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1 Probability Spaces

De�nition 1.1. A probability space is a measure space (
;F ;P) with total measure one.
More precisely,

� 
 is a set (called the sample space) and elements in 
 are called outcomes.

� F is a �-algebra on 
; elements in F are called events.

� P is a measure on F such that P f
g = 1.

Example 1.2. When 
 is countable, we say that (
;F ;P) is a discrete probability space.
One usually lets F consist of all subsets of 
. In this case, we can assign a measure P f!g to
each individual outcome ! 2 
, such thatX

!2


P f!g = 1:

Then, for each E 2 F ,
P fEg =

X
!2E

P f!g :

Example 1.3. An example of a discrete probability space is the space 
n = f0; 1gn consisting
of n-tuples of 0's and 1's. One can think of these as the outcomes of 
ipping a coin n times
with 0 denoting tails and 1 denoting heads. Let p 2 (0; 1) denote the probability of getting
heads, and for ! = (!1; : : : ; !n) 2 
n, let

�(!) = #f!k : !k = 1g:
Then for each ! 2 
n,

P f!g = p�(!)(1� p)n��(!):

Thus, if Ek = f! : �(!) = kg is the event that one gets exactly k heads, then

P fEkg =
X

!:�(!)=k

P f!g =
�
n

k

�
pk(1� p)n�k:

Remark One can de�ne a probability space on the set of in�nite coin tosses, but one has to
be a bit more careful. Note that the set of in�nite coin tosses is not a discrete probability
space.

Example 1.4. Another canonical example of a probability space is ([0; 1];L[0; 1];m): Lebesgue
measure on [0; 1]. It is often useful to think of this space when thinking of examples, or trying
to come up with counterexamples.
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2 Random Variables and Distributions

A random variable X : 
 ! R is just a real measurable function on (
;F ;P). Note that X
induces a measure �X on B, the Borel subsets of R, as follows. Given B 2 B, we de�ne

�X(B) = P
�
X�1(B)

	
:

�X is a probability measure and therefore (R;B; �X) is a probability space. �X is called the
distribution of X.

If �X is supported on a countable set, then X is called a discrete random variable. If
�X gives zero measure to every singleton set, then X is called a continuous random variable.
Associated to some continuous random variables X is a density function f with the property
that for any Borel set E,

�X(E) =

Z
E

f(t) dt:

Example 2.1. If E is any subset of 
, the indicator function of E is

1E(!) =

�
1 if ! 2 E;
0 if ! 62 E:

Note that 1E is a Bernoulli random variable with parameter P fEg (see section 4.1 for the
de�nition).

Example 2.2. Let 
n be as in example 1.3 and let ! = (!1; : : : ; !n) 2 
n. Let

X(!) = #f!k : !k = 1g:

Then as we saw in that example, for k = 0; : : : ; n,

P fX = kg =
�
n

k

�
pk(1� p)n�k:

X is a Binomial random variable with parameters n and p (see section 4.1).

De�nition 2.3. If X is an integrable random variable, the expectation of X is

E fXg =
Z
X dP:

The variance of X is de�ned to be

Var(X) = E
�
(X �E fXg)2	 = E

�
X2
	�E fXg2 ;

as long as X2 is integrable.

By the additivity of the integral, it follows that if X1; : : : ; Xn are any random variables,

E

(
nX

k=1

Xk

)
=

nX
k=1

E fXkg :
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Theorem 2.4. Suppose X is a random variable with distribution �X and that g : R ! R is

Borel measurable. Then Z
g(X) dP =

Z
g(x) d�X(x):

In particular,

E fXg =
Z
x d�X(x):

Remark The previous theorem shows that the distribution of a random variable X is usually
all one needs to know about X. In particular, one usually does not care about the underlying
probability space (
;F ;P). In fact, one usually makes statements like "let X1; X2; : : : be
independent standard normal random variables" with the understanding that there exists
a probability space (
;F ;P) that admits such random variables, but without caring what
(
;F ;P) is.

