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1. Review of Integration

Recall the definition of Darboux integral:

Definition 1. Let f : [a, b] 7→ R be a bounded function. Let P = (x0, x1, . . . , xn),
with a = x0 < x1 < · · · < xn = b, be a partition of [a, b].

The upper and lower Darboux sums of f with respect to P are

Uf,P =
n∑

i=1

(xi − xi−1) sup
x∈[xi−1,xi]

f(x),

Lf,P =
n∑

i=1

(xi − xi−1) inf
x∈[xi−1,xi]

f(x).

The upper and lower Darboux integrals of f are

Uf = inf{Uf,P }, Lf = sup{Lf,P }.

If Uf = Lf , then we say that f is Darboux-integrable and∫ b

a

f(t) dt = Uf = Lf .

The Darboux integral is equivalent to the Riemann integral.
Let

g(x) =

{
1, if x is rational;
0, if x is irrational.

Then for any partition P of [0, 1], Ug,P = 1 and Lg,P = 0, and so the Darboux
integral of g does not exist.

The rationals Q are countable. So let Q = {q1, q2, . . .}. Fix some ε > 0, and let

gk(x) =

{
1, if |x− qk| < ε/2k+1;
0 otherwise.

Then
∫ 1

0
gk(x) dx = ε/2k, and 0 ≤ g(x) ≤

∑∞
k=1 gk(x). So we really would like to

say that

0 ≤
∫ 1

0

g(x) dx ≤
∞∑

k=1

∫ 1

0

gk(x) dx = ε.

That is,
∫ 1

0
g(x) dx really should be zero. We would like a definition of integral such

that this is true.
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2. The Lebesgue integral

If I = (a, b), [a, b], (a, b], or [a, b) is an interval, then its length is b−a. We define
its Lebesgue measure λ(I) as b− a.

If E is a union of countably many disjoint intervals, then we can define its
Lebesgue measure λ(E) to be the sum of the lengths of all those intervals. (This
number may or may not be finite. Note that, in R, all open sets qualify.)

Definition 2. Let f : [a, b] 7→ R be a nonnegative continuous function. Let P̃ =
(y0, y1, y2, . . . yn) with 0 = y0 < y1 < . . . < yn. Let

Sf,P̃ =
n∑

i=1

(yi − yi−1)λ{x : yi < f(x)}.

We define the Lebesgue integral of f as∫
[a,b]

f dλ = sup
P̃

Sf,P̃ .

Now, if we could generalize the notion of measure, we could generalize the notion
of Lebesgue integral.

Definition 3. Let F ⊂ R be a set. Define λ∗(F ) = inf{λ(E) : E ⊃ F,E open}.
We call λ∗(F ) the outer measure of F .

If for all S ⊂ R we have that λ∗(S) = λ∗(S ∩ F ) + λ∗(S ∩ FC), we say that F
is a measurable set and define λ(F ) = λ∗(F ).

If f : R 7→ R is such that {x : f(x) > α} is measurable for all α ∈ R, then we
say that f is a measurable function.

So λ(Q) = 0, and thus the Lebesgue integral
∫ 1

0
g(x) dλ = 0. So there are some

functions which are Lebesgue-integrable but not Darboux-integrable.

Theorem 4. If the Darboux integral of f exists, then f is measurable.

Theorem 5. If f is a nonnegative function on [a, b] and the Darboux integral of f
exists, then it is equal to its Lebesgue integral.

3. More general measures

We can generalize the notion of measure from R to other spaces, which of course
lets us generalize the notion of integral as well:

Definition 6. Let X be a space. Let M be a set of subsets of X, such that X ∈ M,
if S ∈ M then so is SC , and if Si ∈ M for 1 ≤ i < ∞, then so is ∪∞i=1Si. We call
M a σ-algebra for X.

If µ : M 7→ [0,∞] is a function such that

µ

( ∞⋃
i=1

Si

)
=

∞∑
i=1

µ(Si)

whenever {Si} ⊂ M and the Si are pairwise-disjoint, then we call µ a positive
measure.

We say that f : X 7→ [0,∞] is measurable if {x : f(x) > α} ∈ M for all α ∈ R.
We define ∫

X

f dµ = sup
0<y1<...<yn

n∑
i=1

(yi − yi−1)µ{x : yi < f(x)}.
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For example, in Rn, we can define an analogy to outer measure λ∗ with “count-
able unions of rectangular boxes” replacing “open sets”, and define the Lebesgue
measure λ from λ∗ as usual.

