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1. Introduction

We discuss some basic definitions and properties of fields, culminating with Ga-
lois theory.

Definition 1.1. A field is a commutative ring in which every non-zero element has
a multiplicative inverse.

Definition 1.2. The characteristic of a field F , char(F ), is the smallest natural
number n such that n · 1 = 0 in F . If no such number exists, we say char(F ) = 0.

Exercise 1.3. Show that if char(F ) is non-zero, then it is a prime number. Show
that if char(F ) = 0, then F contains a field isomorphic to Q, and if char(F ) = p,
then F contains a field isomorphic to Z/pZ. This is sometimes called the prime
field of F .

Note that a field has no non-trivial ideals, since any non-zero ideal must contain
a unit. Since the kernal of a ring-map is an ideal, we see that any non-zero ring
map out of a field is injective.

2. Examples of Fields

We first discuss two ways to construct a field from a ring.

Exercise 2.1. Show that if R is a commutative ring, and m is a maximal ideal,
then R/m is a field.

An an example of this is Z/pZ. Since this field is finite, it’s also often denoted
by Fp.

Definition 2.2. Given an integral domain R, we construct the field of fractions,
k(R), of R as follows: k(R) = R × R with multiplication (a, b)(c, d) = (ac, bd) and
addition (a, b) + (c, d) = (ad + bc, bd). For obvious reasons we denote elements of
k(R) by (a, b) = a/b.

The obvious example is the rational numbers, Q = k(Z). For a more interesting
example, let Ω be an open set in C and let H(Ω) be the ring of holomorphic
functions. Then, the field of meromorphic functions, M(Ω), is M(Ω) = k(H(Ω)).

Another way to construct new fields is from old fields.

Definition 2.3. If E and F are fields and F ⊂ E, then we say E is an extension
of F , and sometimes write this information as E/F . We say an element α of E is
algebraic over F if there is a polynomial f in F [x] such that f(α) = 0. We say E
is an algebraic extension if every element of E is algebraic over F .
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Note that an extension E has the structure of F -vector space and F -algebra.
The dimension of this vector space is called the degree of the extension, and is
denoted by [E : F ] = dimF (E). An extension is called finite if the degree is finite,
and infinite otherwise.

Exercise 2.4. Show that any finite extension is algebraic.

Exercise 2.5. Show that if α ∈ E is algebraic, then there exists a unique monic,
irreducible polynomial minα(x) ∈ F [x] with α as a root.

An example of a field extension is R ⊂ C. Since C is a 2-dimensional real vector
space, it’s algebraic (by the exercise). We can show this explicitly: if α = a+bi ∈ C,
then α satisfies (x− a)2 + b2.

Theorem 2.6. If E/F is an extension and α ∈ E is algebraic, then there exists
a smallest field, F (α), containing both α and F . The map φ : F [x]/(minα(x)) →
F (α) given by φ(x) = α is an isomorphism.

The process described in the theorem is called adjoining α to F .

Exercise 2.7. Show that the field Q(
√

2,
√

3, ...,
√
p, ...) obtained by adjoining the

square roots of all the prime numbers is an algebraic, but not a finite, extension of
Q.

Exercise 2.8. Show that the field of rational functions, F (x) = k(F [x]), is a
non-algebraic extension of F .

If f is an irreducible polynomial in Fp of degree n, then Fp[x]/(f) is a field with
q = pn elements; such a field is denoted by Fq.

Exercise 2.9. Show that any finite field has prime power order.

Proposition 2.10. A field of order pn exists for every prime p and every natural
number n, and any two fields with pn elements are isomorphic.

3. Roots of Polynomials

As we saw when defining adjoining an element, polynomials, in particular, min-
imal polynomials, play an important role in the theory.

Proposition 3.1. Given a polynomial f ∈ F [x], there exists an algebraic field
extension E/F such that f as a root in E

Proof. Clearly it suffices to show this only for irreducible polynomials. If f is
irreducible, E = F [x]/(f), then x is a root of f in E. �

Definition 3.2. A field E is called algebraically closed if every polynomial in E[x]
has a root in E. If E/F is an algebraic extension, and E is algebraically closed,
then E is called an algebraic closure. We use F̄ to denote an algebraic closure of
F .

Theorem 3.3. Every field has an algebraic closure, and any two algebraic closures
of a field are isomorphic.

Definition 3.4. A polynomial f ∈ F [x] is called separable if it has distinct roots
in F̄ . An extension E/F is called separable if, for every α ∈ E, minα is separable.
A field is called perfect if every finite extension is seperable.
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Proposition 3.5. Every field of characteristic 0 is perfect, as is every finite field.

So what’s an example of a non-separable extension? Take E = F2(
√
t) over

F = F2(t). Then min√t(x) = x2 − t = x2 + t = (x+
√
t)2 is not separable. Here’s

a theorem on finite, separable extensions, called the Primitive Element Theorem.

Theorem 3.6. If E/F is a finite, separable extension, then there is an element
α ∈ E, called a primitive element, such that E = F (α).

Definition 3.7. We can an algebraic extension E/F is normal if, for every α ∈ E,
minα(x) splits completely into linear factors.

4. Automorphisms and Galois Theory

Definition 4.1. If E and E′ are two extensions of F , a morphism over F is a F -
algebra map E → E′. Note that this is the same as ring map that fixes F pointwise.
An automorphism of E over F is a isomorphism E → E that is also a morphism
over F . We call the group of automorphisms of E over F the Galois group of E
over F and denote it by Gal(E/F ).

If σ ∈ Gal(E/F ) we can extend σ to E[x] → E[x] by having it act on the
coefficients. If f ∈ F [x] splits into linear factors over E[x], then, since σ(f) = f ,
sigma must permute the roots of f .

Definition 4.2. An algebraic extension is called Galois if it’s both normal and
separable. If H is a subgroup of Gal(E/F ), then the fixed field of H is

EH = {α ∈ E | σ(α) = α, ∀σ ∈ H}
Theorem 4.3. (Galois Theory) Let E/F be a finite Galois extension with Galois
group G = Gal(E/F ). Let E/F = {Fields L | F ⊂ L ⊂ E} and let Orb(G) =
{Subgroups of G}. Then the maps

Φ : E/F → Orb(G)

K 7→ Gal(E/L)
and

Ψ : Orb(G)→ E/F
H 7→ EH

are inverse maps. Further, a subgroup H is normal in G if and only if EH is a
normal extension of F , and, in that case, Gal(EH/F ) = G/H.

A different way to state this is with category theory. In this case, the correct
definition of Orb(G) is Orb(G) = {G-sets G/H | H is a subgroup of G} with
morphisms φ : G/H → G/K given by φ(gH) = gg′K, where g′ ∈ G satisfies
g′−1Hg′ ⊂ K. The statement of Galois theory is as follows.

Theorem 4.4. The functor

Ψ : Orb(G)op → E/F
given by

H 7→ EH

on objects and
(gH 7→ gg′K) 7→ (α 7→ g′(α))

on morphisms is an isomorphism of categories.


