
All rings are assumed commutative in the below. Let A be a commutative ring.
For any prime p ⊂ A, let κ(p) denote the field K(A/p) = (A/p)(0) = Ap/pp. A
local ring is a ring with exactly one maximal ideal. The following lemma, stated in
restricted form, is known as Nakayama’s lemma, and is used below.

Lemma. Let A be a local ring with maximal ideal m and M a finitely-generated
A-module. Then if m1, . . . ,mn are elements of M whose images in M ⊗ κ(m) =
M/mM generate it as a κ(m)-vector space, then m1, . . . ,mn generate M as an
A-module.

(1) Let A be a ring. Prove that a sequence of A-modules

0−→M −→N −→Q−→ 0 (*)

is exact if and only if the localized sequence

0−→Mm−→Nm−→Qm−→ 0

is exact for every maximal ideal m ⊂ A (⇔ for every prime ideal m).
(2) There is a tendency for ideals maximal with respect to a certain property

to be prime. Case in point: prove that if U ⊂ A is a multiplicatively closed
subset, and I ⊂ A is an ideal maximal among those not meeting U , then I
is prime. Use this result to prove the formula

{f ∈ A : fn ∈ J for some n} =: radJ =
⋂
J⊂p

p

for any ideal J ⊂ A, where the intersection is over all primes containing J .
(3) An A-module P is called projective if it satisfies any number of equiva-

lent properties: it is a direct summand of a free module, or the functor
Hom(P,−) is exact, or every short exact sequence of the form

0−→M −→N −→P −→ 0

splits. In particular if A is local noetherian, prove that the first charac-
terization of a projective module as a direct summand of a free module
actually implies that every finitely-generated projective A-module is free,
using Nakayama’s lemma.

As a corollary of this, one finds that a finitely-generated module M over
a noetherian ring A is projective only if it is locally free, i.e. Mp is free for
all primes (equivalently, for all maximal ideals) p ⊂ A. In fact the ‘only if’
is an if and only if. (Such modules are the vector bundles over the scheme
SpecA.)

(4) An A-module M is called faithfully flat if the functor A-mod→A-mod
− ⊗A M is exact and faithful; equivalently if it is flat and reflects zero
objects (an A-module F has F ⊗M = 0 if and only if F = 0);1 equivalently
if it is flat and whenever one has a complex of A-modules

N −→P −→Q (*)

1An exact functor T between abelian categories is faithful if and only if it reflects zero objects.
Proof: First assume T faithful. An object o in an abelian category is called a zero object if the
identity morphism 1o is the zero morphism; as T is faithful, T reflects zero objects. For the

converse, let α : X→Y be a nonzero morphism, and factor α as X � imα ↪→ Y . As T is exact,
Tα factors as X � imα ↪→ Y . Since imα 6= 0, by hypothesis T (imα) 6= 0, so Tα is nonzero. �
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such that the tensored complex

N ⊗M −→P ⊗M −→Q⊗M

is exact, then the complex (*) is exact. Prove that a flat module M over
a ring A is faithfully flat if and only if it has nonempty fibers; i.e. if
M ⊗ κ(p) 6= 0 for every prime p (as usual it suffices to check only the
maximal ones). (Hint: For ⇒, use that A→κ(p) is nonzero. For ⇐, study
the cohomology H = ker(P →Q)/ im(N→P ) of the complex (*).) Using
this criterion, for p ⊂ A prime, when is the flat A-module Ap faithfully flat?

(5) An artinian ring is a ring with finitely many prime ideals, all of which are
maximal. It is a theorem that if a ring has a finite composition series (is
‘of finite length’) as a module over itself; i.e. A = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃
An = 0 with quotients Ai/Ai+1 which are simple modules (no nonzero
submodules; i.e. isomorphic to A/m for m maximal), then A is artinian
and noetherian. A finite morphism of rings A→B is one which makes B
into a finite A-module; this is equivalent to B being generated over A by
finitely many integral elements (elements which satisfy a monic polynomial
with coefficients in A). Prove that a finite morphism is quasi-finite; i.e. for
every prime p ⊂ A the fibers B ⊗A κ(p) are rings with only finitely many
primes.

The next two questions concern the relationship between ideals in polynomial
rings and their vanishing in affine space. Let k denote an algebraically closed field.
Given a subset I ⊂ k[x1, . . . , xn], we define an algebraic subset of An(k), considered
as simply kn, by

Z(I) = {(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0 for all f ∈ I}.

Given a set X ⊂ An(k), define

I(X) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X}.

Then the classical Nullstellensatz states that if I as above is an ideal, then

I(Z(I)) = rad I,

where rad I is defined in a previous problem. Thus, the correspondences I 7→ Z(I)
and X 7→ I(X) induce a bijection between the collection of algebraic subsets of
An(k) (subsets of the form Z(I) for I as above; we may assume I is moreover an
ideal) and radical ideals of k[x1, . . . , xn] (ideals which equal their own radical). The
next two problems obtain this result as a corollary of a result about Jacobson rings.

Preserve all the notation above. It is easy to see that for each p = (a1, . . . , an) ∈
An(k), the ideal mp := (x1 − a1, . . . , xn − an) ⊂ k[x1, . . . , xn] is a maximal ideal,
even if k is not algebraically closed (continue to assume that it is); simply quotient
by mp to see this.

A Jacobson ring is a ring in which every prime ideal is an intersection of maximal
ideals. Grant the following theorem (general version of the Nullstellensatz).

Theorem. Let R be a Jacobson ring and S be an R-algebra of finite type (finitely
generated as an algebra). Then S is a Jacobson ring. Moreover, let n ⊂ S be
a maximal ideal. Then its restriction m := n ∩ R is maximal, and moreover the
extension of residue fields κ(m) ⊂ κ(n) is finite.
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(6) Let X ⊂ An(k) be an algebraic set X = Z(I). Then every maximal ideal of
A(X) := k[x1, . . . , xn]/I is of the form mp/I for some p ∈ X. In particular,
the points of X are in bijection with the maximal ideals of A(X). (Hint:
use the general form of the Nullstellensatz to show that every maximal ideal
in the ring k[x1, . . . , xn] is of the form mp for some p.)

(7) Prove the classical Nullstellensatz from the general version, using the for-
mula for the radical in the second problem.
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