REVIEW OF POINT-SET TOPOLOGY I
WOMP 2006

LIZ BEAZLEY

The foundational material contained in this talk is meant to be exclusively review. To supplement
the ideas covered here, a great reference is Topology: A First Course by James R. Munkres.

1. A TOPOLOGICAL SPACE

Definition 1.1. A topology on a set X is a collection of subsets 7x called open sets such that

(1) X and ) are open,
(2) arbitrary unions of open sets are open, and
(3) finite unions of open sets are open.

We refer to the pair (X, 7x) as a topological space.
Definition 1.2. A subset Y C X is closed if its complement in X is open.

Example 1.3. Trivial and discrete topologies.

2. METRIC SPACES
Metric spaces are our first examples of topological spaces.

Definition 2.1. A metric on a set X is a function d : X x X — R such that

(1) d(z,y) >0 for all z,y € X and d(z,y) =0 <= x =y,
(2) d(z,y) = d(y,x) for all z,y € X, and

(3) d(z,z) > d(x,y) + d(y, z) for all z,y,z € X.
The pair (X, d) is called a metric space.

Example 2.2. The standard examples of metric spaces are:
(1) (R",d), where d(z,y) == ||z — y|| :== \/(z1 —y1)2 + - (5, — yn)? is the Euclidean norm.
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(2) (R™,d,), where d,(z,y) := (Z |z; — yi|p> is the p-norm.
(3) (R™, p), where p(x,y) = max |_331 —y1|y- - |Zn — Yn|} is the square metric.

If (X, d) is a metric space, we can define a topology on X as follows. We say that U C X is open
if for all 2 € U, there exists an € > 0 such that B.(z) := {y € X : d(z,y) < €} C U. In this case we
say that d induces the topology on X.

Fact 2.3. The metrics d, d,, and p all induce the same topology on R™. We call this the standard
topology on R™ and sometimes denote it by 7.

Definition 2.4. A topological space (X, 7x) is metrizable if there exists a metric d that induces
the topology 7Ty .

From now on we will omit the notation 7x and refer to the topological space X.
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Definition 2.5. We say that € A C X is a limit point of A if every neighborhood of x intersects
A in some point other than x itself.

Deﬁnitign 2.6. The unign of a subset A C X and its limit points is called the closure of A,
denoted A. Equivalently, A is the smallest closed set in X that contains A.

Fact 2.7 (Sequence Lemma). Let X be metrizable and A C X. A sequence {z,} C A converges to
r = xz €A

Definition 2.8. A subset A C X is dense in X if A = X.
Example 2.9. Q is dense in R.

3. MORE TOPOLOGICAL SPACES

Example 3.1. We can build other topological spaces out of the ones that we know as follows:

(1) Given (X,7x) and Y C X, define Ty :={UNY : U € Tx}. We call (Y,7y) the induced
or subspace topology.

(2) Given (X,7x) and (Y, 7y ), we can define a topology on X x Y by forming the topology 7,
generated by all sets of the form U x V, where U € Tx and V € 7Ty. Here, W € 7, if for
all z € W there exists a set U x V such that t e U x V C W, U € Tx, and V € Ty. The
resulting topology is called the product topology on X x Y.

(3) (R¥,7,) where [[ U; € 7, if U; € 7 and only finitely many of the U; are not all of R, defines
i=1
the product topology on countably many copies of R.
(4) (R¥,Tp) where [ U; € Ty if U; € 74, defines the box topology on R¥.

=1
Definition 3.2. Let X and Y be topological spaces. A function f : X — Y is continuous if for
each open subset V C Y, the set f~1(V) C X is an open subset.

Fact 3.3. If f : X — [] Y is given by f(z) = (f;(x)) coordinatewise where []Y; has the product
il
topology, then f is continuous <= each f; is continuous.
This fact illustrates one of the many advantages of using the product topology over the (at first,
seemingly more natural) box topology.

Definition 3.4. Given a topological space X, a set B of open sets is called a basis for Tx if every
set in 7x is a union of elements in B.

