1 \(L^p \) spaces

Definition 1 Let \(f \) be a measurable function, and let \(1 \leq p < \infty \). We say that the \(L^p(X, \mu) \) norm of \(f \) is

\[
||f||_{L^p} = \left(\int_X |f|^p \, d\mu \right)^{1/p}.
\]

We say that the \(L^\infty(X, \mu) \) norm of \(f \) is its upper bound except on sets of measure zero; that is,

\[
||f||_{L^\infty} = \text{ess sup}_{x \in X} |f(x)| = \inf \{ \alpha > 0 : |f(x)| \leq \alpha \text{ a.e.} \},
\]

where a.e. stands for “almost everywhere”, that is, “except on a set of measure zero”.

Theorem 2 (Minkowski’s Inequality) If \(||f||_{L^p} < \infty \) and \(||g||_{L^q} < \infty \) for \(1 \leq p, q \leq \infty \), then

\[
||f + g||_{L^p} \leq ||f||_{L^p} + ||g||_{L^p}.
\]

It is clear that \(||\alpha f||_{L^p} = |\alpha|||f||_{L^p} \) for any scalar \(\alpha \). Thus, the set of all functions whose \(L^p \) norm is finite is almost a normed vector space. There are some nonzero functions with norm zero. (For example, let \(f(x) = 0 \) for \(x \neq 3 \), and let \(f(3) = 1 \). Then \(||f||_{L^p} = 0 \) for any \(1 \leq p \leq \infty \).)

To deal with this, we quotient out by functions which are zero a.e. We let \(L^p \) be the vector space whose elements are equivalence classes of functions with the equivalence relation \(f \equiv g \) if \(f(x) = g(x) \) almost everywhere, that is, \(\mu\{x : f(x) \neq g(x)\} = 0 \).

Usually, you can just think of \(L^p \) being a space of functions.

There is another very useful theorem (which you need to prove, among other things, Minkowski’s inequality):

Theorem 3 (Hölder’s Inequality) If \(1 \leq p, q \leq \infty \) with \(1/p + 1/q = 1 \), we say that \(p \) and \(q \) are conjugates or conjugate exponents. If \(||f||_{L^p} \) and \(||g||_{L^q} \) are finite, then

\[
\left| \int_X f(x)g(x) \, d\mu(x) \right| \leq ||f||_{L^p} ||g||_{L^q}.
\]

Note that 1 and \(\infty \) are conjugate exponents, and that 2 is its own conjugate.

It turns out that, if \(1 \leq p < \infty \), and if \(F \) is a map from \(L^p \) to \(C \) such that

- \(F \) is linear; that is, \(F(f + g) = F(f) + F(g) \) and \(F(\alpha f) = \alpha F(f) \) for any scalar \(\alpha \) and \(f, g \in L^p \)
- \(F \) is bounded; that is, there exists a constant \(C > 0 \) such that \(|F(f)| \leq C||f||_{L^p} \) for all \(f \in L^p \)

then there is some \(g \in L^q \) such that

\[
F(f) = \int_X f(x)g(x) \, d\mu(x),
\]

where \(q \) is the conjugate to \(p \). We summarize this property by saying that \(L^q \) is the dual to \(L^p \).

Here are some examples:
1. Suppose that $\mu(X) = 1$, and $1 \leq p \leq r \leq \infty$. Then we can show (by Hölder’s inequality) that $\|f\|_{L^r} \leq \|f\|_{L^p}$ and so $L^r \subset L^p$. More generally, if $\mu(X)$ is finite, then

$$\left(\frac{1}{\mu(X)} \int_X |f|^p d\mu \right)^{1/p} \leq \left(\frac{1}{\mu(X)} \int_X |f|^r d\mu \right)^{1/r} \text{ or } \left(\frac{1}{\mu(X)} \int_X |f|^p d\mu \right)^{1/p} \leq \|f\|_{L^\infty}$$

and so $L^r \subset L^p$ again.

2. Suppose that $X = \mathbb{N}$, the natural numbers, and that μ is the counting measure, that is, $\mu(S) = |S|$ is the cardinality of the set S.

We usually refer to $L^p(\mathbb{N}, \mu)$ as ℓ^p. Note that

$$\|f\|_{\ell^p} = \sum_{n=0}^\infty |f(n)|^p, \quad \|f\|_{\ell^\infty} = \sup_{n \in \mathbb{N}} |f(n)|.$$

So $|f(n)| \leq \|f\|_{\ell^p}$, and so if $1 \leq p < r < \infty$ and $f \in \ell^p$, then

$$\|f\|_{\ell^r} = \sum |f(n)|^r \leq \sum |f(n)|^p |f|_{\ell^p} = \|f\|_{\ell^p}.$$

Thus, in this case, we have that $L^p \subset L^r$ for $1 \leq p \leq r \leq \infty$, the opposite of the previous case.

