WOMP 2008: MEASURE THEORY AND FUNCTION SPACES

ARIEL BARTON

1. Review of Integration

Recall the definition of Darboux integral:
Definition 1. Let $f:[a, b] \mapsto \mathbf{R}$ be a bounded function. Let $P=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$, with $a=x_{0}<x_{1}<\cdots<x_{n}=b$, be a partition of $[a, b]$.

The upper and lower Darboux sums of f with respect to P are

$$
\begin{aligned}
U_{f, P} & =\sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x), \\
L_{f, P} & =\sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x) .
\end{aligned}
$$

The upper and lower Darboux integrals of f are

$$
U_{f}=\inf \left\{U_{f, P}\right\}, \quad L_{f}=\sup \left\{L_{f, P}\right\}
$$

If $U_{f}=L_{f}$, then we say that f is Darboux-integrable and

$$
\int_{a}^{b} f(t) d t=U_{f}=L_{f}
$$

The Darboux integral is equivalent to the Riemann integral.
Let

$$
g(x)= \begin{cases}1, & \text { if } x \text { is rational } \\ 0, & \text { if } x \text { is irrational. }\end{cases}
$$

Then for any partition P of $[0,1], U_{g, P}=1$ and $L_{g, P}=0$, and so the Darboux integral of g does not exist.

The rationals \mathbf{Q} are countable. So let $\mathbf{Q}=\left\{q_{1}, q_{2}, \ldots\right\}$. Fix some $\epsilon>0$, and let

$$
g_{k}(x)= \begin{cases}1, & \text { if }\left|x-q_{k}\right|<\epsilon / 2^{k+1} \\ 0 & \text { otherwise }\end{cases}
$$

Then $\int_{0}^{1} g_{k}(x) d x=\epsilon / 2^{k}$, and $0 \leq g(x) \leq \sum_{k=1}^{\infty} g_{k}(x)$. So we really would like to say that

$$
0 \leq \int_{0}^{1} g(x) d x \leq \sum_{k=1}^{\infty} \int_{0}^{1} g_{k}(x) d x=\epsilon
$$

That is, $\int_{0}^{1} g(x) d x$ really should be zero. We would like a definition of integral such that this is true.

2. The Lebesgue integral

If $I=(a, b),[a, b],(a, b]$, or $[a, b)$ is an interval, then its length is $b-a$. We define its Lebesgue measure $\lambda(I)$ as $b-a$.

If E is a union of countably many disjoint intervals, then we can define its Lebesgue measure $\lambda(E)$ to be the sum of the lengths of all those intervals. (This number may or may not be finite. Note that, in \mathbf{R}, all open sets qualify.)
Definition 2. Let $f:[a, b] \mapsto \mathbf{R}$ be a nonnegative continuous function. Let $\tilde{P}=$ $\left(y_{0}, y_{1}, y_{2}, \ldots y_{n}\right)$ with $0=y_{0}<y_{1}<\ldots<y_{n}$. Let

$$
S_{f, \tilde{P}}=\sum_{i=1}^{n}\left(y_{i}-y_{i-1}\right) \lambda\left\{x: y_{i}<f(x)\right\} .
$$

We define the Lebesgue integral of f as

$$
\int_{[a, b]} f d \lambda=\sup _{\tilde{P}} S_{f, \tilde{P}}
$$

Now, if we could generalize the notion of measure, we could generalize the notion of Lebesgue integral.
Definition 3. Let $F \subset \mathbf{R}$ be a set. Define $\lambda^{*}(F)=\inf \{\lambda(E): E \supset F, E$ open $\}$. We call $\lambda^{*}(F)$ the outer measure of F.

If for all $S \subset \mathbf{R}$ we have that $\lambda^{*}(S)=\lambda^{*}(S \cap F)+\lambda^{*}\left(S \cap F^{C}\right)$, we say that F is a measurable set and define $\lambda(F)=\lambda^{*}(F)$.

If $f: \mathbf{R} \mapsto \mathbf{R}$ is such that $\{x: f(x)>\alpha\}$ is measurable for all $\alpha \in \mathbf{R}$, then we say that f is a measurable function.

So $\lambda(\mathbf{Q})=0$, and thus the Lebesgue integral $\int_{0}^{1} g(x) d \lambda=0$. So there are some functions which are Lebesgue-integrable but not Darboux-integrable.
Theorem 4. If the Darboux integral of f exists, then f is measurable.
Theorem 5. If f is a nonnegative function on $[a, b]$ and the Darboux integral of f exists, then it is equal to its Lebesgue integral.

