta\}$ bounding pair

2. Some pseudo-Anosovs (Thurston, Penner)
The bounding twist group

Definition (Bounding twist group): Let

\[\mathcal{K}_g := \langle \{ T_\gamma : \gamma \text{ separates } \Sigma_g \} \rangle \]

Relation to homology 3-spheres (Morita):

- Every integral homology 3-sphere is of form: take out handlebody in \(S^3 \), reglue with \(f \in \mathcal{K}_g \).
- The Casson invariant

\[\lambda : \mathcal{K}_g \rightarrow \mathbb{Z} \]

\[f \mapsto \lambda(M_f) \]

is a homomorphism.
\(\mathcal{I}_g \) versus \(\mathcal{K}_g \)

Question 1. [Birman, etc. '70’s] Does \(\mathcal{I}_g = \mathcal{K}_g \), or at least \([\mathcal{I}_g : \mathcal{K}_g] < \infty \)?

Answer:

- Powell '78: \(\mathcal{I}_2 = \mathcal{K}_2 \)

- D. Johnson '80-'83:

 Let \(H = H_1(\Sigma_g, \mathbb{Z}) \). Action of \(\mathcal{I}_g \) on \(\pi'/[\pi, \pi'] \) gives **Johnson homomorphism**

 \[
 \tau : \mathcal{I}_g \rightarrow \wedge^3 H/H
 \]

 surjective with \(\ker(\tau) = \mathcal{K}_g \).

 \[
 \Rightarrow [\mathcal{I}_g : \mathcal{K}_g] = \infty
 \]
Sidebar: \mathcal{I}_g determines Mod_g

Theorem 2. [Farb-Ivanov] Let $g \geq 5$. Then

\[
\text{Comm}(\mathcal{I}_g) \approx \text{Aut}(\mathcal{I}_g) \approx \text{Mod}_g^{\pm}
\]

Theorem 3. [Brendle-Margalit] Let $g \geq 4$. Then

\[
\text{Comm}(\mathcal{K}_g) \approx \text{Aut}(\mathcal{K}_g) \approx \text{Mod}_g^{\pm}
\]

\text{Aut results extended to } g \geq 3 \text{ by McCarthy-Vautaw.}
Generation problem for \mathcal{I}_g

Prehistory: Nielsen (1924), Magnus (1934)

Question 4. [Birman, '71] Is \mathcal{I}_g finitely generated?

Difficulty: Johnson’s τ shows that any genset for \mathcal{I}_g must have $\geq O(g^3)$ elements.

[Contrast: Mod$_g$ can be generated by 2 elts!]

Theorem 5. [D. Johnson, '83] $\mathcal{I}_g, g \geq 3$, is finitely generated (by $O(2^g)$ twists about bounding pairs).

Problem 6. Find a generating set for \mathcal{I}_g having $O(g^d)$ elements, for some $d \geq 3$.
Generation problem for \mathcal{K}_g

Question 7. [Johnson '83, Birman '86, Morita '90, etc.]

Is \mathcal{K}_g finitely generated?

Answer:

- (Birman-Craggs, Johnson, Morita): used Rochlin and Casson invariants to find large abelian quotients of \mathcal{K}_g.

- (McCullough-Miller '86): \mathcal{K}_2 is not finitely generated.

- (Mess '89, Putman '05): \mathcal{K}_2 is free on \{symplectic splittings of $H_1(\Sigma_2, \mathbb{Z})$\}.

Note: \mathcal{K}_g is not free for $g \geq 3$.
Theorem 8. [Biss-Farb '04] \(\mathcal{K}_g \) is not finitely generated for any \(g \geq 2 \).

Proof outline: Revisit strategy of McCullough-Miller.

1. Action of \(\mathcal{K}_g \) on certain (non-canonical) abelian cover \(Y \) gives representation

\[
\rho : \mathcal{K}_g \to \text{Aut}_\mathcal{L}(H_1(Y, \mathbb{Z}))
\]

with \(\mathcal{L} = \) group-ring of deck group.