3. Now let $X = (\mathbb{R}, dx)$, where dx is Lebesgue measure. We do not have any nice inclusion relations in this case. If $1 \leq p < r < \infty$, then

$$f(x) = \begin{cases} |x|^{-1/r} & \text{on } [-1, 1] \\ 0 & \text{elsewhere} \end{cases}$$

is in L^p but not L^r, and

$$f(x) = \begin{cases} 0 & \text{on } [-1, 1] \\ |x|^{-1/p} & \text{elsewhere} \end{cases}$$

is in L^r but not L^p.

Theorem 4 Under these definitions, L^p is a complete normed vector space for $1 \leq p \leq \infty$.

2 Convergence of sequences of functions

Definition 5 Let $\{f_n\}$ be a sequence of functions defined on some measure space (X, μ), and let f be another function on X. If $f_n, f \in L^p(X, \mu)$ for some p and $\lim_{n \to \infty} \|f_n - f\|_{L^p} = 0$, then we say that f_n converges to f in $L^p(X, \mu)$, or $f_n \to f$ in L^p.

Note that if $f_n \to f$ in L^∞, then f_n converges to f uniformly almost everywhere. Often we care only about L^1 convergence and uniform convergence.

We can contrast this with two other definitions:

1. If $\lim_{x \to \infty} f_n(x) = f(x)$ for all $x \in X$, then we say that f_n converges to f, or $f_n \to f$, pointwise.

2. If $\lim_{x \to \infty} f_n(x) = f(x)$ for almost all $x \in X$, then we say that f_n converges to f pointwise almost everywhere (a.e.)

Note that if $f_n \to f$ in $L^1(X, d\mu)$ then $\int_X f_n \, d\mu \to \int_X f \, d\mu$.

It is clear that if $f_n \to f$ uniformly, then $f_n \to f$ pointwise and pointwise a.e. (If $f_n \to f$ in L^∞, then $f_n \to f$ pointwise a.e.) Some functions converge pointwise but not uniformly; for example, $f_n(x) = x^n$ converges to $f(x) = 0$ pointwise but not uniformly on $(0, 1)$.

However, we do have one positive result:
Theorem 6 (Egorov’s Theorem) Suppose that $f_n \to f$ pointwise a.e. on some measure space X with $\mu(X) < \infty$. Then for any $\epsilon > 0$, there is a measurable set E such that $\mu(E) < \epsilon$ and $f_n \to f$ uniformly on $X \setminus E$.

We do need for $\mu(X) < \infty$. As an example, let $f(x) = 0$, $f_n(x) = 0$ on $[-n, n]$ and $f_n(x) = 1$ elsewhere. Then $f_n \to f$ pointwise, but Egorov’s Theorem obviously cannot hold.

We would like to know how uniform and pointwise a.e. convergence relate to L^1 convergence. Let $f(x) = 0$ everywhere. Here are some examples:

- Let $f_n(x) = 1/n$ on $[0, n]$ and let $f_n(x) = 0$ elsewhere. Then $f_n \to f$ uniformly but not in $L^1(\mathbb{R}, dx)$.
- Let $f_n(x) = n$ on $[0, 1/n]$, and let $f_n(x) = 0$ elsewhere. Then $f_n \to f$ pointwise but not in $L^1([0, 1], dx)$.
- Let $g_n(x) = 1$ on
 $$\left[1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}, 1 + \frac{1}{2} + \ldots + \frac{1}{n} + \frac{1}{n+1}\right]$$
 and be zero elsewhere. Let $f_n(x) = 1$ if $0 \leq x \leq 1$ and $g_n(x + k) = 1$ for some integer k, and let $f_n(x) = 0$ otherwise.

 Then $\int_0^1 |f_n(x)| \, dx = \frac{1}{n}$ for all $n \geq 1$, and so $f_n \to f$ in $L^1([0, 1], dx)$. However, $f_n \not\to 0$ pointwise anywhere.

So pointwise convergence, uniform convergence, and L^1 convergence do not imply each other.

We do, however, have a few positive results:

Theorem 7 If $f_n \to f$ in L^1, then there is a subsequence f_{nk} such that $f_{nk} \to f$ pointwise a.e.

Theorem 8 (Dominated Convergence Theorem) Suppose that $f_n \to f$ pointwise a.e., and that there is some function g such that $\int_X |g| \, d\mu < \infty$ and $|f_n(x)| \leq g(x)$ for all x and n. Then $f_n \to f$ in L^1.

