WOMP 2008: Probability

Robert Masson. Edited to his liking by Shawn

November 16, 2008

1 Probability Spaces

Definition 1.1. A probability space is a measure space $(\Omega, \mathcal{F}, \mathbf{P})$ with total measure one. More precisely,

- Ω is a set (called the sample space) and elements in Ω are called outcomes.
- \mathcal{F} is a σ-algebra on Ω; elements in \mathcal{F} are called events.
- \mathbf{P} is a measure on \mathcal{F} such that $\mathbf{P}\{\Omega\}=1$.

Example 1.2. When Ω is countable, we say that $(\Omega, \mathcal{F}, \mathbf{P})$ is a discrete probability space. One usually lets \mathcal{F} consist of all subsets of Ω. In this case, we can assign a measure $\mathbf{P}\{\omega\}$ to each individual outcome $\omega \in \Omega$, such that

$$
\sum_{\omega \in \Omega} \mathbf{P}\{\omega\}=1 .
$$

Then, for each $E \in \mathcal{F}$,

$$
\mathbf{P}\{E\}=\sum_{\omega \in E} \mathbf{P}\{\omega\} .
$$

Example 1.3. An example of a discrete probability space is the space $\Omega_{n}=\{0,1\}^{n}$ consisting of n-tuples of 0 's and 1's. One can think of these as the outcomes of flipping a coin n times with 0 denoting tails and 1 denoting heads. Let $p \in(0,1)$ denote the probability of getting heads, and for $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \Omega_{n}$, let

$$
\alpha(\omega)=\#\left\{\omega_{k}: \omega_{k}=1\right\}
$$

Then for each $\omega \in \Omega_{n}$,

$$
\mathbf{P}\{\omega\}=p^{\alpha(\omega)}(1-p)^{n-\alpha(\omega)} .
$$

Thus, if $E_{k}=\{\omega: \alpha(\omega)=k\}$ is the event that one gets exactly k heads, then

$$
\mathbf{P}\left\{E_{k}\right\}=\sum_{\omega: \alpha(\omega)=k} \mathbf{P}\{\omega\}=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Remark One can define a probability space on the set of infinite coin tosses, but one has to be a bit more careful. Note that the set of infinite coin tosses is not a discrete probability space.

Example 1.4. Another canonical example of a probability space is ($[0,1], \mathcal{L}[0,1], m$): Lebesgue measure on $[0,1]$. It is often useful to think of this space when thinking of examples, or trying to come up with counterexamples.

2 Random Variables and Distributions

A random variable $X: \Omega \rightarrow \mathbb{R}$ is just a real measurable function on $(\Omega, \mathcal{F}, \mathbf{P})$. Note that X induces a measure μ_{X} on \mathcal{B}, the Borel subsets of \mathbb{R}, as follows. Given $B \in \mathcal{B}$, we define

$$
\mu_{X}(B)=\mathbf{P}\left\{X^{-1}(B)\right\} .
$$

μ_{X} is a probability measure and therefore $\left(\mathbb{R}, \mathcal{B}, \mu_{X}\right)$ is a probability space. μ_{X} is called the distribution of X.

If μ_{X} is supported on a countable set, then X is called a discrete random variable. If μ_{X} gives zero measure to every singleton set, then X is called a continuous random variable. Associated to some continuous random variables X is a density function f with the property that for any Borel set E,

$$
\mu_{X}(E)=\int_{E} f(t) d t
$$

Example 2.1. If E is any subset of Ω, the indicator function of E is

$$
\mathbf{1}_{E}(\omega)= \begin{cases}1 & \text { if } \omega \in E ; \\ 0 & \text { if } \omega \notin E .\end{cases}
$$

Note that $\mathbf{1}_{E}$ is a Bernoulli random variable with parameter $\mathbf{P}\{E\}$ (see section 4.1 for the definition).