2. Find codimension 2 \(\rho \)-trivial subspace, inducing

\[
\hat{\rho} : \mathcal{K}_g \to \text{GL}(2, \mathcal{L})
\]

3. Get action on Bruhat-Tits-Serre tree, group amalgam, etc. Analyze!
Finiteness properties

Question 9. [Morita] Is $H_1(K_g, \mathbb{Z})$ finitely generated?

Conjecture 10. \mathcal{I}_g is finitely presented for $g \geq 4$.

Problem 11. Find an infinite presentation for \mathcal{I}_g and for K_g.

Question 12. What is the cohomological dimension of \mathcal{I}_g?

Problem 13. Determine the maximal number $f(g)$ for which there is a $K(\mathcal{I}_g, 1)$ with finitely many cells in dimensions $\leq f(g)$.

\[f(2) = 0 \text{ since } \mathcal{I}_2 \text{ not f.g.} \]
\[f(3) \leq 3 \text{ (Johnson-Millson)} \]

For $g \geq 3$, combining Johnson and Akita gives:

\[1 \leq f(g) \leq 6g - 5 \]
Recall: \(f \) pseudo-Anosov if \(f^n(\alpha) \not\sim \alpha, \forall n, \alpha. \)

(Nielsen, Thurston): A pseudo-Anosov \(f \) has a \textit{stretch factor} \(\lambda(f) > 1 \):

- \(\exists \) measured foliation \(\mathcal{F} \) with \(f(\mathcal{F}) = \lambda(f)\mathcal{F} \)

- \(\log \lambda(f) = \text{Teichmüller translation length.} \)
The smallest stretch factor

Problem 14. [Penner] Determine the shortest geodesic in moduli space:

\[s_g := \inf \{ \log \lambda(f) : f \text{ pseudo-Anosov} \} \]

(Penner, Baer, McMullen):

\[s_g \asymp \frac{1}{g} \]

Theorem 15. [Farb-Leininger-Margalit]

\[\lambda(f) > \sqrt{2} \text{ for any } f \in \mathcal{I}_g. \]

Key Lemma: For any such \(f \), and any simple closed curve \(\gamma \), we have

\[i(\gamma, f(\gamma)) \geq 4 \text{ or } i(\gamma, f^2(\gamma)) \geq 4. \]
Part III: (Co)homology

Goal: Understand $H^*(\mathcal{I}_g)$ and $H^*(K_g)$.

Note: These are \mathcal{S}_{2g}-modules.
Infinite dimensionality

Theorem 16. [Akita, '01] $H_*(\mathcal{I}_g, \mathbb{Q})$ and $H_*(\mathcal{K}_g, \mathbb{Q})$ are infinite-dimensional for $g \geq 7$.

Proof for \mathcal{I}_g (a la Smillie-Vogtmann):

If $\dim_{\mathbb{Q}}(H_*(\mathcal{I}_g, \mathbb{Q})) < \infty$ then

$$1 \to \mathcal{I}_g \to \text{Mod}_g \to \text{Sp}(2g, \mathbb{Z}) \to 1$$

gives

$$\chi(\mathcal{I}_g) = \chi(\text{Mod}_g)/\chi(\text{Sp}(2g, \mathbb{Z}))$$

and so

$$\chi(\mathcal{I}_g) = \frac{1}{2 - 2g} \prod_{k=1}^{g-1} \frac{1}{\zeta(1 - 2k)} \notin \mathbb{Z}$$

by Harer-Zagier, Harder. But \mathcal{I}_g is torsion-free, so $\chi(\mathcal{I}_g) \in \mathbb{Z}$.

Problem 17. Find infinitely many linearly independent cycles in $H_*(\mathcal{I}_g, \mathbb{Q})$ and $H_*(\mathcal{K}_g, \mathbb{Q})$.

Morita-Mumford-Miller classes

\[e_i \in H^{2i}(\text{Mod}_g, \mathbb{Z}) \] generate stable rational cohomology of \(\text{Mod}_g \). (Madsen-Weiss, 2002)

- Odd classes \(e_{2j+1} \) vanish on \(\mathcal{I}_g \).
- All classes \(e_i \) vanish on \(\mathcal{K}_g \) (Morita)

Question 18. Does \(e_{2j} = 0 \) on \(\mathcal{I}_g \)?

