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1 Probability Spaces

Definition 1.1. A probability space is a measure space (2, F,P) with total measure one.
More precisely,

e s a set (called the sample space) and elements in 2 are called outcomes.
e F is a o-algebra on 2; elements in F are called events.

e P is a measure on F such that P {Q} = 1.

Example 1.2. When  is countable, we say that (Q,F,P) is a discrete probability space.
One usually lets F consist of all subsets of Q. In this case, we can assign a measure P {w} to
each individual outcome w € €, such that

> Plu}=1.

weN
Then, for each £ € F,

P{E}=> P{uw}.
wekE

Example 1.3. An example of a discrete probability space is the space €, = {0, 1}" consisting
of n-tuples of 0’s and 1’s. One can think of these as the outcomes of flipping a coin n times
with 0 denoting tails and 1 denoting heads. Let p € (0,1) denote the probability of getting
heads, and for w = (w1,...,wy) € Qy, let

a(w) = #{wg : wp =1}
Then for each w € Q,,
P {w} = p)(1 - )",
Thus, if Fy = {w: a(w) = k} is the event that one gets exactly k heads, then

n
P {E} = P {w} = F(1—p)n k.
wi= ¥ pir=(})ra-n
wia(w)=k
Remark One can define a probability space on the set of infinite coin tosses, but one has to
be a bit more careful. Note that the set of infinite coin tosses is not a discrete probability
space.

Example 1.4. Another canonical example of a probability space is ([0, 1], £[0, 1], m): Lebesgue
measure on [0, 1]. Tt is often useful to think of this space when thinking of examples, or trying
to come up with counterexamples.



2 Random Variables and Distributions

A random variable X : Q — R is just a real measurable function on (2, F,P). Note that X
induces a measure pux on B, the Borel subsets of R, as follows. Given B € B, we define

px(B) =P {X~}(B)}.

wx is a probability measure and therefore (R, B, uy) is a probability space. py is called the
distribution of X.

If pux is supported on a countable set, then X is called a discrete random variable. If
x gives zero measure to every singleton set, then X is called a continuous random variable.
Associated to some continuous random variables X is a density function f with the property
that for any Borel set F,

px(B)= [ Jw
E
Example 2.1. If E is any subset of {2, the indicator function of F is

1 ifwekE;
1E(°")_{ 0 ifwéE.

Note that 1 is a Bernoulli random variable with parameter P {E} (see section 4.1 for the
definition).

Example 2.2. Let Q, be as in example 1.3 and let w = (w1, ...,wy,) € Q. Let
X(w) = #{wk LW = 1}
Then as we saw in that example, for £ =0,...,n,

n

P{X=k}= <k)p’“(1 —p)" ",

X is a Binomial random variable with parameters n and p (see section 4.1).

Definition 2.3. If X is an integrable random variable, the expectation of X is

E{X}= /XdP.
The variance of X is defined to be
Var(X) = B {(X - B{X})’} =B {X?} - B {X}?,
as long as X2 is integrable.

By the additivity of the integral, it follows that if X,..., X, are any random variables,

of$ ) Seim
k—1 k=1



Theorem 2.4. Suppose X is a random variable with distribution ux and that g : R — R s
Borel measurable. Then

[ox1dP = [ g(a) dux (o).
In particular,

E{X) = [wdux)

Remark The previous theorem shows that the distribution of a random variable X is usually
all one needs to know about X. In particular, one usually does not care about the underlying
probability space (2, F,P). In fact, one usually makes statements like "let X, Xo,... be
independent standard normal random variables” with the understanding that there exists
a probability space (Q,F,P) that admits such random variables, but without caring what
(Q,F,P) is.

3 Independence
Definition 3.1. Fix a probability space (2, F,P). Two events E; and E, are independent if
P {E, NEy)} =P {E}P {E).

More generally, a collection {E,} of events is independent if for any finite sub-collection

Eays- -y Eay,
n n

P{ﬂEak} =[] P{E.}-
k=1 k=1

Exercise 3.2. A collection {E,} of events is called pairwise independent if for all pairs E,,
and E,,,
P {EOél n Ea2} =P {Eal} P {Eoéz} .

Show that pairwise independence does not necessarily imply independence.

Definition 3.3. Random variables X1, ..., X,, are said to be independent if for any collection
of Borel sets By, ..., By,

P { M Xk_l(Bk)} =[P {x{'(Bu)}
k=1 k=1

An infinite collection of random variables is said to be independent if every finite subcollection
is independent. Note that if Xq,..., X,, are independent and g1, . .., g, are any Borel measur-
able functions, then g;(X1),...,g,(X,) are also independent. This follows immediately from
the definition.

Theorem 3.4. 1. If X4,..., X, are independent, integrable random variables then

o) - 1o
k=1 k=1



2. If Xq,..., X, are independent random variables whose variance is finite then
Var(X; + ...+ X,) = Var(X1) + ... + Var(X,).

Exercise 3.5. Show that the converse to (1) in the above theorem is false. In other words,
give an example of two random variables X and Y such that E{XY} = E{X} E{Y} but
such that X and Y are not independent.

4 Some common distributions

4.1 Discrete distributions

Example 4.1 (Bernoulli distribution). If p € (0,1), a random variable X is said to be
Bernoulli with parameter p if P {X =1} = p and P {X =0} = 1 — p. This represents the
outcome of a trial with probability p of success (the event that X = 1) and probability 1 —p
of failure (when X = 0). It is fairly immediate that E {X} = p and that

Var(X) =E{X?} ~E{X}*=p—p* =p(1 —p).

Example 4.2 (Binomial distribution). A random variable X is said to be binomial with
parameters n and p, if

P{X=Fk}= (Z)pk(l—p)n_k k=0,1,....,n

Note that by exercise 1.3 a Binomial random variable can be thought of as the number of
successes in n independent Bernoulli trials with probability p. Thus, the sum of n independent
Bernoulli random variables Xy, ..., X,, with parameter p is a binomial random variable with
parameters 1 and p. Therefore,

E{X}=E{X1+...+ X, } =E{X1}+... +E{X,} = np,

and
Var(X) = Var(X;) + ... + Var(X,,) = np(1l — p).

Example 4.3 (Poisson distribution). A random variable X has a Poisson distribution with

parameter A > 0 if
k

A"
P{X:k}zﬁe , k=0,1,2,....

The Poisson distribution is the limit of binomial random variables with parameters n and A/n

as n — oco. One can use this to show that E {X} = Var(X) = \.

Example 4.4 (Geometric distribution). A random variable X has a geometric distribution
with parameter p if
P{X=kl=00-pFlp k=12....

X can be interpreted as the number of Bernoulli trials needed until the first success occurs.
One can check that E {X} = 1/p and Var(X) = (1 — p)/p*.



4.2 Continuous distributions

Example 4.5 (Normal distribution). A random variable X has a normal (or Gaussian)
distribution with parameters y and o? if it has density
flz) = ! e (=24)° —00 < < 00
V2ro? 7 '
One often writes X ~ N(u,02). When p = 0 and 02 = 1 we say that X is a standard normal.
One can check that E{X} = y and Var(X) = o2

o=

Example 4.6 (Exponential distribution). A random variable X has an exponential distribu-
tion with parameter A > 0 if it has density

flz)=Xxe™?®  z>0.
A simple calculation shows that E {X} = A~! and that Var(X) = A\~2.
Definition 4.7. The characteristic function of X is the function ¢ : R — C defined by
B(t) = E(eY),

Theorem 4.8. Random variables X and Y have the same characteristic function if and only
if they have the same distribution function.
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