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The foundational material contained in this talk is meant to be exclusively review. To supplement
the ideas covered here, a great reference is Topology: A First Course by James R. Munkres.

1. A Topological Space

Definition 1.1. A topology on a set X is a collection of subsets TX called open sets such that
(1) X and ∅ are open,
(2) arbitrary unions of open sets are open, and
(3) finite unions of open sets are open.

We refer to the pair (X, TX) as a topological space.

Definition 1.2. A subset Y ⊆ X is closed if its complement in X is open.

Example 1.3. Trivial and discrete topologies.

2. Metric Spaces

Metric spaces are our first examples of topological spaces.

Definition 2.1. A metric on a set X is a function d : X ×X → R such that
(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 ⇐⇒ x = y,
(2) d(x, y) = d(y, x) for all x, y ∈ X, and
(3) d(x, z) ≥ d(x, y) + d(y, z) for all x, y, z ∈ X.

The pair (X, d) is called a metric space.

Example 2.2. The standard examples of metric spaces are:
(1) (Rn, d), where d(x, y) := ||x− y|| :=

√
(x1 − y1)2 + · · · (xn − yn)2 is the Euclidean norm.

(2) (Rn, dp), where dp(x, y) :=
(

n∑
i=1

|xi − yi|p
)1/p

is the p-norm.

(3) (Rn, ρ), where ρ(x, y) = max{|x1 − y1|, . . . , |xn − yn|} is the square metric.

If (X, d) is a metric space, we can define a topology on X as follows. We say that U ⊆ X is open
if for all x ∈ U , there exists an ε > 0 such that Bε(x) := {y ∈ X : d(x, y) < ε} ⊂ U . In this case we
say that d induces the topology on X.

Fact 2.3. The metrics d, dp, and ρ all induce the same topology on Rn. We call this the standard
topology on Rn and sometimes denote it by Td.

Definition 2.4. A topological space (X, TX) is metrizable if there exists a metric d that induces
the topology TX .

From now on we will omit the notation TX and refer to the topological space X.
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Definition 2.5. We say that x ∈ A ⊆ X is a limit point of A if every neighborhood of x intersects
A in some point other than x itself.

Definition 2.6. The union of a subset A ⊆ X and its limit points is called the closure of A,
denoted A. Equivalently, A is the smallest closed set in X that contains A.

Fact 2.7 (Sequence Lemma). Let X be metrizable and A ⊂ X. A sequence {xn} ⊂ A converges to
x ⇐⇒ x ∈ A.

Definition 2.8. A subset A ⊆ X is dense in X if A = X.

Example 2.9. Q is dense in R.

3. More Topological Spaces

Example 3.1. We can build other topological spaces out of the ones that we know as follows:
(1) Given (X, TX) and Y ⊂ X, define TY := {U ∩ Y : U ∈ TX}. We call (Y, TY ) the induced

or subspace topology.
(2) Given (X, TX) and (Y, TY ), we can define a topology on X × Y by forming the topology Tp

generated by all sets of the form U × V , where U ∈ TX and V ∈ TY . Here, W ∈ Tp if for
all x ∈ W there exists a set U × V such that x ∈ U × V ⊂ W , U ∈ TX , and V ∈ TY . The
resulting topology is called the product topology on X × Y .

(3) (Rω, Tp) where
∞∏

i=1

Ui ∈ Tp if Ui ∈ Td and only finitely many of the Ui are not all of R, defines

the product topology on countably many copies of R.

(4) (Rω, Tb) where
∞∏

i=1

Ui ∈ Tb if Ui ∈ Td, defines the box topology on Rω.

Definition 3.2. Let X and Y be topological spaces. A function f : X → Y is continuous if for
each open subset V ⊂ Y , the set f−1(V ) ⊂ X is an open subset.

Fact 3.3. If f : X →
∏
i∈I

Yi is given by f(x) = (fi(x)) coordinatewise where
∏

Yi has the product

topology, then f is continuous ⇐⇒ each fi is continuous.

This fact illustrates one of the many advantages of using the product topology over the (at first,
seemingly more natural) box topology.

Definition 3.4. Given a topological space X, a set B of open sets is called a basis for TX if every
set in TX is a union of elements in B.