Status: Not even known for \(j = 1 \).
Known nontrivial classes

1. Morita '91: $H^1(K_g, \mathbb{Z})^{\text{Mod}_g} \cong \mathbb{Z} = \langle d_1 \rangle$

2. Johnson, '83-'85:

$$H^1(I_{g,1}, \mathbb{Z}) \approx \bigwedge^3 H \oplus B_2$$

Problem 19. **Determine the algebra generated by these classes.**
Rational cohomology from τ

Recall Johnson homomorphism

$$\tau: \mathcal{I}_{g,1} \to \wedge^3(H_1(\Sigma_{g,1}, \mathbb{Z}))$$

- τ is $\text{Mod}_{g,1}$-equivariant.

- $\ker \tau = \mathcal{K}_g$ (Johnson)

\[\tau^*: H^*(\wedge^3 H, \mathbb{Q}) \to H^*(\mathcal{I}_{g,1}, \mathbb{Q})\]

$\text{Sp}(2g, \mathbb{Q})$-module homomorphism.

Degree 1: τ^* is an isomorphism. (Johnson, '85)

Degree 2: $\ker \tau^*$ computed using representation theory of $\text{Sp}(2g, \mathbb{Q})$. (Hain, '97)

Degree 3: $\ker \tau^*$ computed up to one irreducible summand. (Sakasai, '03)
The Birman-Craggs homomorphism

Fix an embedding $h : \Sigma_g \hookrightarrow S^3$. Define

$$\psi_h : \mathcal{I}_g \to \mathbb{Z}/2\mathbb{Z}$$

$$f \mapsto \mu(M(h, f))$$

where

$$M(h, f) = \text{split } S^3 \text{ along } h(S), \text{ reglue via } f$$

$$\mu(M) = \sigma(W)/8 \mod 2 \text{ (Rochlin invariant)}$$

Johnson: Vary h, combine all ψ_h to give surjections

$$\sigma : \mathcal{I}_g \to B_3$$

$$\sigma|_{\mathcal{K}_g} : \mathcal{K}_g \to B_2$$

$$B_i = \text{deg } \leq i \text{ summand of graded } \mathbb{F}_2\text{-algebra } B$$

$$B_i \approx \sum_{j=0}^{i} \binom{2g}{j} \text{ copies of } \mathbb{Z}/2\mathbb{Z}.$$
Mod 2 cohomology from σ

Theorem 20. [Brendle-Farb] Each of the images of

$$\sigma^* : H^2(B_3, \mathbb{F}_2) \to H^2(\mathcal{I}_g, \mathbb{F}_2)$$

$$(\sigma|_{\mathcal{K}_g})^* : H^2(B_2, \mathbb{F}_2) \to H^2(\mathcal{K}_g, \mathbb{F}_2)$$

has dimension at least $O(g^4)$.

- Not detectable rationally, or with τ.
- Difficulty: modular representation theory too hard.
- On \mathcal{K}_g, whole picture lifts to Casson invariant, integral classes.

Proof idea: Evaluate on abelian cycles. Use: Johnson’s formula for σ; intuition.
Abelian cycles

Let \(f, g \in \mathcal{K}_{g,1} \) with \(fg = gf \).

\[
i : \langle f, g \rangle \cong \mathbb{Z} \times \mathbb{Z} \hookrightarrow \mathcal{K}_{g,1}
\]

induces

\[
i_* : H_2(\mathbb{Z} \times \mathbb{Z}) \cong \langle t \rangle \rightarrow H_2(\mathcal{K}_g)
\]

giving the **abelian cycle**

\[
\{f, g\} = i_*(t) \in H_2(\mathcal{K}_g)
\]

Remark: All abelian cycles vanish in \(H_2(\text{Mod}_g, \mathbb{Z}) \).
Further problems

Problem 21. Determine images of τ^* and σ^* in all dimensions.

Problem 22. Exhibit a single non-abelian cycle in $H^*(I_g)$ and $H^*(K_g)$.