
WOMP Talk 1, Part 1: Algebra I
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Abstract

We review the notion of a vector space, basis and dimension, linear transforma-
tions between vector spaces, dual vector spaces and transformations, spectral decom-
position for normal operators (which includes symmetric, Hermitian, orthogonal, and
unitary operators), and determinants. Along the way we review direct-sum decompo-
sitions, bilinear forms and inner product spaces, adjoints, characteristic polynomials,
and generalized-eigenspace decompositions for algebraically closed fields. The discus-
sion of determinants includes a correct definition of the exterior (alternating) product
of dual vector spaces.

This talk is entirely review, except possibly for the spectral theorem (which you
should at least have seen for symmetric/Hermitian or orthogonal/unitary operators).

1 Preliminaries

Let me spend one minute reviewing groups, rings, and modules. A group G is a set together
with a multiplication G × G → G which is associative (i.e. (ab)c = a(bc), ∀a, b, c ∈ G), has
a unit e ∈ G satisfying eg = ge = g, ∀g ∈ G, and has inverses: for every g ∈ G there
exists g−1 ∈ G such that gg−1 = g−1g = e. An abelian group is a group G which is also
commutative: ab = ba, ∀a, b ∈ G. Usually we will regard the “multiplication” in an abelian
group as an “addition” since usual addition is commutative.

Common examples of groups: permutation groups Sn on n letters and the alternating
groups An of even permutations; cyclic groups Z,Z/n; the rationals Q, reals R, and complex
numbers C under addition; the “general linear” group GL(V ) of invertible linear transforma-
tions on a vector space V (to be defined later), the groups SL(V ), O(V ), SO(V ), U(V ), SU(V ), Sp(V )
of, in order: special linear group of invertible transformations having determinant 1, orthogo-
nal group of transformations preserving a symmetric bilinear form over a (real) vector space,
special orthogonal group of orthogonal transformations of determinant 1, unitary group of
transformations preserving a Hermitian inner product over a complex vector space, special
unitary group of unitary transformations of determinant 1, and the symplectic group of trans-
formations preserving a symplectic form on a (real) vector space. For the groups GL, SL,
one can get finite groups if working over a finite field; O,SO, and Sp can also be generalized
to finite fields to get finite groups. Other groups one could consider include groups of units
of fields such as Rx,Cx, or even the noncommutative group of unit quaternions Hx. One can
also consider groups of automorphisms of various other objects, such as geometric spaces,
other groups, etc.

A ring R is an abelian group (which we consider the addition, with unit 0) together
with an associative multiplication with unit 1 satisfying the distributive property: a(b+c) =
ab + ac,∀a, b, c ∈ R. In other words, defining a monoid to be a set with an associative
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multiplication with unit, R is both an abelian group under addition and a monoid under
multiplication, which also satisfies the distributive property. An abelian (or commuta-
tive) ring R is a ring which is also multiplicatively commutative: ab = ba, ∀a, b ∈ R.

We will always use the notation 0 for the additive unit and 1 for the multiplicative unit
in a ring. Note that the distributive property implies in particular that 0x = x0 = 0 for all
x ∈ R. So, the zero element is never multiplicatively invertible. If every nonzero element
is invertible, the ring is called a division ring, and a commutative division ring is called a
field. More generally, for any ring R, we can define Rx to be the group of units, or invertible
elements, of R. Rx = R \ {0} iff R is a division ring.

Common examples of rings: Z,Z/n, rings Z[
√

2],Z[i] or other such subrings of C; direct
products of these; rings of n×n matrices or their subrings, which can contain coefficients in
any other ring. Common examples of fields: R,C,Fp = Z/p for a prime p, the other finite
fields Fpk , k ≥ 1 and p prime. For any ring R we can consider the ring R[x] of polynomials
with those coefficients: so R[x],C[x],Fp[x] and their quotients are common rings; by iterating
this process we can get rings of polynomials in any number of variables with coefficients in
any ring.

Given any groups G1, G2 we define the notion of a group homomorphism φ : G1 →
G2 to be a map sending the unit to the unit which is multiplicative: φ(e) = e, φ(gh) =
φ(g)φ(h)∀g, h ∈ G1.