Example 3.5. Here are some examples of bases for some familiar topological spaces:
(1) {Bq(x) : q ∈ Qn} is a basis for Rn with the standard topology.
(2) BY := {U ∩ Y : U ∈ BX} is a basis for the subspace topology on Y if BX is a basis for X.
(3) BX×Y := {U × V : U ∈ TX , V ∈ TY } is a basis for the product topology on X × Y .

Definition 3.6. Given a topological space (X, T ), a set S ⊂ T is called a subbasis for the topology
T if every open set is a union of finite intersections of sets in S.

Fact 3.7. Given a collection of subsets S of X, there exists a unique topology on X such that S is
a subbasis, namely the topology generated by S.

Example 3.8. Define the projection maps πj :
∏
i∈I

Xi → Xj by πj((xi)i∈I) = xj . Then the set⋃
j∈I

{π−1
j (Uj) : Uj ∈ TXj} defines a subbasis that generates the product topology.
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4. Compactness

The notion of a compact topological space is meant to generalize the desirable properties of a
closed interval [a, b] ⊂ R to arbitrary topological spaces.

Definition 4.1. A topological space X is compact if every open cover has a finite subcover.

Example 4.2. Let’s consider R with the standard topology.
(1) [a, b] is compact.
(2) {0} ∪ { 1

n : n ∈ N} is compact.
(3) R is not compact.
(4) (0, 1] is not compact.

Proposition 4.3. The image of a compact set under a continuous map is compact.

Definition 4.4. A topological space X is called Hausdorff if for every x, y ∈ X, there exist open
sets U and V such that x ∈ U , y ∈ V , and U ∩ V = ∅.

Proposition 4.5. All closed subsets of a compact space are compact. The converse holds if the
space is also Hausdorff.

Proposition 4.6. Let f : X → Y be a continuous bijection, and suppose X is compact and Y is
Hausdorff. Then f is a homeomorphism; i.e., f−1 is also continuous.

Definition 4.7. In the context of metric spaces, there are several more tangible characterizations
of compactness.

(1) A topological space X is sequentially compact if every sequence has a convergent subse-
quence.

(2) A topological space X is limit point compact if every infinite subset has a limit point.

Theorem 4.8. Let X be metrizable. The following are equivalent:
(1) X is compact.
(2) X is sequentially compact.
(3) X is limit point compact.

Theorem 4.9. X and Y are compact ⇐⇒ X × Y is compact.

Corollary 4.10 (Heine-Borel). A subset X ⊂ Rn is compact ⇐⇒ X is closed and bounded.

Theorem 4.11 (Tychanoff). Arbitrary products of compact sets are compact in the product topol-
ogy.

Tychanoff’s Theorem is deep. The proof uses the ideas of filters, together with yet another
alternative characterization of compactness.

Definition 4.12. A collection C of subsets of X satisfies the finite intersection property if every
finite subcollection of sets in C has a nonempty intersection.

Theorem 4.13. X is compact ⇐⇒ for every collection C of closed sets satisfying the finite
intersection property,

⋂
C∈C

C 6= ∅.

When dealing with function spaces, we can use the notion of compactness to define yet another
useful topology.

Definition 4.14. Let X and Y be topological spaces, and let K ⊂ X be compact and U ⊂ Y be
open. The sets C(K, U) := {f ∈ C(X, Y ) : f(K) ⊂ U} form a subbasis for the compact-open
topology. Here, C(X, Y ) denotes the set of continuous functions from X to Y .
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5. Local Compactness

Definition 5.1. A topological space X is locally compact at x if there exists a compact set
K ⊂ X that contains a neighborhood of x. X is said to be locally compact if it is locally compact
at each of its points.

Example 5.2. Here are several examples illustrating local compactness:
(1) Rn is locally compact.
(2) Rω

p is not locally compact.

A very nice, often studied class of topological spaces are the locally compact Hausdorff spaces.

Theorem 5.3. X is locally compact Hausdorff ⇐⇒ there exists a set Y ⊃ X such that
(1) Y −X is a single point, and
(2) Y is compact Hausdorff.

Moreover, Y is unique up to homeomorphism and is called the one-point compactification of X.

Example 5.4. The one-point compactification of R is the circle S1. The one-point compactification
of R2 is S2 ' C ∪ {∞}, the Riemann sphere.
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