Example 2.2. Let Ω_{n} be as in example 1.3 and let $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \Omega_{n}$. Let

$$
X(\omega)=\#\left\{\omega_{k}: \omega_{k}=1\right\} .
$$

Then as we saw in that example, for $k=0, \ldots, n$,

$$
\mathbf{P}\{X=k\}=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

X is a Binomial random variable with parameters n and p (see section 4.1).
Definition 2.3. If X is an integrable random variable, the expectation of X is

$$
\mathbf{E}\{X\}=\int X d \mathbf{P} .
$$

The variance of X is defined to be

$$
\operatorname{Var}(X)=\mathbf{E}\left\{(X-\mathbf{E}\{X\})^{2}\right\}=\mathbf{E}\left\{X^{2}\right\}-\mathbf{E}\{X\}^{2},
$$

as long as X^{2} is integrable.
By the additivity of the integral, it follows that if X_{1}, \ldots, X_{n} are any random variables,

$$
\mathbf{E}\left\{\sum_{k=1}^{n} X_{k}\right\}=\sum_{k=1}^{n} \mathbf{E}\left\{X_{k}\right\} .
$$

Theorem 2.4. Suppose X is a random variable with distribution μ_{X} and that $g: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable. Then

$$
\int g(X) d \mathbf{P}=\int g(x) d \mu_{X}(x)
$$

In particular,

$$
\mathbf{E}\{X\}=\int x d \mu_{X}(x)
$$

Remark The previous theorem shows that the distribution of a random variable X is usually all one needs to know about X. In particular, one usually does not care about the underlying probability space $(\Omega, \mathcal{F}, \mathbf{P})$. In fact, one usually makes statements like "let X_{1}, X_{2}, \ldots be independent standard normal random variables" with the understanding that there exists a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ that admits such random variables, but without caring what $(\Omega, \mathcal{F}, \mathbf{P})$ is.

3 Independence

Definition 3.1. Fix a probability space $(\Omega, \mathcal{F}, \mathbf{P})$. Two events E_{1} and E_{2} are independent if

$$
\mathbf{P}\left\{E_{1} \cap E_{2}\right\}=\mathbf{P}\left\{E_{1}\right\} \mathbf{P}\left\{E_{2}\right\}
$$

More generally, a collection $\left\{E_{\alpha}\right\}$ of events is independent if for any finite sub-collection $E_{\alpha_{1}}, \ldots, E_{\alpha_{n}}$,

$$
\mathbf{P}\left\{\bigcap_{k=1}^{n} E_{\alpha_{k}}\right\}=\prod_{k=1}^{n} \mathbf{P}\left\{E_{\alpha_{k}}\right\}
$$

Exercise 3.2. A collection $\left\{E_{\alpha}\right\}$ of events is called pairwise independent if for all pairs $E_{\alpha_{1}}$ and $E_{\alpha_{2}}$,

$$
\mathbf{P}\left\{E_{\alpha_{1}} \cap E_{\alpha_{2}}\right\}=\mathbf{P}\left\{E_{\alpha_{1}}\right\} \mathbf{P}\left\{E_{\alpha_{2}}\right\}
$$

Show that pairwise independence does not necessarily imply independence.
Definition 3.3. Random variables X_{1}, \ldots, X_{n} are said to be independent if for any collection of Borel sets B_{1}, \ldots, B_{n},

$$
\mathbf{P}\left\{\bigcap_{k=1}^{n} X_{k}^{-1}\left(B_{k}\right)\right\}=\prod_{k=1}^{n} \mathbf{P}\left\{X_{k}^{-1}\left(B_{k}\right)\right\}
$$

An infinite collection of random variables is said to be independent if every finite subcollection is independent. Note that if X_{1}, \ldots, X_{n} are independent and g_{1}, \ldots, g_{n} are any Borel measurable functions, then $g_{1}\left(X_{1}\right), \ldots, g_{n}\left(X_{n}\right)$ are also independent. This follows immediately from the definition.

Theorem 3.4. 1. If X_{1}, \ldots, X_{n} are independent, integrable random variables then

$$
\mathbf{E}\left\{\prod_{k=1}^{n} X_{k}\right\}=\prod_{k=1}^{n} \mathbf{E}\left\{X_{k}\right\}
$$

2. If X_{1}, \ldots, X_{n} are independent random variables whose variance is finite then

$$
\operatorname{Var}\left(X_{1}+\ldots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right) .
$$

Exercise 3.5. Show that the converse to (1) in the above theorem is false. In other words, give an example of two random variables X and Y such that $\mathbf{E}\{X Y\}=\mathbf{E}\{X\} \mathbf{E}\{Y\}$ but such that X and Y are not independent.