Similarly, if R1, R2 are rings, a ring homomorphism φ : R1 → R2 is a map such that
0 7→ 0, 1 7→ 1 and φ is additive and multiplicative: φ(ab) = φ(a)φ(b), φ(a + b) = φ(a) + φ(b).
In other words, φ is simultaneously a group homomorphism under addition and a monoid
homomorphism under multiplication.

Any homomorphism which has an inverse homomorphism is called a isomorphism.
Any homomorphism from an object to itself is called an endomorphism; anything which is
both an endomorphism and an isomorphism is called an automorphism. The collections of
endomorphisms or automorphisms of an object X are denoted End(X), Aut(X), respectively.
The collection of homomorphisms between X and Y is denoted by Hom(X,Y ).

Note that if G1, G2 are abelian groups, then Hom(G1, G2) is also an abelian group:
(φ1 + φ2)(g) = φ1(g) + φ2(g). The zero element is the map 0(g) = 0, ∀g ∈ G1. Also, if
G is any group, End(G) is not just an abelian group, but a ring: given two endomorphisms
φ1, φ2, we can add them by (φ1 + φ2)(x) = φ1(x) + φ2(x) and multiply by composition:
(φ1 ◦ φ2)(x) = φ1(φ2(x)). The group End(G)x of invertible endomorphisms is the same as
Aut(G). In End(G), the 1 element is the identity, and the 0 element is the endomorphism
sending everything to zero.

Note that, for any abelian group G, Hom(Z, G) ∼= G under the indentification φ 7→ φ(1).
Also, for any ring R, R ⊂ End(R) under the inclusion r 7→ φr, φr(s) = rs, ∀s ∈ R. So we
say that End(R) is an R-algebra, meaning a ring which contains R (we’ll talk more about
this later).

Given a ring R, a left R-module M is an abelian group together with a ring homo-
morphism ρ : R → End(M). This is the same thing as a left multiplication R × M →
M, r ·m 7→ ρ(r)(m) for r ∈ R, m ∈ M , which satisfies the properties (r1r2)(m) = r1(r2 ·m),
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(r1 + r2)(m) = r1m + r2m, and 1 · m = m, 0 · m = 0,∀m ∈ M . A right R-module is
the same thing but for a right multiplication instead of a left: this is equivalent to a ring
homomorphism ρ : Rop → End(M), where Rop is defined to be the ring with the same set of
elements as R, but with reversed multiplication: to multiply x · y in Rop, we take y · x in R.
That is, a right R-module is an “anti-homomorphism”, a map ρ : R → End(M) satisfying
ρ(xy) = ρ(y)ρ(x), which is an additive homomorphism and sends 1 to 1.

Note that the distinction between left and right modules disappears if the ring is com-
mutative: then we can canonically associate a left module with a right one and vice-versa
by rm = mr for m ∈ M, r ∈ R.

If the ring is not just commutative but a field, then the module can be called a vector
space over the field. That is, a vector space is, by definition, a module over a field.

A homomorphism between two left R-modules M1,M2 is a map φ : M1 → M2 which is
a homomorphism of abelian groups commuting with the multiplication by the ring: that is,
φ(rm) = rφ(m),∀r ∈ R, m ∈ M , and φ(m1 + m2) = φ(m1) + φ(m2),∀m1,m2 ∈ M . This is
sometimes expressed by saying φ(r1m1 + r2m2) = r1φ(m1) + r2φ(m2). A homomorphism of
right R-modules is the same thing but with the multiplication on the right. A homomorphism
of vector spaces is the same as a homomorphism of modules, but where the ring is a field.

The space of homomorphisms Hom(M1,M2) of two left R-modules is itself a left R-
module: (r1φ1 + r2φ2)(m) = r1φ1(m) + r2φ2(m). The space of endomorphisms End(M) of
an R-module is not only an R-module, but also a ring (because M is an abelian group)
which contains R: there is a ring homomorphism R → End(M) given by r 7→ φr, φr(m) =
rm, ∀m ∈ M . The ring homomorphism is injective and makes R a subring of End(M), so
End(M) is an R-algebra, generalizing the example where M = R itself. The reason this
is called an R-algebra is because any ring containing R is canonically an R-module under
multiplication by R. We see that this R-module structure on End(M) is the same R-module
structure we get by considering it to be Hom(M, M): rφ(m) = (φr ◦ phi)(m) = (rφ)(m).
The multiplicative group End(M)x of units in this algebra is the group Aut(M) of R-module
automorphisms of M .

