MATH 258 HOMEWORK #5
DUE MONDAY, FEBRUARY 9

(1) An inner product on a vector space V over F is a bilinear map $\langle \cdot, \cdot \rangle : V \times V \to F$ satisfying the extra conditions
- $\langle v, w \rangle = \langle w, v \rangle$, and
- $\langle v, v \rangle \geq 0$, with equality if and only if $v = 0$.

(a) Show that the standard dot product on \mathbb{R}^n is an inner product.
(b) Show that $(f, g) \mapsto \int f(x)g(x) \, dx$ is an inner product on $C^\infty([0, 1], \mathbb{R})$.
(c) Suppose that F is ordered. Prove that for any $v, w \in V$,
$$\langle v, w \rangle^2 \leq \langle v, v \rangle \langle w, w \rangle.$$ When does equality hold? What standard inequality in trigonometry does this reflect when $V = \mathbb{R}^n$?
(d) We say that two vectors v, w in V are orthogonal if $\langle v, w \rangle = 0$. Suppose that $T : V \to V$ is a linear transformation satisfying $\langle Tv, w \rangle = \langle v, Tw \rangle$ for all v, w. Show that eigenvectors of T with different eigenvalues are orthogonal.

(2) Show that $(F \oplus \infty)^* \cong F \times \infty$. Conclude that it is not the case that V and V^* are always isomorphic.

(3) Suppose that F' is a field containing F and V is an F-vector space. If we consider F' to be an F-vector space, we can form the tensor product $F' \otimes V$, which is naturally an F-vector space. Show that it is also an F'-vector space. This is called the change of base of V.

(4) Prove the universal property for tensor products. In other words, show that for any vector spaces U, V, and W there is a bijection
$$\left\{ \text{bilinear maps} \quad U \times V \to W \right\} \leftrightarrow \left\{ \text{linear maps} \quad U \otimes V \to W \right\}.$$

(5) Let $\{u_i\}_{i=1}^m$ and $\{v_j\}_{j=1}^n$ be bases of U and V, respectively. Show that a general element $w = \sum_{i=1}^m \sum_{j=1}^n w_{ij} u_i \otimes v_j$ is the sum of r pure tensors if and only if the $m \times n$ matrix (w_{ij}) has rank at most r.

(6) This next problem will investigate tensor products of modules. Note that the definition of “linear” and “bilinear” still work for rings instead of fields. Suppose that R is a commutative ring with unit, and M and N are R-modules. We define the tensor product $M \otimes_R N$ to be the R-module such that there is a bijection
$$\left\{ \text{bilinear maps} \quad M \times N \to S \right\} \leftrightarrow \left\{ \text{linear maps} \quad M \otimes_R N \to S \right\}$$
for any R-module S.

(a) Suppose that $M = R^m$ and $N = R^n$. Show that $M \otimes_R N = R^{mn}$.
(b) Suppose that $R \to S$ is a homomorphism of rings. Show that S is an R-module. Show that $S \otimes_R M$ is an S-module.
(c) Now suppose that $R = \mathbb{Z}$. As we discussed before, \mathbb{Z}-modules are just abelian groups. What is $\mathbb{Z} \otimes \mathbb{Z} \mathbb{Z}/n\mathbb{Z}$? What is $\mathbb{Z}/p\mathbb{Z} \otimes \mathbb{Z}/q\mathbb{Z}$ for not necessarily distinct primes p and q? Find a general description of $\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}$.