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One of the main goals of algebraic topology involves the transformation of topo-
logical properties into algebraic ones. In large part, this is accomplished by as-
signing suitable algebraic invariants to topological spaces. In general, this means
assigning some sort of algebraic structure (a group, ring, or some other structure)
to each topological space in such a way that continuous maps between spaces induce
homomorphisms of the algebraic structures. (In the language of category theory,
we are looking for functors from the category of topological spaces and continuous
maps to a category such as the category of groups.) These groups (or rings, or . . . )
are algebraic invariants in the sense that spaces which have “the same shape,” in
some sense which will be made more precise momentarily, are assigned the same
groups. Useful invariants will also allow us to distinguish between genuinely differ-
ent spaces by assigning them different structures.

One very rough invariant which can be assigned to a space is its number of
connected components. This gives you a little bit of information, of course, but it
leaves a lot to be desired. The first part of today’s talk will be devoted to developing
another invariant, called the fundamental group.

Note: whenever I say “map,” I mean “continuous function.”

1. Homotopy and homotopy equivalence

The first question to be dealt with is: when should two spaces be considered the
same? Homeomorphic spaces should, of course, be the same, but it turns out that
this is a stronger notion of “sameness” than we will want in many applications. For
example, for many purposes, a cylindrical strip of paper is really the same thing as
a circle; it’s just been fattened up a little. Similarly, we’ll regard a space which is
formed from another space by thickening it up a little, or continuously deforming
it without puncturing it, as having the same shape.

To make this more precise, it is helpful to introduce the language of homotopy.
In the following, I will denote the closed unit interval [0, 1] ⊂ R, and idX will
denote the identity map from a space X to itself: idX(x) = x.

Definition 1. Let X, Y be two spaces, and f, g : X → Y two continuous maps be-
tween them. Then f and g are homotopic, denoted f ' g, if there is a continuous
map

H : X × I → Y

such that H(x, 0) = f(x) and H(x, 1) = g(x) ∀x ∈ X. Such a map H is called a
homotopy from f to g. If additionally H(a, t) is independent of t for all a in some
A ⊂ X, then H is called a homotopy rel A.
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Sometimes a homotopy H is written as a family of maps ht : X → Y , given by
ht(x) = H(x, t). In this context, a homotopy from f to g is a family such that
h0 = f and h1 = g.

With this language, we can express the idea that X is a “fattened up” version
of a subspace A ⊂ X. Let i : A ↪→ X be the inclusion of A into X. A retraction
r : X → A is a map such that r ◦ i : A → A is the identity. Then

Definition 2. A ⊂ X is a deformation retraction of X if there is a retraction
r : X → A such that the composition i ◦ r : X → X is homotopic to the identity
map idX : X → X.

That is, A is a deformation retraction of X if there is a map r such that r◦i = idA

i ◦ r ' idX . More generally, we define

Definition 3. Two spaces X and Y are homotopy equivalent if there exist maps
f : X → Y and g : Y → X such that g ◦ f ' idX and f ◦ g ' idY . f and g are
called homotopy equivalences.

It is fairly easy to check that homotopy equivalence of spaces is an equivalence
relation. This is the notion of sameness which we will be using.

2. The fundamental group

We now come to the question of finding suitable algebraic invariants of spaces.
One of the easiest to define is the fundamental group, which is defined in terms of
loops in a space.

Pick a space X, and fix some point x ∈ X. Then we can consider loops on
X based at x; that is, maps α : I → X such that α(0) = α(1) = x. Since
we are considering everything up to homotopy, we are actually interested in the
equivalence classes of such maps; given a loop α, we will write [α] to mean the set
of loops which are homotopic to α rel {0, 1}. Denote the set of such equivalence
classes by π1(X, x). Since all loops start and end at the same place, we can define
a multiplication on π1(X, x), as follows. If α and β are loops starting and ending
at x, then α · β is the map given by following β at double speed, followed by α at
double speed:

(α · β)(t) =

{
β(2t) 0 ≤ t ≤ 1

2

α(2t− 1) 1
2 ≤ t ≤ 1

We can then define a multiplication on π1(X, x) by [α] · [β] = [α · β]. It turns out
that multiplication is associative: α ·(β ·γ) ' (α ·β) ·γ and so [α ·(β ·γ)] = [(α ·β) ·γ]
for loops α, β, and γ.