2 Vector spaces, basis, dimension, and rank

Now that we’ve gotten that out of our system (I’m actually omitting it from my talk, because
I only have 50 minutes), we can focus on vector spaces. Here’s the definition since I’m
starting here for my talk: Recall that a field is a set with addition and multiplication, which
are both associative and commutative, satisfying the distributivity property, and having
distinct elements 0 and 1 which are the additive and multiplicative identities, respectively;
finally, every element has a negative (=additive inverse), and every nonzero element has a
reciprocal (=multiplicative inverse). Since the multiplication is commutative, it makes sense
to write fractions, since we don’t need to worry whether the denominator is inverted on the
left or right.

Now, a vector space V is an additive group which has a multiplication by a field k,
which we call from now on the field of scalars or just scalars. The multiplication must
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be an action in the sense that it gives a homomorphism from the field to the ring of group
endomorphisms of the vector space: that is (a+ b)(v) = av+ bv and (ab)v = a(bv), as well as
0v = 0, 1v = v, ∀v ∈ V . Note that, since every nonzero element of the field has a reciprocal,
multiplication by anything nonzero must actually be an automorphism of the vector space.
This is just a fancy way of saying that for any c ∈ k \ {0}, the maps v 7→ cv, v 7→ 1

c
v are

inverses.
A map φ : V → W between vector spaces which satisfies φ(av + bw) = aφ(v) + bφ(w) is

called a linear map, a homomorphism, or even just a map if there is no confusion. (This
is the same as a k-module homomorphism, of course.) A subspace V0 ⊂ V of a vector space
V is a subset which is a vector space under the induced addition and scalar multiplication.
Given a subspace V0 ⊂ V , we can form the quotient V/V0, which is defined as the set of
distinct cosets v + V0 := {v + w | w ∈ V } as v ∈ V varies: this is a vector space since
a(v + V0) + b(w + V0) = (av + bw) + V0, with 0 + V0 = V0 the zero element.

A map of vector spaces is an isomorphism if it has an inverse (which is also linear).
This is equivalent to the map being bijective, since any set-theoretic inverse must be linear:
φ(φ−1(aw1 + bw2)) = aw1 + bw2 = φ(aφ−1(w1) + bφ−1(w2)) ⇒ φ−1(aw1 + bw2) = aφ−1(w1) +
bφ−1(w2). So surjectivity and injectivity imply a linear map is an isomorphism.

The term vector space comes from the examples of R2,R3, or more generally Rn, where
we can think of a vector as being an oriented line segment which can be translated anywhere
(but keeping its direction and length fixed), adding two of them by sticking the tail of one
at the head of the other. In other words, these vector spaces can be thought of as an n-tuple
of real numbers which add coordinatewise.

This situation generalizes to kn for any field k: we can always consider n-tuples of
elements of k. Actually, this happens a lot: any finite-dimensional vector space is kn where
n is the dimension. But let’s review first the concept of dimension through bases.

Given a vector space V over a field k, we can try to make it look like kn by starting to
pick coordinates, or a basis. Given any vectors v1, . . . , vn ∈ V , we can define the span as
Span(v1, . . . , vn) = {a1v1 + a2v2 + . . . + anvn, ai ∈ k}. If all of these elements in the span are
different for different choices of ai, then we see that Span(v1, . . . , vn) ∼= kn, a1v1+. . .+anvn 7→
(a1, . . . , an). In this case, we say that the set v1, . . . , vn is linearly independent, and is a
basis for the Span(v1, . . . , vn).

If not, then there are two choices ai, a
′
i such that a1v1 + . . . anvn = a′1v1 + . . . + a′nvn,

which means (a1 − a′1)v1 + . . . + (an − a′n)vn = 0. In other words, the elements are not
all the same just in the case when there is some nonzero combination of the vi that gives
zero. In this case, we say that the vi are linearly dependent, and any relation of the form
a1v1 + . . . + anvn = 0 is referred to as a linear dependence. In this case, we can pick any