3. More general measures

We can generalize the notion of measure from \mathbf{R} to other spaces, which of course lets us generalize the notion of integral as well:
Definition 6. Let X be a space. Let \mathfrak{M} be a set of subsets of X, such that $X \in \mathfrak{M}$, if $S \in \mathfrak{M}$ then so is S^{C}, and if $S_{i} \in \mathfrak{M}$ for $1 \leq i<\infty$, then so is $\cup_{i=1}^{\infty} S_{i}$. We call \mathfrak{M} a σ-algebra for X.

If $\mu: \mathfrak{M} \mapsto[0, \infty]$ is a function such that

$$
\mu\left(\bigcup_{i=1}^{\infty} S_{i}\right)=\sum_{i=1}^{\infty} \mu\left(S_{i}\right)
$$

whenever $\left\{S_{i}\right\} \subset \mathfrak{M}$ and the S_{i} are pairwise-disjoint, then we call μ a positive measure.

We say that $f: X \mapsto[0, \infty]$ is measurable if $\{x: f(x)>\alpha\} \in \mathfrak{M}$ for all $\alpha \in \mathbf{R}$. We define

$$
\int_{X} f d \mu=\sup _{0<y_{1}<\ldots<y_{n}} \sum_{i=1}^{n}\left(y_{i}-y_{i-1}\right) \mu\left\{x: y_{i}<f(x)\right\} .
$$

For example, in \mathbf{R}^{n}, we can define an analogy to outer measure λ^{*} with "countable unions of rectangular boxes" replacing "open sets", and define the Lebesgue measure λ from λ^{*} as usual.

As another example, let $X=\mathbf{N}$, the natural numbers, and let $\mu(S)=|S|$, the number of elements of S. Then $\int_{S} f d \mu=\sum_{n \in S} f(n)$.

Finally, if we are studying physics, we can let X be an inhomogeneous object, and let $\mu(S)$ be the mass of the set $S \subset X$. This measure is useful for calculating the center of mass and the moment of inertia.

4. L^{p} SPACES

Definition 7. Let f be a measurable function, and let $1 \leq p<\infty$. We say that the $L^{p}(X, \mu)$ norm of f is

$$
\|f\|_{L^{p}}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}
$$

We say that the $L^{\infty}(X, \mu)$ norm of f is its upper bound except on sets of measure zero; that is,

$$
\|f\|_{L^{\infty}}=\underset{x \in X}{\operatorname{ess} \sup }|f(x)|=\inf \{\alpha>0:|f(x)| \leq \alpha \text { a.e. }\},
$$

where a.e. stands for "almost everywhere", that is, "except on a set of measure zero".

Theorem 8 (Minkowski's Inequality). If $\|f\|_{L^{p}}<\infty$ and $\|g\|_{L^{p}}<\infty$ for $1 \leq p \leq$ ∞, then

$$
\|f+g\|_{L^{p}} \leq\|f\|_{L^{p}}+\|g\|_{L^{p}} .
$$

It is clear that $\|\alpha f\|_{L^{p}}=|\alpha|\|f\|_{L^{p}}$ for any scalar α. Thus, the set of all functions whose L^{p} norm is finite is almost a normed vector space. There are some nonzero functions with norm zero. (For example, let $f(x)=0$ for $x \neq 3$, and let $f(3)=1$. Then $\|f\|_{L^{p}}=0$ for any $1 \leq p \leq \infty$.)

To deal with this, we quotient out by functions which are zero a.e. We let L^{p} be the vector space whose elements are equivalence classes of functions with the equivalence relation $f \equiv g$ if $f(x)=g(x)$ almost everywhere, that is, $\mu\{x: f(x) \neq$ $g(x)\}=0$.