Notice that the constant map at x, cx(t) = t∀t ∈ I, gives a unit for the multipli-
cation in π1(X, x). Also, given a loop α, traversing α backwards gives a loop which
we will write α−1; that is, α−1(t) = α(1 − t). You can check that [α · α−1] = [cx].
So we have shown (details will be given in the talk)

Proposition 4. π1(X, x), with multiplication defined as above, is a group.
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π1(X, x) is called the fundamental group, or first homotopy group, of X at the
basepoint x. (π0(X) is often used to denote the set of path-connected components
of X; we will talk a little bit about the higher homotopy groups πn later.)

3. Dependence on the basepoint

It is natural to ask how much the group π1(X, x) depends on the choice of
basepoint x; after all, we started out looking for an invariant of spaces.

Let x, y ∈ X, and suppose γ : I → X is a path with γ(0) = x and γ(1) = y. Then
we can define a homomorphism θγ : π1(X, x) → π1(X, y) by θγ([α]) = [γ · α · γ−1].
This is well-defined, since if ht is a homotopy from α to some loop α′, then the
family {γ · ht · γ−1} gives a homotopy from γ · α · γ−1 to γ · α′ · γ−1. Furthermore,
since [γ · α · β · γ−1] = [γ · α · γ−1] · [γ · β · γ−1], θγ is a homomorphism of groups.
You can check that θγ−1 gives an inverse homomorphism, and so θγ is actually an
isomorphism of groups.

Therefore, if X is a path-connected space (given any two points x0, x1, there
exists a path from x0 to x1), the isomorphism type of π1(X, x) is independent of the
choice of x, and is often written just π1(X). However, it is important to remember
that there is a choice of basepoint inherent in the computation of π1; often you will
need to remember what this basepoint is in order to do calculations.

Sometimes it is convenient to work in the category of basepointed spaces, having
as objects pairs (X, x); a morphism (X, x) → (Y, y) is a map α : X → Y such that
α(x) = y. In this category, there is a natural choice of basepoint when computing
π1.

Alternately, people sometimes choose to work with the fundamental groupoid
Π1(X) of a space X. This assigns a category to each topological space X. Specifi-
cally, the objects of Π1(X) are the points of X, and the morphisms from x ∈ X to
y ∈ X are the homotopy classes of maps from x to y (homotopy rel endpoints). The
notion of composition of paths is the same as before; notice that α · β is defined
whenever β(1) = α(0). For any x ∈ X, the group of endomorphisms in Π1(X)
from x to x is just the group π1(X, x). Also, the argument above shows that every
morphism in Π1 is actually an isomorphism, which means that Π1 is a groupoid.

When the space X is connected, the fundamental groupoid does not really give
any more information that the fundamental group, because all the endomorphism
groups are isomorphic. However, it can be more useful for dealing with spaces
which are not connected, because it gives a way of capturing information about all
the different components, rather than just one component.

4. Homotopy invariance

Having developed the fundamental group, an important question is: is it an
invariant in the sense above? That is, do homotopy equivalences of spaces induce
isomorphisms of fundamental groups?

First, notice that a map f : X → Y does indeed induce a homomorphism
of fundamental groups, usually written f∗ : π1(X, x) → π1(Y, f(x)), defined by
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composing loops I → X with f . That is, f∗ takes the equivalence class [α] to
[f ◦ α].

Proposition 5. If f : X → Y is a homotopy equivalence, then f∗ : π1(X, x) →
π1(Y, f(x)) is an isomorphism.

We will prove this in the talk.

5. Some basic fundamental group computations

In order for an invariant to be of practical use, it should be relatively easy to
compute; it turns out that, with a few tools, the fundamental groups of a very large
number of spaces can be computed.

Proposition 6. Let ∗ denote the space consisting of a single point. Then π1(∗) =
1, the one-element group.

Proof. There is only one map I → ∗. �

Corollary 7. If X is contractible (homotopy equivalent to a point), then π1(X) is
the trivial group. In particular, π1(R) = 1.

Mathematicians often want to talk about spaces with trivial π1, and so they have
their own name:

Definition 8. A path-connected space X having π1(X) = 1 is a simply con-
nected space.

Theorem 9. Let S1 denote the circle. Then π1(S1) ∼= Z.

The isomorphism is given by taking an equivalence class of paths to the number
of times they wind around the circle; a careful proof of this requires the language
of covering spaces, which will be covered in the second half of the talk.