ai 6= 0 and see that vi = 1
ai

(∑
j 6=i ajvj

)
. That means that we could have thrown out vi to get

the same span. By continually throwing out a vector every time the set is linearly dependent,
we will eventually arise at a set vi1 , . . . , vim with is linearly independent, i.e. there is no
linear dependence. In this case, we see that Span(v1, . . . , vn) = Span(vi1 , . . . , vim) ∼= km. So
we just proved that any vector space spanned by a list of n vectors is isomorphic to km for
some m ≤ n, with basis some collection of m of the vectors in our original set.
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We call this m the dimension of the vector space. We haven’t proved, though, that m
is well-defined: what if the same vector space can have bases of two different sizes? In other
words, what if km ∼= kn for m 6= n? As it turns out, this can’t happen. A reason for that
is the following: in km, any set of vectors of size n > m is linearly dependent. This can be
proved by viewing a set of n vectors in km as an m × n-matrix of coefficients in k; by row
reduction, if n > m, we can eliminate the matrix to one that is of the form




0 . . . 0 1 ∗ . . .
0 . . . 0 0 0 . . . 0 1 . . .
...

. . .

0 0 0 0 0 0 0 0 0


 , (2.1)

so that the bottom n −m rows are all zero (and possibly more): any of these n −m rows
gives an “independent” linear dependence. So dimension is well defined.

Additionally, given any vector space V of dimension n, then any set of vectors which
spans V must be at least n in size, for the same reason. Finally, any linearly independent
set of n vectors in V must span all of V , since it spans an n-dimensional subspace, and thus
every vector of V is linearly dependent with these n elements, i.e. in its span.

Actually, the proof that dimension is well-defined in fact has shown us more: Given any
n×m-matrix, there is a well-defined rank of the matrix, which is just the value k such that
there are exactly k independent rows. Using column operations, we see that this is the same
number as the number of independent columns: swapping rows and adding a multiple of one
row to another will not change any linear independence of the columns and vice-versa. So
column and row operations leave the number of linearly independent rows and columns the
same. When we reduce the matrix to the form (2.1) we see that these numbers are the same:
just the number of nonzero rows (equivalently the number of nonzero columns) which gives
the rank. Clearly for any n×m-matrix, the rank is ≤ min(m,n).

Let us generalize to vector spaces that are not spanned by a finite number of vectors; for
example, the vector space of infinite sequences (a0, a1, a2, . . .) of elements of k, or say the
space of real functions R → R (we could restrict to continuous ones, or differentiable ones,
or whatever). In the general case, we define the span of a possibly infinite subset S ⊂ V as
Span(S) = {a1v1 + a2v2 + . . . anvn | v1, v2, . . . , vn ∈ S}. We say S is linearly independent
if there is no linear dependence among any finite number of elements of S. We say that S is
a basis for V if it spans V and is linearly independent.

For any vector space that is not spanned by a finite number of vectors, we can still find
a basis of the vector space using Zorn’s lemma: we start with a vector, then find a linearly
independent vector, then a vector linearly independent with the first two, etc., and eventually
(after a possibly large infinite number of vectors) we have a linearly independent set which
spans, i.e. a basis.
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3 Direct sum, complementary subspaces

In R3, say, given some one-dimensional subspace (a line), (ta, tb, tc), t ∈ R, we may want to
find a complementary subspace, i.e. some plane that generates R3 together with the line.
For example, (x, y, z), ax + by + cz = 0. Every vector in R3 can be uniquely expressed as a
sum of a vector from each of these subspaces. For another example, consider V = the x-axis,
W = the yz-plane.

In general, given vector subspaces W1,W2 ⊂ V , we define the sum W1 +W2 = {w1 +w2 |
w1 ∈ W1, w2 ∈ W2}. If W1 + W2 = V and W1 ∩ W2 = {0}, then we say V = W1 ⊕ W2,
and write that V is the direct sum of W1 and W2. We make this definition because
v1 + w1 = v2 + w2 ⇔ (v1 − v2) = (w1 − w2) ∈ V ∩W , so that V ∩W = {0} iff v1 + w1 =
v2 + w2 ⇒ v1 = v2, w1 = w2 for any v1, v2 ∈ V, w1, w2 ∈ W .

Given any vector spaces V0 ⊂ V , there always exists a subspace W ⊂ V such that
V = V0 ⊕W . We call such a subspace a complementary subspace to V0. To construct
one, we can start by finding one vector not in V0, then another vector not in the span of that
with V0, etc., just like finding a basis of V . In fact, one way to find W is to find a basis of V0

and extend to a basis of V ; then the basis vectors not in V0 span a complementary subspace.
For finite-dimensional vector spaces W1,W2, we readily see that dim (W1 ⊕ W2) =

dim W1 + dim W2. More generally, given W1,W2 ⊂ V , we see that dim (W1 + W2) =
dim W1 + dim W2 + dim W1 ∩W2.