As another example, let X = N, the natural numbers, and let µ(S) = |S|, the
number of elements of S. Then

∫
S

f dµ =
∑

n∈S f(n).
Finally, if we are studying physics, we can let X be an inhomogeneous object,

and let µ(S) be the mass of the set S ⊂ X. This measure is useful for calculating
the center of mass and the moment of inertia.

4. Lp spaces

Definition 7. Let f be a measurable function, and let 1 ≤ p < ∞. We say that
the Lp(X, µ) norm of f is

||f ||Lp =
(∫

X

|f |p dµ

)1/p

.

We say that the L∞(X, µ) norm of f is its upper bound except on sets of measure
zero; that is,

||f ||L∞ = ess sup
x∈X

|f(x)| = inf
{
α > 0 : |f(x)| ≤ α a.e.

}
,

where a.e. stands for “almost everywhere”, that is, “except on a set of measure
zero”.

Theorem 8 (Minkowski’s Inequality). If ||f ||Lp < ∞ and ||g||Lp < ∞ for 1 ≤ p ≤
∞, then

||f + g||Lp ≤ ||f ||Lp + ||g||Lp .

It is clear that ||αf ||Lp = |α| ||f ||Lp for any scalar α. Thus, the set of all functions
whose Lp norm is finite is almost a normed vector space. There are some nonzero
functions with norm zero. (For example, let f(x) = 0 for x 6= 3, and let f(3) = 1.
Then ||f ||Lp = 0 for any 1 ≤ p ≤ ∞.)

To deal with this, we quotient out by functions which are zero a.e. We let Lp

be the vector space whose elements are equivalence classes of functions with the
equivalence relation f ≡ g if f(x) = g(x) almost everywhere, that is, µ{x : f(x) 6=
g(x)} = 0.

Usually, you can just think of Lp being a space of functions.
There is another very useful theorem (which you need to prove, among other

things, Minkowski’s inequality):

Theorem 9 (Hölder’s Inequality). If 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1, we say
that p and q are conjugates or conjugate exponents. If ||f ||Lp and ||g||Lq are finite,
then ∣∣∣∣∫

X

f(x)g(x) dµ(x)
∣∣∣∣ ≤ ||f ||Lp ||g||Lq .

Note that 1 and ∞ are conjugate exponents, and that 2 is its own conjugate.
Here are some examples:

(1) Suppose that µ(X) = 1, and 1 ≤ p ≤ r ≤ ∞. Then we can show (by
Hölder’s inequality) that ||f ||Lp ≤ ||f ||Lr and so Lr ⊂ Lp. More generally,
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if µ(X) is finite, then(
1

µ(X)

∫
X

|f |p dµ

)1/p

≤
(

1
µ(X)

∫
X

|f |r dµ

)1/r

or
(

1
µ(X)

∫
X

|f |p dµ

)1/p

≤ ||f ||L∞

and so Lr ⊂ Lp again.
(2) Suppose that X = N, the natural numbers, and that µ is the counting

measure, that is, µ(S) = |S| is the cardinality of the set S.
We usually refer to Lp(N, µ) as `p. Note that

||f ||p`p =
∞∑

n=0

|f(n)|p, ||f ||`∞ = sup
n∈N

|f(n)|.

So |f(n)| ≤ ||f ||`p , and so if 1 ≤ p ≤ r < ∞ and f ∈ `p, then

||f ||r`r =
∑

|f(n)|r ≤
∑

|f(n)|p||f ||r−p
`p ≤ ||f ||r`p .

Thus, in this case, we have that Lp ⊂ Lr for 1 ≤ p ≤ r ≤ ∞, the opposite
of the previous case.

(3) Now let X = (R, dλ), where dλ is the Lebesgue measure defined above. We
do not have any nice inclusion relations in this case. If 1 ≤ p < r < ∞,
then

f(x) =
{
|x|−1/r on [−1, 1]
0 elsewhere

is in Lp but not Lr, and

f(x) =
{

0 on [−1, 1]
|x|−1/p elsewhere

is in Lr but not Lp.
It turns out that, if 1 ≤ p < ∞, and if F is a map from Lp to C such that
• F is linear; that is, F (f + g) = F (f) + F (g) and F (αf) = αF (f) for any

scalar α and f, g ∈ Lp

• F is bounded; that is, there exists a constant C > 0 such that |F (f)| ≤
C||f ||Lp for all f ∈ Lp

then there is some g ∈ Lq such that

F (f) =
∫

X

f(x)g(x) dµ(x),

where q is the conjugate to p. We summarize this property by saying that Lq is the
dual to Lp.