Let X and Y be spaces, and X × Y the Cartesian product (with the product
topology). Then, by definition, a map I → X × Y is the same thing as a pair
of maps I → X and I → Y ; that is, every α : I → X × Y is given by α(t) =
(α1(t), α2(t)). The same is true of homotopies of such maps, and so it follows that
π1(X × Y ) ∼= π1(X)× π1(Y ). In particular,

Example 10. Let T 2 be the torus S1 × S1. Then π1(T 2) = Z× Z.

It is sometimes also possible to calculate the fundamental group of quotient
spaces. For example,

Example 11. π1(RP 2) = Z/2, the two-element group.
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More generally, as we will see in the second half of this talk, if X is a simply
connected space, and G is a sufficiently nice group acting freely on X, then the
quotient space X/G has π1(X/G) = G.

6. The van Kampen theorem

The most useful method of calculating fundamental groups, however, involves
the van Kampen theorem, which allows you to compute π1(X) from knowledge
about π1 of some subsets of X, together with knowledge about how these subsets
fit together.

The van Kampen theorem, in its full generality, can be rather confusing at first
sight. One special case is

Theorem 12. Let X be a space, and let U, V ⊂ X be open subsets such that
U ∪ V = X and such that U and V are path-connected, and U ∩ V is simply
connected. Then π1(X) is isomorphic to the free product π1(U) ∗ π1(V ).

Recall that, if G and H are groups, then the free product G∗H has as elements
finite strings β1h1β2h2 . . . βnhn, with βi ∈ G, hi ∈ H; the group operation is
concatenation of strings, modulo multiplication in G and H.

Example 13. π1(S1 ∨ S1), the figure 8, is Z ∗ Z. More generally, a wedge of k
circles has fundamental group the free product of k copies of Z (also known as the
free group on k generators).

Slightly more generally, if we drop the requirement that U ∩ V be simply con-
nected, we can still describe π1(X). In this case, the inclusions i : U ∩ V → U
and j : U ∩ V → V induce homomorphisms i∗ : π1(U ∩ V ) → π1(U) and j∗ :
π1(U ∩ V ) → π1(V ); it turns out that π1(X) is the quotient of π1(U) ∗ π1(V ) given
by identifying i∗([α]) and j∗([α]) for [α] ∈ π1(U ∩ V ).

Theorem 14. Let U, V ⊂ X be subspaces with U∪V = X, and suppose U, V, U∩V
are all path-connected. Let R < π1(U) ∗ π1(V ) be the normal closure of the group
generated by elements of the form (i∗([α]))−1(j∗([α])), for [α] ∈ π1(U ∩ V ). Then

π1(X) = π1(U) ∗ π1(V )/R = π1(U) ∗R π1(V ).

Example 15. π1(S2) = 1; to see this, write S2 as the union of its two hemispheres.
More generally, π1(Sn) = 1 for n ≥ 2.

From a categorical perspective, this version of the theorem is saying that the
diagram

π1(X) π1(V )oo

π1(U)

OO

π1(U ∩ V )oo

OO
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is a pushout. Notice that
X Voo

U

OO

U ∩ Voo

OO

is also a pushout in the category of topological spaces; so van Kampen’s theorem
is saying that in this situation π1 takes pushouts to pushouts.

A pushout is a special type of colimit, which gives rise to a more general version
of the theorem: this calculates π1(X) given a cover {Ui} of path-connected open
sets, each containing the basepoint of X, whose pairwise intersections are again
path-connected. In this case, X can be written as the colimit of a diagram given
by the Ui and inclusions of their intersections, and van Kampen’s theorem says
that π1(X) is the corresponding colimit of the induced diagram of π1(Ui). This
translates into saying that π1(X) is a quotient of the free product of the groups
π1(Ui). For more details, see Hatcher’s book for a statement which spells out π1(X)
as a quotient of a free product, or May’s book for a more categorical treatment.
May’s book also has a statement of the theorem for fundamental groupoids, for the
very categorically-minded; this can be used to calculate π1(X) given a cover {Ui}
whose pairwise intersections are not path-connected. (For example, it can be used
to calculate π1 of the circle.)