We can extend the definition of direct sums to an arbitrary number of vector spaces: We
say that V =

⊕
i∈I Wi for subspaces Wi ⊂ V if Wi ∩

⊕
j 6=i Wj = {0},∀i ∈ I. Note that

being pairwise distinct is not enough! We want this definition to mean that all the Wi are
linearly independent. For example, if we have a basis (vi) of V , then V =

⊕
Span(vi). So a

basis gives a direct-sum decomposition into one-dimensional subspaces. If we had required
the intersections to be zero only pairwise, then for R2 we could have said that the plane R2

is the direct sum of any distinct set of ≥ 2 lines in the plane!
Note finally that the way we defined direct sum, we have dim(V ) =

∑
i∈I dim Vi.

4 Linear transformations and dual vector spaces

Given any vector spaces V, W , it makes sense to consider the space Hom(V,W ) of homo-
morphisms between V and W . This is just the space of homomorphisms of abelian groups
which commutes with scalar multiplication: φ(av) = aφ(v),∀a ∈ k. We also call this the
space of linear transformations between V and W . We see that Hom(V,W ) is itself a
k-vector space. If V and W are finite-dimensional of dimensions m and n, respectively, then
choosing any basis of V and W , we see that Hom(V,W ) is identified with n ×m-matrices.
So, dim(Hom(V,W )) = nm. In particular, it is finite-dimensional if V and W are.

The rank that we defined as the number of linearly independent rows or columns now
becomes the dimension of the image: if φ ∈ Hom(V,W ), then rank(φ) = dim (im φ), because
when we choose any bases of V and W and look at the matrix, the span of the columns is
the image so that the dimension is the number of linearly independent columns. This tells

6



us that rank is a really natural concept, since it doesn’t need a choice of basis at all to be
defined (provided you don’t think of our use of dimension as requiring looking at a basis).

Given a homomorphism φ : V → W , we can consider the kernel of φ, the vector space
ker(φ) = {v ∈ V | φ(v) = 0} ⊂ V . It is a vector space because φ(av + bw) = 0 if
φ(v) = φ(w) = 0. We see that the image im φ = φ(V ) ⊂ W, defined by im φ := φ(V ) :=
{w ∈ W | w = φ(v), for some v ∈ V }, is isomorphic to the quotient V/kerφ. That is, just as
in the case of abelian groups, we see that φ : V/kerφ → φ(V ) is well-defined and is surjective
and injective, which means that it has an inverse (clearly as sets, and we see that it must
also be linear). So, the dimension satisfies V − dim ker(φ) = dim φ(V ) = rank φ.

If we have any map φ : V → W , then it is injective iff ker(V ) = 0, and it is surjective
iff φ(V ) = W . In the case that W is finite-dimensional, we see that surjectivity is the same
as rank φ = dim W , since dim φ(V ) = dim W ⇒ φ(V ) = W by our earlier remarks about
dimension. If, moreover, dim V = dim W , then dim V = dim ker(φ) + dim φ(V ), shows
that dim ker(φ) = 0 (φ is injective) iff dim φ(V ) = dim V = dim W (φ is surjective). So
in the finite-dimensional case, the map is an isomorphism iff the dimensions of the vector
spaces are equal and the map is either injective or surjective (we need not check both).

If we let W = k, the one-dimensional vector space, then the space Hom(V, k) is called
the dual to V and is denoted by V ∗. For any dual vector f ∈ V ∗ and any vector v, we
can take f(v) ∈ k, that is we have a pairing V × V ∗ → k. By considering this pairing
the other way, we can view V as a space of linear functions on V ∗: that is, fixing a vector
v ∈ V we get a function on V ∗, f 7→ f(v). So this gives an embedding V ↪→ (V ∗)∗: it’s
obvious that it is a linear map, and it is injective because f(v) = f(v′) for all f ∈ V ∗ implies
f(v − v′) = 0,∀f ∈ V ∗, but we could certainly construct an element of V ∗ that is not zero
on v − v′ if v − v′ 6= 0 by forming a basis of V that begins with v − v′ and considering the
linear function that is 1 on v − v′ and zero on the other vectors in the basis. This requires
Zorn’s lemma if V is not finite-dimensional. We have constructed a canonical embedding
V ↪→ (V ∗)∗, i.e. an injective homomorphism (=monomorphism).