This is proven using Fatou’s Lemma. Note that if $\mu(X) < \infty$, then $g(x) = |f(x)| + 1 \in L^1(X, d\mu)$ whenever $f \in L^1(X, d\mu)$; thus, on a set of finite measure, uniform convergence does imply L^1 convergence.

3 Subspaces

In a metric space, it is occasionally easy to define or prove things on dense subspaces and then extend them to the entire space; for example, $2^\mathbb{Q}$ can be defined for all rational x using nth roots, and can then be extended to all real x by continuity.

L^p spaces have a number of useful dense subspaces.

Theorem 9 If $1 \leq p < \infty$, and (X, μ) is a measure space, then

- The set of all simple functions whose support has finite measure is dense in $L^p(X, \mu)$. (A function is called simple if its range is a finite set; a function’s support is the closure of the set where it is nonzero.)
- The set of all continuous functions whose support is compact is dense in $L^p(\mathbb{R}, dx)$. (This is true for other spaces as well.)

Neither of these sets are dense in $L^\infty(\mathbb{R}, dx)$. The set of all simple functions with no restrictions on support is dense in $L^\infty(X, \mu)$, but the set of all continuous functions is not.

Since the first set is contained in L^p for all p, we have that $L^p \cap L^q$ is dense in L^p for all $1 \leq p < \infty$ and all $1 \leq q \leq \infty$.

4 Arzela-Ascoli

Arzela and Ascoli proved a very important theorem:

Theorem 10 (Arzela-Ascoli) Let \(\{f_n\} \) be a sequence of functions defined on \(\mathbb{R} \). Suppose that the sequence is uniformly bounded, that is, there is a constant \(C \) such that \(|f_n(x)| < C \) for all \(n \) and \(x \). Suppose furthermore that the \(f_n \) are continuous and differentiable, and that the derivatives are also uniformly bounded.

Then there is a subsequence \(f_{n_k} \) which converges uniformly to some continuous function \(f \).

Proof. Pick your favorite countable dense subset \(\mathbb{Q} \) of \(\mathbb{R} \), for example, the rationals. Let its elements be \(q_1, q_2, \ldots \).

Then \(\{f_n(q_1)\} \) is a sequence of points in \([-C, C]\), a compact space; thus, there is some increasing sequence \(\{n^1_k\} \) such that the subsequence \(f_{n^1_k}(q_1) \) converges as \(k \to \infty \). Define \(f(q_1) \) to be the number it converges to.

Now, \(\{f_{n^1_k}(q_2)\} \) is also a sequence of points in \([-C, C]\). So we may pick out another subsequence \(n^2_k \) of \(n^1_k \) such that \(f_{n^2_k}(q_2) \to f(q_2) \) for some \(f(q_2) \). Note that since \(n^2_k \) is a subsequence of \(n^1_k \), \(f_{n^2_k}(q_1) \to f(q_1) \).

Repeat this for each \(q_j \). Then let \(n_k = n^j_k \), that is, the \(k \)th element of the subsequence for \(q_k \). Then if \(k \geq j \), there is some \(h \geq k \) with \(n_k = n^j_h \); thus, \(f_{n_k}(q_j) \to f(q_j) \) for all \(j \).

So we have picked out a subsequence that converges on \(\mathbb{Q} \), using nothing more than the fact that the \(f_n \)s are uniformly bounded. We can easily require that \(|f_{n^j_k}(q_k) - f(q_k)| < 2^{-j} \); thus, \(f_{n_k} \to f \) uniformly on \(\mathbb{Q} \).

Fix \(\epsilon > 0 \). Let \(r \in \mathbb{R} \). Then there is some \(q_j \) with \(|r - q_j| < \epsilon/2C \), so that \(|f_n(r) - f_n(q_j)| < \epsilon/4 \) for all \(n \). There is some \(N \) such that \(|f_n(q_j) - f(q_j)| < \epsilon/4 \) for all \(k > N \) and all \(j \). Thus, if \(k, h > N \), then

\[
|f_{n_k}(r) - f_{n_h}(r)| < |f_{n_k}(r) - f_{n_h}(q_j)| + |f_{n_k}(q_j) - f(q_j)| + |f(q_j) - f_{n_h}(q_j)| + |f_{n_h}(q_j) - f_{n_h}(r)| < \epsilon
\]

Thus, \(f_{n_k}(r) \) is a Cauchy sequence for all \(r \), and so it converges to some number \(f(r) \).

So \(\{f_{n_k}\} \) converges uniformly on \(\mathbb{R} \). Any sequence of uniformly convergent continuous functions converges to a function which is itself continuous; thus we are done.