7. Other invariants

Recall that the very first invariant we mentioned was π0, the set of path com-
ponents of a space. π1 does a slightly better job of distinguishing spaces from one
another; it tells us, for example, that R, S1, and T 2 are not homotopy equivalent.
However, it fails to distinguish between the higher dimensional spheres, and so
other invariants are needed.

The easiest to define are the higher homotopy groups πn. π1(X) can be thought
of as the group of homotopy classes of basepointed maps (S1, s) → (X, x); πn(X) is
defined to be the group of homotopy classes of basepointed maps (Sn, s) → (X, x)
(the group operation can be defined in a way similar to the operation on π1).
Unfortunately, the higher homotopy groups are very hard to compute in general.
Calculating the higher homotopy groups of spheres shows every sign of being a
permanently open question in algebraic topology.

There are also invariants, called the homology and cohomology groups of a space,
which are easier to compute but do not distinguish between spaces as well, and
various “generalized (co)homology theories,” such as K-theory. Some of these will
probably be covered in the algebraic topology course.

8. Group actions and quotients

Consider a torus. You may be familiar with the fact that we can represent it as
a square with opposite sides identified. If we glue one pair of opposite sides, we get
a cylinder, and then if we glue the remaining pair of sides, we get the torus.

On the other hand, consider the point of view of a 2-dimensional being living
inside the torus. If she looks in any of the four directions, then the light coming to



ALGEBRAIC TOPOLOGY 7

her eyes has passed all the way around the torus, so she sees the back of her own
head. So from her perspective, it looks as if the square has an extra copy of itself
on each side, and so on, giving an infinite grid of squares, all of which are ‘really’
the same square.

From a mathematical point of view, this means that we can obtain a torus T 2

by starting with the plane R2 and quotienting by the equivalence relation

(x, y) ∼ (x + m, y + n) (n, m) ∈ Z× Z.

Observe that Z× Z is also known as π1(T 2); this is clearly not a coincidence!

A similar thing happens with the circle: we can obtain S1 by starting with R
and quotienting by

x ∼ y + n n ∈ Z.

Once again, Z is also known as π1(S1).

These quotients are actually a special sort of quotient: they are generated by an
‘action’ of the group in question.

8.1. Group actions. Recall the following definition from abstract algebra:

Definition 16. Let G be a group and X be a set. An action of G on X is a
function G×X → X, written g · x, such that

(1) g1 · (g2 · x) = (g1g2) · x
(2) e · x = x

The quotient (or orbit space) of X by the action of G is the set X/G of equiva-
lence classes of X under the equivalence relation

x ∼ g · x g ∈ G.

A set with a G-action is sometimes called a G-set. What we need for our
purposes is a topological version of this, as follows.

Definition 17. Let X be a topological space and G a group. An action of G on
X is a function G×X → X, written g · x, such that

(1) For each g ∈ G, the function (g · −) : X → X is continuous1;
(2) g1 · (g2 · x) = (g1g2) · x
(3) e · x = x

The quotient (or orbit space) of X by the action of G is a space X/G defined as
the quotient space of X by the equivalence relation

x ∼ g · x g ∈ G.

A space with a G-action is sometimes called a G-space.

Example 18. R2/Z2 ∼= T 2, and R/Z ∼= S1.

1In fact, since G is a group, each function (g · −) has a continuous inverse (g−1 · −), so it is
actually a homeomorphism.
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Example 19. Let Z/2, the group with two elements, act on the n-sphere Sn by
reflection in the origin. In other words, if

Sn = {(x0, . . . , xn)|
∑

x2
i = 1}

and a is the non-identity element of Z/2, then

a · (x0, . . . , xn) = (−x0, . . . ,−xn).

Then Sn/(Z/2) ∼= RPn.

There are a couple of more abstract ways to rephrase the definition of a group
action. Firstly, let Aut(X) denote the group of homeomorphisms from X to itself,
with the group structure given by composition. Then an action of G on X is the
same as a group homomorphism from G to Aut(X).

Secondly, let BG denote the category with a single object ∗ and morphisms
BG(∗, ∗) = G, with composition given by the group structure of G. Then an action
of G on X is the same as a functor from BG to the category Top of topological
spaces and continuous maps which sends the object ∗ to X.

This last description is useful because it allows us to give a universal character-
ization of the quotient. Namely, the quotient space X/G is simply the colimit, in
Top, of the above functor. It also makes the generalization to group actions on
other objects straightforward. For example, a set with a G-action, as defined above,
is simply a functor from BG to Set. Similarly we have G-manifolds, G-schemes,
and so on, simply by changing the target category.