Theorem 10. Under these definitions, Lp is a complete normed vector space for
1 ≤ p ≤ ∞.

5. Convergence of sequences of functions

Definition 11. Let {fn} be a sequence of functions defined on some measure space
(X, µ), and let f be another function on X. If fn, f ∈ Lp(X, µ) for some p and
limn→∞ ||fn−f ||Lp = 0, then we say that fn converges to f in Lp(X, µ), or fn → f
in Lp.

Note that if fn → f in L∞, then fn converges to f uniformly almost everywhere.
Often we care only about L1 convergence and uniform convergence.

We can contrast this with two other definitions:
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(1) If limx→∞ fn(x) = f(x) for all x ∈ X, then we say that fn converges to f ,
or fn → f , pointwise.

(2) If limx→∞ fn(x) = f(x) for almost all x ∈ X, then we say that fn converges
to f pointwise almost everywhere (a.e.)

Note that if fn → f in L1(X, dµ) then
∫

X
fn dµ →

∫
X

f dµ.
It is clear that if fn → f uniformly, then fn → f pointwise and pointwise a.e.

(If fn → f in L∞, then fn → f pointwise a.e.) Some functions converge pointwise
but not uniformly; for example, fn(x) = xn converges to f(x) = 0 pointwise but
not uniformly on (0, 1).

However, we do have one positive result:

Theorem 12 (Egorov’s Theorem). Suppose that fn → f pointwise a.e. on some
measure space X with µ(X) < ∞. Then for any ε > 0, there is a measurable set E
such that µ(E) < ε and fn → f uniformly on X\E.

We do need for µ(X) < ∞. As an example, let f(x) = 0, fn(x) = 0 on [−n, n]
and fn(x) = 1 elsewhere. Then fn → f pointwise, but Egorov’s Theorem obviously
cannot hold.

We would like to know how uniform and pointwise a.e. convergence relate to L1

convergence. Let f(x) = 0 everywhere. Here are some examples:
• Let fn(x) = 1/n on [0, n] and let fn(x) = 0 elsewhere. Then fn → f

uniformly but not in L1(R, dλ).
• Let fn(x) = n on [0, 1/n], and let fn(x) = 0 elsewhere. Then fn → f

pointwise but not in L1([0, 1], dλ).
• Let gn(x) = 1 on[

1 +
1
2

+
1
3

+ . . . +
1
n

, 1 +
1
2

+ . . . +
1
n

+
1

n + 1

]
and be zero elsewhere. Let fn(x) = 1 if 0 ≤ x ≤ 1 and gn(x + k) = 1 for
some integer k, and let fn(x) = 0 otherwise.

Then
∫ 1

0
|fn(x)| dλ = 1

n for all n ≥ 1, and so fn → f in L1([0, 1], dλ).
However, fn 6→ 0 pointwise anywhere.

So pointwise convergence, uniform convergence, and L1 convergence do not imply
each other.

We do, however, have a few positive results:

Theorem 13. If fn → f in L1, then there is a subsequence fnk
such that fnk

→ f
pointwise a.e.

Theorem 14 (Dominated Convergence Theorem). Suppose that fn → f pointwise
a.e., and that there is some function g such that

∫
X
|g| dµ < ∞ and |fn(x)| ≤ g(x)

for all x and n. Then fn → f in L1.

This is proven using Fatou’s Lemma. Note that if µ(X) < ∞, then g(x) =
|f(x)| + 1 ∈ L1(X, dµ) whenever f ∈ L1(X, dµ); thus, on a set of finite measure,
uniform convergence does imply L1 convergence.

6. Subspaces

In a metric space, it is occasionally easy to define or prove things on dense sub-
spaces and then extend them to the entire space; for example, 2x can be defined for
all rational x using nth roots, and can then be extended to all real x by continuity.
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Lp spaces have a number of useful dense subspaces.

Theorem 15. If 1 ≤ p < ∞, and (X, µ) is a measure space, then
• The set of all simple functions whose support has finite measure is dense in

Lp(X, µ). (A function is called simple if its range is a finite set; a function’s
support is the closure of the set where it is nonzero.)

• The set of all continuous functions whose support is compact is dense in
Lp(Rn, dλ). (This is true for other spaces as well.)

Neither of these sets are dense in L∞(Rn, dλ). The set of all simple functions
with no restrictions on support is dense in L∞(X, µ), but the set of all continuous
functions is not.

Since the first set is contained in Lp for all p, we have that Lp ∩ Lq is dense in
Lp for all 1 ≤ p < ∞ and all 1 ≤ q ≤ ∞.