3 Independence

De�nition 3.1. Fix a probability space (
;F ;P). Two events E1 and E2 are independent if

P fE1 \ E2g = P fE1gP fE2g :

More generally, a collection fE�g of events is independent if for any �nite sub-collection
E�1 ; : : : ; E�n ,

P

(
n\

k=1

E�k

)
=

nY
k=1

P fE�k
g :

Exercise 3.2. A collection fE�g of events is called pairwise independent if for all pairs E�1

and E�2 ,
P fE�1 \ E�2g = P fE�1gP fE�2g :

Show that pairwise independence does not necessarily imply independence.

De�nition 3.3. Random variables X1; : : : ; Xn are said to be independent if for any collection
of Borel sets B1; : : : ; Bn,

P

(
n\

k=1

X�1
k

(Bk)

)
=

nY
k=1

P
�
X�1
k

(Bk)
	
:

An in�nite collection of random variables is said to be independent if every �nite subcollection
is independent. Note that if X1; : : : ; Xn are independent and g1; : : : ; gn are any Borel measur-
able functions, then g1(X1); : : : ; gn(Xn) are also independent. This follows immediately from
the de�nition.

Theorem 3.4. 1. If X1; : : : ; Xn are independent, integrable random variables then

E

(
nY

k=1

Xk

)
=

nY
k=1

E fXkg :
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2. If X1; : : : ; Xn are independent random variables whose variance is �nite then

Var(X1 + : : :+Xn) = Var(X1) + : : :+Var(Xn):

Exercise 3.5. Show that the converse to (1) in the above theorem is false. In other words,
give an example of two random variables X and Y such that E fXY g = E fXgE fY g but
such that X and Y are not independent.

4 Some common distributions

4.1 Discrete distributions

Example 4.1 (Bernoulli distribution). If p 2 (0; 1), a random variable X is said to be
Bernoulli with parameter p if P fX = 1g = p and P fX = 0g = 1 � p. This represents the
outcome of a trial with probability p of success (the event that X = 1) and probability 1� p
of failure (when X = 0). It is fairly immediate that E fXg = p and that

Var(X) = E
�
X2
	�E fXg2 = p� p2 = p(1� p):

Example 4.2 (Binomial distribution). A random variable X is said to be binomial with
parameters n and p, if

P fX = kg =
�
n

k

�
pk(1� p)n�k k = 0; 1; : : : ; n:

Note that by exercise 1.3 a Binomial random variable can be thought of as the number of
successes in n independent Bernoulli trials with probability p. Thus, the sum of n independent
Bernoulli random variables X1; : : : ; Xn with parameter p is a binomial random variable with
parameters n and p. Therefore,

E fXg = E fX1 + : : :+Xng = E fX1g+ : : :+E fXng = np;

and
Var(X) = Var(X1) + : : :+Var(Xn) = np(1� p):

Example 4.3 (Poisson distribution). A random variable X has a Poisson distribution with
parameter � > 0 if

P fX = kg = �k

k!
e��; k = 0; 1; 2; : : : :

The Poisson distribution is the limit of binomial random variables with parameters n and �=n
as n!1. One can use this to show that E fXg = Var(X) = �.

Example 4.4 (Geometric distribution). A random variable X has a geometric distribution
with parameter p if

P fX = kg = (1� p)k�1p; k = 1; 2; : : : :

X can be interpreted as the number of Bernoulli trials needed until the �rst success occurs.
One can check that E fXg = 1=p and Var(X) = (1� p)=p2.
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4.2 Continuous distributions

Example 4.5 (Normal distribution). A random variable X has a normal (or Gaussian)
distribution with parameters � and �2 if it has density

f(x) =
1p
2��2

e�
1

2
(x��� )

2

; �1 < x <1:

One often writes X � N(�; �2). When � = 0 and �2 = 1 we say that X is a standard normal.
One can check that E fXg = � and Var(X) = �2.

Example 4.6 (Exponential distribution). A random variable X has an exponential distribu-
tion with parameter � > 0 if it has density

f(x) = �e��x; x > 0:

A simple calculation shows that E fXg = ��1 and that Var(X) = ��2.

De�nition 4.7. The characteristic function of X is the function � : R! C de�ned by

�(t) = E(eitX):

Theorem 4.8. Random variables X and Y have the same characteristic function if and only

if they have the same distribution function.
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