Usually, you can just think of L^{p} being a space of functions.
There is another very useful theorem (which you need to prove, among other things, Minkowski's inequality):

Theorem 9 (Hölder's Inequality). If $1 \leq p, q \leq \infty$ with $1 / p+1 / q=1$, we say that p and q are conjugates or conjugate exponents. If $\|f\|_{L^{p}}$ and $\|g\|_{L^{q}}$ are finite, then

$$
\left|\int_{X} f(x) g(x) d \mu(x)\right| \leq\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

Note that 1 and ∞ are conjugate exponents, and that 2 is its own conjugate. Here are some examples:
(1) Suppose that $\mu(X)=1$, and $1 \leq p \leq r \leq \infty$. Then we can show (by Hölder's inequality) that $\|f\|_{L^{p}} \leq\|f\|_{L^{r}}$ and so $L^{r} \subset L^{p}$. More generally,
if $\mu(X)$ is finite, then
$\left(\frac{1}{\mu(X)} \int_{X}|f|^{p} d \mu\right)^{1 / p} \leq\left(\frac{1}{\mu(X)} \int_{X}|f|^{r} d \mu\right)^{1 / r}$ or $\left(\frac{1}{\mu(X)} \int_{X}|f|^{p} d \mu\right)^{1 / p} \leq\|f\|_{L^{\infty}}$
and so $L^{r} \subset L^{p}$ again.
(2) Suppose that $X=\mathbf{N}$, the natural numbers, and that μ is the counting measure, that is, $\mu(S)=|S|$ is the cardinality of the set S.

We usually refer to $L^{p}(\mathbf{N}, \mu)$ as ℓ^{p}. Note that

$$
\|f\|_{\ell^{p}}^{p}=\sum_{n=0}^{\infty}|f(n)|^{p}, \quad\|f\|_{\ell \infty}=\sup _{n \in \mathbf{N}}|f(n)| .
$$

So $|f(n)| \leq\|f\|_{\ell^{p}}$, and so if $1 \leq p \leq r<\infty$ and $f \in \ell^{p}$, then

$$
\|f\|_{\ell r}^{r}=\sum|f(n)|^{r} \leq \sum|f(n)|^{p}\|f\|_{\ell^{p}}^{r-p} \leq\|f\|_{\ell^{p}}^{r}
$$

Thus, in this case, we have that $L^{p} \subset L^{r}$ for $1 \leq p \leq r \leq \infty$, the opposite of the previous case.
(3) Now let $X=(\mathbf{R}, d \lambda)$, where $d \lambda$ is the Lebesgue measure defined above. We do not have any nice inclusion relations in this case. If $1 \leq p<r<\infty$, then

$$
f(x)= \begin{cases}|x|^{-1 / r} & \text { on }[-1,1] \\ 0 & \text { elsewhere }\end{cases}
$$

is in L^{p} but not L^{r}, and

$$
f(x)= \begin{cases}0 & \text { on }[-1,1] \\ |x|^{-1 / p} & \text { elsewhere }\end{cases}
$$

is in L^{r} but not L^{p}.
It turns out that, if $1 \leq p<\infty$, and if F is a map from L^{p} to \mathbf{C} such that

- F is linear; that is, $F(f+g)=F(f)+F(g)$ and $F(\alpha f)=\alpha F(f)$ for any scalar α and $f, g \in L^{p}$
- F is bounded; that is, there exists a constant $C>0$ such that $|F(f)| \leq$ $C\|f\|_{L^{p}}$ for all $f \in L^{p}$
then there is some $g \in L^{q}$ such that

$$
F(f)=\int_{X} f(x) g(x) d \mu(x)
$$

where q is the conjugate to p. We summarize this property by saying that L^{q} is the dual to L^{p}.

Theorem 10. Under these definitions, L^{p} is a complete normed vector space for $1 \leq p \leq \infty$.

5. Convergence of Sequences of functions

Definition 11. Let $\left\{f_{n}\right\}$ be a sequence of functions defined on some measure space (X, μ), and let f be another function on X. If $f_{n}, f \in L^{p}(X, \mu)$ for some p and $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{p}}=0$, then we say that f_{n} converges to f in $L^{p}(X, \mu)$, or $f_{n} \rightarrow f$ in L^{p}.

Note that if $f_{n} \rightarrow f$ in L^{∞}, then f_{n} converges to f uniformly almost everywhere. Often we care only about L^{1} convergence and uniform convergence.

We can contrast this with two other definitions:
(1) If $\lim _{x \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in X$, then we say that f_{n} converges to f, or $f_{n} \rightarrow f$, pointwise.
(2) If $\lim _{x \rightarrow \infty} f_{n}(x)=f(x)$ for almost all $x \in X$, then we say that f_{n} converges to f pointwise almost everywhere (a.e.)
Note that if $f_{n} \rightarrow f$ in $L^{1}(X, d \mu)$ then $\int_{X} f_{n} d \mu \rightarrow \int_{X} f d \mu$.
It is clear that if $f_{n} \rightarrow f$ uniformly, then $f_{n} \rightarrow f$ pointwise and pointwise a.e. (If $f_{n} \rightarrow f$ in L^{∞}, then $f_{n} \rightarrow f$ pointwise a.e.) Some functions converge pointwise but not uniformly; for example, $f_{n}(x)=x^{n}$ converges to $f(x)=0$ pointwise but not uniformly on $(0,1)$.

