WOMP 2006 Linear Algebra-Rough Outline

Karen Lange

1 References

- 1. Hoffman and Kunze, Linear Algebra
- 2. Halmos, Finite Dimensional Vector Spaces
- 3. Helson, Linear Algebra

2 Outline

I'll try to use Greek letters for scalars $(\alpha, \beta, ...)$ and English letters for vectors (a, b, v, ...).

Definition 2.1. A vector space is a set V with an addition operation + and a scalar multiplication over a field k such that

- 1. (V, +) is a commutative group,
- 2. $1_k a = a \ \forall a \in V$
- 3. $(\alpha\beta)a = \alpha(\beta a) \ \forall \alpha, \beta \in k, \forall a \in V$
- 4. $\alpha(a+b) = \alpha a + \alpha b \ \forall \alpha \in k, \forall a, b \in V$
- 5. $(\alpha + \beta)a = \alpha a + \beta a \ \forall \alpha, \beta \in k, \forall a \in V$

Definition 2.2. [Briefly]

- * Subspace
- * Linear combination and Span Note finiteness in definition.
- * Linearly independent set

- * Direct sum
- Basis

Theorem: Every vector space has a basis.

* Dimension

Theorem: Dimension is well defined.

Theorem: For vector spaces over the same field, dimension determines isomorphism.

Definition 2.3. $T: V \to W$ where V and W are vector spaces over k is a *linear transformation* if for all $\alpha, \beta \in k$ and $a, b \in V$,

$$T(\alpha a + \beta b) = \alpha T(a) + \beta T(b).$$

The set of all such T forms the vector space $Hom_k(V, W)$.

If $T: V \to k$ is a linear transformation, T is called a *linear functional*, and $Hom_k(V, k)$ is called the *dual* of V.

Definition 2.4. [More briefly!]

- * $ker(T) = \{v \in V | Tv = 0\}, nullity(T) = dim(ker(T))$
- * $im(T) = \{w \in W | (\exists v)Tv = w\}, rank(T) = dim(im(T))\}$

Theorem (Rank/Nullity) For finite dimensional V,

dim(V) = rank(T) + nullity(T).

Theorem 2.5 (Change of Basis). Suppose V is an n-dimensional vector space over k. Let B_1 and B_2 be two bases for V. Then there exists an n by n invertible matrix S (called the change of basis matrix such that for all $v \in V$,

$$[v]_{B_2} = S[v]_{B_1}.$$

Using the same methods,

Theorem 2.6. Let V be an n-dimensional vector space and W be an mdimensional one. Then every linear transformation $T: V \to W$ has the form T_A for some m by n dimensional matrix A where T_A is matrix multiplication with respect to given bases for V and W.

Definition 2.7. *n* by *n* matrices *A* and *B* (with coefficients in the same field) are *similar* if there exists an invertible matrix *S* such that $A = SBS^{-1}$.

Theorem 2.8 (Motivation for Similarity). A and B represent the same linear transformation with respect to different bases for V if and only if A and B are similar.

We now restrict our attention to $V = \mathcal{C}^n$ over \mathcal{C} and to a linear transformation $T : \mathcal{C}^n \to \mathcal{C}^n$ represented by the matrix A with respect to the standard basis. Note \mathcal{C} is algebraically closed.

Definition 2.9. [Again briefly.]

- * trace(A)
- * determinant(A)

Theorem 2.10 (Existence and Uniqueness of Determinants). $det(A) : (\mathcal{C}^n)^n = Mat_{n,n}(\mathcal{C}) \to \mathcal{C}$ is the only complex function of n variables (the columns) that is multi-linear, skew-symmetric, and normalized so that $det(I_n) = 1$.

Definition 2.11. [Eigenvalues, Preparation for JCF]

- * Eigenvalue: λ is an eigenvalue for T if $Tv = \lambda v$ for $v \neq 0$. v is called an eigenvector associated to λ .
- * Characteristic polynomial: $p_A(t) = det(tI A) = \prod_{i=1}^k (t \lambda_i)^{m_i}$ for λ_i distinct. We call m_i the algebraic multiplicity of λ_i . Cayley's Theorem: $p_A(A) = 0$
- * Eigenspace: $V_{\lambda} = \{v \in V | Tv = \lambda v\}, dim(V_{\lambda})$ is the geometric multiplicity of λ . Note: $dim(V_{\lambda}) \leq m_i$.
- * diagonalizable: A is diagonalizable if it is similar to a diagonal matrix. Theorem: A is diagonalizable if and only if A has n linearly independent eigenvectors. Note: Failure to be diagonalizable is a discrepancy between geometric and algebraic multiplicity.

Theorem: Any A as above is similar to an upper triangular matrix.

- * Generalized eigenspace: $U_{\lambda} = \{v \in V | (\exists k > 0)(T \lambda I)^k v = 0\}$
- * Minimal polynomial: $m_A(t) = \prod_{i=1}^k (t \lambda_i)^{j_i}$ is the monic polynomial of least degree which annihilates A.

Theorem 2.12 (Jordan Canonical Form). Let A be an n by n complex matrix with distinct eigenvalues $\lambda_1, ..., \lambda_k$. Then A is similar to a matrix which is the direct sum of Jordan blocks $J_m(\lambda_i)$ (unique up to a reordering of the blocks) with at least one block for each λ_i where $J_m(\lambda)$ is an m by m matrix of the form:

$$\left(\begin{array}{cccccc} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ 0 & 0 & \lambda & 1 & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & 0 & \lambda \end{array}\right)$$

Summary of Properties of JCF

- A and B are similar iff they have the "same" JCF.
- Algebraic Multiplicity: $m_i = \dim U_{\lambda_i} = \text{sum of sizes of all Jordan blocks for } \lambda_i.$
- Geometric Multiplicity: $dimV_{\lambda_i}$ = number of Jordan blocks for λ_i .
- The exponent of $(t \lambda_i)$ in $m_A(t)$ is the size of largest Jordan block for λ_i (We called this exponent j_i). This is also the index of the nilpotent transformation $(A \lambda_i I) \upharpoonright_{U_{\lambda_i}}$.