4 Some common distributions

4.1 Discrete distributions

Example 4.1 (Bernoulli distribution). If $p \in(0,1)$, a random variable X is said to be Bernoulli with parameter p if $\mathbf{P}\{X=1\}=p$ and $\mathbf{P}\{X=0\}=1-p$. This represents the outcome of a trial with probability p of success (the event that $X=1$) and probability $1-p$ of failure (when $X=0$). It is fairly immediate that $\mathbf{E}\{X\}=p$ and that

$$
\operatorname{Var}(X)=\mathbf{E}\left\{X^{2}\right\}-\mathbf{E}\{X\}^{2}=p-p^{2}=p(1-p)
$$

Example 4.2 (Binomial distribution). A random variable X is said to be binomial with parameters n and p, if

$$
\mathbf{P}\{X=k\}=\binom{n}{k} p^{k}(1-p)^{n-k} \quad k=0,1, \ldots, n
$$

Note that by exercise 1.3 a Binomial random variable can be thought of as the number of successes in n independent Bernoulli trials with probability p. Thus, the sum of n independent Bernoulli random variables X_{1}, \ldots, X_{n} with parameter p is a binomial random variable with parameters n and p. Therefore,

$$
\mathbf{E}\{X\}=\mathbf{E}\left\{X_{1}+\ldots+X_{n}\right\}=\mathbf{E}\left\{X_{1}\right\}+\ldots+\mathbf{E}\left\{X_{n}\right\}=n p,
$$

and

$$
\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)=n p(1-p) .
$$

Example 4.3 (Poisson distribution). A random variable X has a Poisson distribution with parameter $\lambda>0$ if

$$
\mathbf{P}\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1,2, \ldots
$$

The Poisson distribution is the limit of binomial random variables with parameters n and λ / n as $n \rightarrow \infty$. One can use this to show that $\mathbf{E}\{X\}=\operatorname{Var}(X)=\lambda$.

Example 4.4 (Geometric distribution). A random variable X has a geometric distribution with parameter p if

$$
\mathbf{P}\{X=k\}=(1-p)^{k-1} p, \quad k=1,2, \ldots .
$$

X can be interpreted as the number of Bernoulli trials needed until the first success occurs. One can check that $\mathbf{E}\{X\}=1 / p$ and $\operatorname{Var}(X)=(1-p) / p^{2}$.

4.2 Continuous distributions

Example 4.5 (Normal distribution). A random variable X has a normal (or Gaussian) distribution with parameters μ and σ^{2} if it has density

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \quad-\infty<x<\infty .
$$

One often writes $X \sim N\left(\mu, \sigma^{2}\right)$. When $\mu=0$ and $\sigma^{2}=1$ we say that X is a standard normal. One can check that $\mathbf{E}\{X\}=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.

Example 4.6 (Exponential distribution). A random variable X has an exponential distribution with parameter $\lambda>0$ if it has density

$$
f(x)=\lambda e^{-\lambda x}, \quad x>0 .
$$

A simple calculation shows that $\mathbf{E}\{X\}=\lambda^{-1}$ and that $\operatorname{Var}(X)=\lambda^{-2}$.
Definition 4.7. The characteristic function of X is the function $\phi: \mathbb{R} \rightarrow \mathbb{C}$ defined by

$$
\phi(t)=\mathbb{E}\left(e^{i t X}\right)
$$

Theorem 4.8. Random variables X and Y have the same characteristic function if and only if they have the same distribution function.

References

[1] G. Grimmett and D. Stirzaker (1982). Probability and Random Processes, Oxford University Press.
[2] Greg Lawler's Probability Notes. Available on the course webpage: http://www.math.uchicago.edu/\~lawler/m312f07.html.
[3] L. C. G. Rogers and D. Williams (1979). Diffusions, Markov Processes and Martingales, Cambridge University Press.
[4] S Varadhan (2001). Probability Theory, Courant Lecture Notes in Mathematics \#7.
[5] D Williams (1991). Probability with Martingales, Cambridge University Press.