8.2. Fundamental groups of quotients. In the examples of S1, T 2, and RP2,
the fundamental group of the quotient was the same as the group involved in the
action. This is true in general, although we require a few conditions. First of all,
the space we start with (R, R2, or Sn) should be simply connected; otherwise its
fundamental group will get in the way.

The second requirement is more subtle. Consider Z/2 acting on R2 by a 180
degree rotation. The quotient is a ‘cone’ which is in fact homeomorphic to R2

again, and hence still simply connected. What’s gone wrong here is that the action
has a nontrivial fixed point : the nonidentity element a sends the origin to itself. To
get around this, we require our actions to be ‘free’.

Definition 20. An action of a group G on a space X is free if whenever g ∈ G is
not the identity, then g · x 6= x for all x ∈ X.

Actually, we need a slightly stronger condition, but ‘morally’ it is still a ‘freeness’
condition.

Definition 21. We will call an action of a group G on a space X continuously
free2 if any x ∈ X has a neighborhood U such that U ∩g(U) = ∅ for all nonidentity
g ∈ G.

2This terminology is nonstandard. Hatcher calls such an action a covering space action,
in light of the results in §10. Other authors may call it something like ‘free and properly
discontinuous’.
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Theorem 22. If X is path-connected, simply-connected, and locally path-connected3,
and G acts continuously freely on X, then π1(X/G) ∼= G.

Sketch of Proof. Let p : X → X/G be the quotient map, let x0 be a basepoint in
X, and let y0 = p(x0) its image in X/G. We define maps in either direction, and
leave it to you to check that they are inverse isomorphisms.

Given g ∈ G, choose a path in X from x0 to g ·x0; this gives a loop in X/G based
at y0, so an element of π1(X/G, y0). Such paths exist since X is path-connected,
and the choice of path doesn’t matter since X is simply-connected.

Conversely, given an element [α] ∈ π1(X/G, y0), choose a neighborhood U of x0

which is disjoint from all its images under the G-action. Then p maps U homeo-
morphically to a neighborhood of y0, so the first part of the path α can be lifted
from p(U) to U . Repeat this all the way along the loop α to lift it to a loop α̃ in
X. (Hey, I said this was a sketch, right?) The second endpoint of α̃ is in p−1(y0),
hence is equal to g · x for some g ∈ G, which is unique since the action is free. �

There are actually ways to make a similar result true without needing the action
to be free, but they require either introducing a more general kind of object, called
an ‘orbifold’ or ‘stack’, to be the quotient, or using a more complicated construction
called the ‘homotopy orbit space’.

There are also more general versions of this theorem not requiring X to be
connected (in which case you need to use the fundamental groupoid instead of the
fundamental group) or simply connected (in which case you get involved in group
extensions).

9. Universal covers

Now we ask the natural question: can we go the other way? Given a space Y
with π1(Y ) = G, can we construct a simply connected space X on which G acts
such that X/G ∼= Y ? After all, this is what we did for T 2 and S1. The answer is
yes, for nice enough Y , and the procedure is straightforward.

Think about the torus. The way we got a plane was by saying that someone
living in the torus would see one different copy of an object for each way in which
light could travel from that object to her eyes; in other words, for each path from
the location of that object to her eyes (the basepoint). So really what we’re doing
is taking one copy of each point x for each path from the basepoint to x. This
motivates the following construction.

Let Y be a space with basepoint y0 and let Ỹ denote the set of endpoint-
preserving-homotopy classes of paths in Y starting at y0. Let p : Ỹ → Y take
each equivalence class of paths to its second endpoint. In order for this map to be
surjective, we clearly need Y to be path-connected; no surprises there. Now let’s
try to topologize Ỹ .

Let [f ] be an element of Ỹ , with p([f ]) = f(1) = y, and let U be some neigh-
borhood of y in Y . We’d like to lift U to a neighborhood of [f ] in Ỹ which maps
homeomorphically onto it. To do this, we need to be able to extend f essentially

3This means that the topology on X has a basis of path-connected open sets.
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uniquely to a path from y0 to y′ for each y′ ∈ U . Certainly this is possible if U
is contractible, since in this case, we can connect y to y′ by an essentially unique
path and join it onto the end of f . Thus, it suffices to assume that Y is locally
contractible (has a basis of contractible opens)4. We can then define the set Ũ ,
consisting of the equivalence classes of all these paths, to be open in Ỹ , and as U

ranges over a basis of contractible opens, this will generate a topology on Ỹ .