However, we do have one positive result:
Theorem 12 (Egorov's Theorem). Suppose that $f_{n} \rightarrow f$ pointwise a.e. on some measure space X with $\mu(X)<\infty$. Then for any $\epsilon>0$, there is a measurable set E such that $\mu(E)<\epsilon$ and $f_{n} \rightarrow f$ uniformly on $X \backslash E$.

We do need for $\mu(X)<\infty$. As an example, let $f(x)=0, f_{n}(x)=0$ on $[-n, n]$ and $f_{n}(x)=1$ elsewhere. Then $f_{n} \rightarrow f$ pointwise, but Egorov's Theorem obviously cannot hold.

We would like to know how uniform and pointwise a.e. convergence relate to L^{1} convergence. Let $f(x)=0$ everywhere. Here are some examples:

- Let $f_{n}(x)=1 / n$ on $[0, n]$ and let $f_{n}(x)=0$ elsewhere. Then $f_{n} \rightarrow f$ uniformly but not in $L^{1}(\mathbf{R}, d \lambda)$.
- Let $f_{n}(x)=n$ on $[0,1 / n]$, and let $f_{n}(x)=0$ elsewhere. Then $f_{n} \rightarrow f$ pointwise but not in $L^{1}([0,1], d \lambda)$.
- Let $g_{n}(x)=1$ on

$$
\left[1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}, 1+\frac{1}{2}+\ldots+\frac{1}{n}+\frac{1}{n+1}\right]
$$

and be zero elsewhere. Let $f_{n}(x)=1$ if $0 \leq x \leq 1$ and $g_{n}(x+k)=1$ for some integer k, and let $f_{n}(x)=0$ otherwise.

Then $\int_{0}^{1}\left|f_{n}(x)\right| d \lambda=\frac{1}{n}$ for all $n \geq 1$, and so $f_{n} \rightarrow f$ in $L^{1}([0,1], d \lambda)$. However, $f_{n} \nrightarrow 0$ pointwise anywhere.
So pointwise convergence, uniform convergence, and L^{1} convergence do not imply each other.

We do, however, have a few positive results:
Theorem 13. If $f_{n} \rightarrow f$ in L^{1}, then there is a subsequence $f_{n_{k}}$ such that $f_{n_{k}} \rightarrow f$ pointwise a.e.
Theorem 14 (Dominated Convergence Theorem). Suppose that $f_{n} \rightarrow f$ pointwise a.e., and that there is some function g such that $\int_{X}|g| d \mu<\infty$ and $\left|f_{n}(x)\right| \leq g(x)$ for all x and n. Then $f_{n} \rightarrow f$ in L^{1}.

This is proven using Fatou's Lemma. Note that if $\mu(X)<\infty$, then $g(x)=$ $|f(x)|+1 \in L^{1}(X, d \mu)$ whenever $f \in L^{1}(X, d \mu)$; thus, on a set of finite measure, uniform convergence does imply L^{1} convergence.

6. Subspaces

In a metric space, it is occasionally easy to define or prove things on dense subspaces and then extend them to the entire space; for example, 2^{x} can be defined for all rational x using nth roots, and can then be extended to all real x by continuity.
L^{p} spaces have a number of useful dense subspaces.
Theorem 15. If $1 \leq p<\infty$, and (X, μ) is a measure space, then

- The set of all simple functions whose support has finite measure is dense in $L^{p}(X, \mu)$. (A function is called simple if its range is a finite set; a function's support is the closure of the set where it is nonzero.)
- The set of all continuous functions whose support is compact is dense in $L^{p}\left(\mathbf{R}^{n}, d \lambda\right)$. (This is true for other spaces as well.)

Neither of these sets are dense in $L^{\infty}\left(\mathbf{R}^{n}, d \lambda\right)$. The set of all simple functions with no restrictions on support is dense in $L^{\infty}(X, \mu)$, but the set of all continuous functions is not.

Since the first set is contained in L^{p} for all p, we have that $L^{p} \cap L^{q}$ is dense in L^{p} for all $1 \leq p<\infty$ and all $1 \leq q \leq \infty$.

