WOMP 2006 Linear Algebra-Rough Outline

Karen Lange

1 References

1. Hoffman and Kunze, Linear Algebra
2. Halmos, Finite Dimensional Vector Spaces
3. Helson, Linear Algebra

2 Outline

I'll try to use Greek letters for scalars (α, β, \ldots) and English letters for vectors (a, b, v, \ldots).

Definition 2.1. A vector space is a set V with an addition operation + and a scalar multiplication over a field k such that

1. $(V,+)$ is a commutative group,
2. $1_{k} a=a \forall a \in V$
3. $(\alpha \beta) a=\alpha(\beta a) \forall \alpha, \beta \in k, \forall a \in V$
4. $\alpha(a+b)=\alpha a+\alpha b \forall \alpha \in k, \forall a, b \in V$
5. $(\alpha+\beta) a=\alpha a+\beta a \forall \alpha, \beta \in k, \forall a \in V$

Definition 2.2. [Briefly]

* Subspace
* Linear combination and Span Note finiteness in definition.
* Linearly independent set
* Direct sum
* Basis

Theorem: Every vector space has a basis.

* Dimension

Theorem: Dimension is well defined.
Theorem: For vector spaces over the same field, dimension determines isomorphism.

Definition 2.3. $T: V \rightarrow W$ where V and W are vector spaces over k is a linear transformation if for all $\alpha, \beta \in k$ and $a, b \in V$,

$$
T(\alpha a+\beta b)=\alpha T(a)+\beta T(b) .
$$

The set of all such T forms the vector space $\operatorname{Hom}_{k}(V, W)$.
If $T: V \rightarrow k$ is a linear transformation, T is called a linear functional, and $\operatorname{Hom}_{k}(V, k)$ is called the dual of V.

Definition 2.4. [More briefly!]

* $\operatorname{ker}(T)=\{v \in V \mid T v=0\}$, nullity $(T)=\operatorname{dim}(\operatorname{ker}(T))$
* $\operatorname{im}(T)=\{w \in W \mid(\exists v) T v=w\}, \operatorname{rank}(T)=\operatorname{dim}(i m(T))$

Theorem (Rank/Nullity) For finite dimensional V,

$$
\operatorname{dim}(V)=\operatorname{rank}(T)+\operatorname{nullity}(T) .
$$

Theorem 2.5 (Change of Basis). Suppose V is an n-dimensional vector space over k. Let B_{1} and B_{2} be two bases for V. Then there exists an n by n invertible matrix S (called the change of basis matrix such that for all $v \in V$,

$$
[v]_{B_{2}}=S[v]_{B_{1}} .
$$

Using the same methods,
Theorem 2.6. Let V be an n-dimensional vector space and W be an m dimensional one. Then every linear transformation $T: V \rightarrow W$ has the form T_{A} for some m by n dimensional matrix A where T_{A} is matrix multiplication with respect to given bases for V and W.

Definition 2.7. n by n matrices A and B (with coefficients in the same field) are similar if there exists an invertible matrix S such that $A=S B S^{-1}$.

Theorem 2.8 (Motivation for Similarity). A and B represent the same linear transformation with respect to different bases for V if and only if A and B are similar.

We now restrict our attention to $V=\mathcal{C}^{n}$ over \mathcal{C} and to a linear transformation $T: \mathcal{C}^{n} \rightarrow \mathcal{C}^{n}$ represented by the matrix A with respect to the standard basis. Note \mathcal{C} is algebraically closed.

Definition 2.9. [Again briefly.]

* trace (A)
* determinant (A)

Theorem 2.10 (Existence and Uniqueness of Determinants). $\operatorname{det}(A):\left(\mathcal{C}^{n}\right)^{n}=\operatorname{Mat}_{n, n}(\mathcal{C}) \rightarrow \mathcal{C}$ is the only complex function of n variables (the columns) that is multi-linear, skew-symmetric, and normalized so that $\operatorname{det}\left(I_{n}\right)=1$.

Definition 2.11. [Eigenvalues, Preparation for JCF]

* Eigenvalue: λ is an eigenvalue for T if $T v=\lambda v$ for $v \neq 0 . v$ is called an eigenvector associated to λ.
* Characteristic polynomial: $p_{A}(t)=\operatorname{det}(t I-A)=\Pi_{i=1}^{k}\left(t-\lambda_{i}\right)^{m_{i}}$ for λ_{i} distinct. We call m_{i} the algebraic multiplicity of λ_{i}.
Cayley's Theorem: $p_{A}(A)=0$
* Eigenspace: $V_{\lambda}=\{v \in V \mid T v=\lambda v\}, \operatorname{dim}\left(V_{\lambda}\right)$ is the geometric multiplicity of λ.
Note: $\operatorname{dim}\left(V_{\lambda}\right) \leq m_{i}$.
* diagonalizable: A is diagonalizable if it is similar to a diagonal matrix. Theorem: A is diagonalizable if and only if A has n linearly independent eigenvectors.
Note: Failure to be diagonalizable is a discrepancy between geometric and algebraic multiplicity.

Theorem: Any A as above is similar to an upper triangular matrix.

* Generalized eigenspace: $U_{\lambda}=\left\{v \in V \mid(\exists k>0)(T-\lambda I)^{k} v=0\right\}$
* Minimal polynomial: $m_{A}(t)=\Pi_{i=1}^{k}\left(t-\lambda_{i}\right)^{j_{i}}$ is the monic polynomial of least degree which annihilates A.

Theorem 2.12 (Jordan Canonical Form). Let A be an n by n complex matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Then A is similar to a matrix which is the direct sum of Jordan blocks $J_{m}\left(\lambda_{i}\right)$ (unique up to a reordering of the blocks) with at least one block for each λ_{i} where $J_{m}(\lambda)$ is an m by m matrix of the form:

$$
\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \ldots & 0 \\
0 & \lambda & 1 & \ldots & 0 \\
0 & 0 & \lambda & 1 & \ldots \\
0 & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & 0 & \lambda
\end{array}\right)
$$

Summary of Properties of JCF

- A and B are similar iff they have the "same" JCF.
- Algebraic Multiplicity:
$m_{i}=\operatorname{dim} U_{\lambda_{i}}=$ sum of sizes of all Jordan blocks for λ_{i}.
- Geometric Multiplicity:
$\operatorname{dim} V_{\lambda_{i}}=$ number of Jordan blocks for λ_{i}.
- The exponent of $\left(t-\lambda_{i}\right)$ in $m_{A}(t)$ is the size of largest Jordan block for λ_{i} (We called this exponent j_{i}). This is also the index of the nilpotent transformation $\left(A-\lambda_{i} I\right) \mid{ }_{U_{\lambda_{i}}}$.