Theorem 23. If Y is path-connected, locally path-connected, and semi-locally
simply-connected, then Ỹ , as defined above, is path-connected, simply-connected,
and locally path-connected, and G = π1(Y, y0) acts continuously freely on Ỹ with
quotient Y .

Sketch of Proof. The action of G on Ỹ is straightforward: just precompose a path
with a loop at y0. Since π1 and Ỹ are both defined using homotopy classes of maps,
this action is free, and the conditions on Y make it continuously free (insert waving
of hands). Finally, since the action preserves the endpoint of paths, and any two
paths with the same endpoint differ by a loop, it is clear that the quotient is Y . �

The space Ỹ is called the universal cover of Y , for reasons we’ll see in a
moment.

Example 24. We’ve already seen that S̃1 ∼= R, T̃ 2 ∼= R2, and we can check too
that R̃Pn ∼= Sn.

Example 25. Let Y be the wedge of two circles (the ‘figure-eight’ space). Its
fundamental group is the free group F2 on two generators. Its universal cover is
a graph whose vertices are the elements of F2: it is a ‘4-valent tree’. This is also
called the Cayley graph of F2; see Hatcher for more details.

10. General covering spaces

The maps p : Ỹ → Y we have been considering are actually a very special kind
of quotient map; in all cases the space downstairs is covered by open sets which lift
to a collection of disjoint homeomorphic images upstairs. This type of map is so
important that it has a name.

Definition 26. A covering map is a continuous map p : X → Y which is sur-
jective, and such that each y ∈ Y has an open neighborhood U ⊂ Y such that
p−1(U) is a disjoint union of components which are open in X and mapped home-
omorphically to U by p. X is called the covering space and Y is called the base
space.

Example 27. All our examples so far are covering maps. In fact, for any Y

satisfying the conditions of Theorem 23, the space Ỹ is a covering space.

Example 28. The map z 7→ z2 from S1 → S1, which wraps the circle around itself
twice, is a covering map. More generally, z 7→ zn is a covering map.

4Actually, the slightly weaker condition of being locally path-connected and semi-locally
simply connected suffices. See May or Hatcher for the definition.
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Example 29. The map from an infinite cylinder to a torus, which wraps it around
infinitely many times in one direction, is a covering map. Similarly, the map from
a torus to itself which wraps it around itself n times in one direction is a covering
map.

Example 30. On page 58, Hatcher has a lot of examples of covering spaces of the
figure-eight space.

We observe that, in general, the covering space need not be simply-connected.
However, its fundamental group π1(X) maps into the fundamental group π1(Y ) of
the base as a subgroup which depends on the covering map chosen.

For example, the map z 7→ z2 corresponds to the subgroup 2Z ⊂ Z, and z 7→ zn

corresponds to nZ. The cylinder mapping onto the torus corresponds to

Z× {0} ⊂ Z× Z

and the double cover of the torus by itself corresponds to

Z× 2Z ⊂ Z× Z.

Theorem 31. Let Y satisfy the hypotheses of Theorem 23. Then for every sub-
group H ⊂ π1(Y ), there is a unique (up to isomorphism) path-connected covering
space p : YH → Y such that p∗(π1(YH)) = H.

Remark 32. I’ve stated this kind of sloppily; to be more precise we should equip
both spaces X with compatible basepoints and specify that the isomorphisms of
covering spaces preserve basepoints. Two pointed covering spaces which are isomor-
phic in a way not preserving basepoints correspond to subgroups of π1(Y ) which
are not equal but conjugate. See May or Hatcher for details.

Sketch of Proof. To construct YH , start with the universal cover Ỹ and define two
points [α] and [β] in Ỹ (which, recall, are equivalence classes of paths in Y ) to
be equivalent when they have the same endpoint, and their composite [βα] lies in
H ⊂ π1(Y ). Let YH be the quotient of Ỹ by this equivalence relation. The rest is
easy to check. �

11. Path-lifting and non-connected spaces

Theorem 31 is great, but it only deals with connected spaces. However, not
only are there oodles of non-connected spaces, there are oodles of non-connected
coverings of connected spaces. For instance, we can map two circles to a circle, or
two copies of any space to itself. In order to deal with these, we need to reformulate
the classification theorem a bit. Here our treatment will get even sketchier than
before; the reader is encouraged to work out the details.