Example 3.5. Here are some examples of bases for some familiar topological spaces:
(1) {By(x): ¢ € Q'} is a basis for R™ with the standard topology.
(2) By :={UNY :U € Bx} is a basis for the subspace topology on Y if By is a basis for X.
(3) Bxxy :={U xV :U € Tx,V € Ty} is a basis for the product topology on X x Y.

Definition 3.6. Given a topological space (X,7), aset S C 7 is called a subbasis for the topology
T if every open set is a union of finite intersections of sets in S.

Fact 3.7. Given a collection of subsets & of X, there exists a unique topology on X such that S is
a subbasis, namely the topology generated by S.

Example 3.8. Define the projection maps 7; : [[ X; — X; by 7;((2:)icr) = ;. Then the set
iel

U {7rj_1(Uj) : Uj € Tx, } defines a subbasis that generates the product topology.
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4. COMPACTNESS

The notion of a compact topological space is meant to generalize the desirable properties of a
closed interval [a,b] C R to arbitrary topological spaces.

Definition 4.1. A topological space X is compact if every open cover has a finite subcover.

Example 4.2. Let’s consider R with the standard topology.
(1) [a,b] is compact.
(2) {0} U{L :n €N} is compact.
(3) R is not compact.
(4) (0,1] is not compact.
Proposition 4.3. The image of a compact set under a continuous map is compact.

Definition 4.4. A topological space X is called Hausdorff if for every x,y € X, there exist open
sets U and V such that z e U, y € V,and U NV = (.

Proposition 4.5. All closed subsets of a compact space are compact. The converse holds if the
space is also Hausdorff.

Proposition 4.6. Let f : X — Y be a continuous bijection, and suppose X is compact and Y is
Hausdorff. Then f is a homeomorphism; i.e., f~! is also continuous.

Definition 4.7. In the context of metric spaces, there are several more tangible characterizations
of compactness.

(1) A topological space X is sequentially compact if every sequence has a convergent subse-

quence.

(2) A topological space X is limit point compact if every infinite subset has a limit point.
Theorem 4.8. Let X be metrizable. The following are equivalent:

(1) X is compact.

(2) X is sequentially compact.

(3) X is limit point compact.
Theorem 4.9. X and Y are compact <= X x Y is compact.
Corollary 4.10 (Heine-Borel). A subset X C R” is compact <= X is closed and bounded.

Theorem 4.11 (Tychanoff). Arbitrary products of compact sets are compact in the product topol-
ogy.

Tychanoff’s Theorem is deep. The proof uses the ideas of filters, together with yet another
alternative characterization of compactness.

Definition 4.12. A collection C of subsets of X satisfies the finite intersection property if every
finite subcollection of sets in C has a nonempty intersection.

Theorem 4.13. X is compact <= for every collection C of closed sets satisfying the finite
intersection property, () C # 0.
ceC

When dealing with function spaces, we can use the notion of compactness to define yet another
useful topology.

Definition 4.14. Let X and Y be topological spaces, and let K C X be compact and U C Y be
open. The sets C(K,U) := {f € C(X,Y) : f(K) C U} form a subbasis for the compact-open
topology. Here, C(X,Y’) denotes the set of continuous functions from X to Y.
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5. LocAL COMPACTNESS

Definition 5.1. A topological space X is locally compact at z if there exists a compact set
K C X that contains a neighborhood of x. X is said to be locally compact if it is locally compact
at each of its points.
Example 5.2. Here are several examples illustrating local compactness:

(1) R™ is locally compact.

(2) Ry is not locally compact.

A very nice, often studied class of topological spaces are the locally compact Hausdorff spaces.

Theorem 5.3. X is locally compact Hausdorff <= there exists a set Y D X such that
(1) Y — X is a single point, and
(2) Y is compact Hausdorff.
Moreover, Y is unique up to homeomorphism and is called the one-point compactification of X.

Example 5.4. The one-point compactification of R is the circle S*. The one-point compactification
of R? is 82 ~ C U {oo}, the Riemann sphere.
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