11.1. Path Lifting. Let p : X → Y be a covering map, y0 a basepoint in Y , and
let F = p−1(y0). Way back in Theorem 22, we constructed a group element from
an element of π1(Y ) by lifting the path downstairs to a path upstairs. We can do
this sort of lifting for any covering map in the same way: lift the path progressively
in each fundamental neighborhood, and patch them together; thus we have:
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Proposition 33. Given a path α in Y starting at y0, and a point x ∈ F , there is a
unique path α̃ in X starting at x such that p ◦ α̃ = α. Moreover, homotopic paths
lift to homotopic paths.

11.2. Non-connected covers. Assume for now that the base space Y is still path-
connected (we will lift this restriction next). We can use path lifting to construct an
action of π1(Y, y0) on the fiber F , for any covering space X. Given [α] ∈ π1(Y, y0)
and x ∈ F , lift α to a path starting at x in X and let [α] ·x be its second endpoint.

Note that since p is a covering map, F is a discrete space, hence really just a set.
We now observe that X is path-connected precisely when the action of π1(Y ) on F
is transitive (every point is mapped to every other point by some group element),
and make use of the following result:

Proposition 34. For any group G, there is a bijection between subgroups of G
and isomorphism classes of transitive G-sets. The subgroup H corresponds to the
coset space G/H with the obvious action.

Thus, using the action of π1(Y ) on F , we have recovered the correspondence
between subgroups of π1(Y ) and connected covering spaces. However, now it is
clear that the not-necessarily-connected covering spaces should be classified by sets
with a not-necessarily-transitive action. This is, in fact, the case.

Moreover, it can be extended to classify maps between covering spaces. Formally
speaking, we have:

Theorem 35. Let Y be connected, locally path-connected, and semi-locally simply-
connected. Then there is an equivalence of categories between (1) the category of
sets with a π1(Y )-action and maps that preserve the action, and (2) covering spaces
of Y and maps between them over Y .

11.3. Non-connected bases. Now, what if the base space Y is not connected?
We’ve already seen that for non-connected spaces, instead of the fundamental group
π1(Y ), it is more appropriate to consider the fundamental groupoid Π1(Y ). More-
over, if we recall that a G-set is the same as a functor from BG to Set, it is clear
that the correct generalization to groupoids is just to consider functors from the
groupoid to Set. The result is:

Theorem 36. Let Y be locally path-connected and semi-locally simply-connected.
Then there is an equivalence of categories between (1) the category of functors from
Π1(Y ) to Set and natural transformations, and (2) covering spaces of Y and maps
between them over Y .

If you’ve followed me thus far, then perhaps, you may find this version of the
theorem easier to visualize than the simpler versions for connected spaces, as I
do. Recall that the objects of Π1(Y ) are the points of Y and the morphisms are
homotopy classes of paths. Then the functor corresponding to a given covering
space p : X → Y simply sends each point y ∈ Y to the fiber p−1(y) over y, and each
class of paths [α] to the function obtained by lifting the path α and looking at the
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endpoint. (It is a little less straightforward, however, to see that any such functor
can be realized by a covering space.)

12. Vistas

What we’ve done, finally, is to classify something over Y (namely, covering
spaces) in terms of maps from something related to Y (namely, its fundamental
groupoid) to the collection of fibers (namely, sets). This is a fundamental theme
running through topology and geometry: the use of classifying maps and classifying
spaces. Here are a few more examples:

(1) Covering spaces over Y can also be classified by homotopy classes of maps
from Y itself to Fn(R∞)/Σn, the ‘configuration space of n-element sets.’
See [1] for a development of this idea.

(2) Real vector bundles over a nice space Y can be classified by homotopy
classes of maps from Y to a Grassmannian, the ‘configuration space of
hyperplanes’.

(3) Principal bundles with fiber G over Y can be classified by homotopy classes
of maps from Y into a space BG constructed from G, called the ‘classifying
space’ of G.

These classifying maps are one starting point for cohomology, another algebraic
invariant of a space, which also (in this way) tells us about what different sorts of
gadgets can live over it. See reference [2] for a lot more about this idea.
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