If V is finite-dimensional, then we can see that V ∗ has the same dimension as V : given
any basis v1, . . . , vn of V , we can define a dual basis of V ∗ which is just v1, . . . , vn satisfying
vi(vj) = δij (recall δij = 1 if i = j and 0 otherwise). It is clear that the vi are linearly
independent and span V ∗, so V ∗ has the same dimension as V . Since they are then both
isomorphic to kn, that means that V ∼= V ∗, sending a linear combination of the vi to
the corresponding combination of the vi. But this is not a natural isomorphism, because
it depended on the choice of the vi: if we changed the vi slightly, say v1 7→ v′12v1, then
v1 7→ (v′)1 = 1

2
v1 is the dual change of basis, but then our isomorphism sending v′1 to (v1)′

would send v1 to 1
4
v1 instead of v1, so we get a different isomorphism of V with V ∗. That

is, the isomorphism does not commute with change of basis, which is the main naturality
requirement for isomorphisms (more later in the category theory talk).

Thus, (V ∗)∗ also has the same dimension as V in the finite-dimensional case. So the
natural embedding V ↪→ (V ∗)∗ is an isomorphism by our earlier remarks.

On the other hand, if V is infinite-dimensional, V ↪→ (V ∗)∗ is not surjective: given a
basis of V , we can still construct the “dual basis” in V ∗, and it is still linearly independent,
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but it doesn’t span all of V ∗, only the set of functions which are nonzero on only a finite
number of basis vectors of V . Then, the canonical embedding V ↪→ (V ∗)∗ sends V to only
those vectors which are nonzero on only a finite number of elements of that “dual basis”,
and thus is not surjective.

In fact, for infinite-dimensional spaces, we can still define dimension by the cardinality
of a basis (which one can show is independent of the choice of basis much as we did earlier,
using the well-ordering principle) and V ∗ will have dimension greater than V : I believe it
has dimension equal to 2dim V . So (V ∗)∗ is also quite a bit larger than V .

5 Dualizing linear maps

Now that we understand the concept of a dual vector space, it is time to understand how
to take duals of linear maps. Given a homomorphism φ : V → W , we can define its dual,
the map φ∗ : W ∗ → V ∗, by the definition φ∗(f)(v) = f(φ(v)), ∀v ∈ V, f ∈ W ∗. If V, W are
finite-dimensional, then the double-dual (φ∗)∗ : (V ∗)∗ → (W ∗)∗ is identified with φ under
the canonical identifications V ∼= (V ∗)∗,W ∼= (W ∗)∗ (making the canonical identifications,
(φ∗)∗(v)(f) = [φ∗(f)](v) = f(φ(v)), ∀v ∈ V = (V ∗)∗, f ∈ W ∗, so (φ∗)∗(v) = φ(v)).

We see that Hom(V, W ) Â Ä ∗ // Hom(W ∗, V ∗) under the dual, and this is an isomorphism
if V and W are finite-dimensional since the two spaces both have the same dimension.

Dualizing commutes with composition: if we have linear maps T : U → V, S : V → W ,
then S ◦ T : U → W has dual (S ◦ T )∗ = T ∗ ◦ S∗, which follows immediately from the
definition.

Using duals, we can define, for any subspace V0 ⊂ V , the natural perpendicular space:
V ⊥

0 := ker(i∗) ⊂ V ∗, where i∗ : V ∗ → V ∗
0 is the dual of the natural inclusion i : V0 ↪→ V .

We call i∗ the restriction of V ∗ to V ∗
0 because it just restricts a function to V0. That is,

V ⊥
0 = {f ∈ V ∗ | f(v) = 0, ∀v ∈ V0}. Another way to define V ⊥

0 is by V ⊥
0 := (V/V0)

∗,
which is identified with the given subset of V ∗ by the map q∗ : (V/V0)

∗ ↪→ V ∗ dual to the
quotient q : V → V/V0. Indeed, q∗ just sends a linear function on V/V0 to the corresponding
function of V which is zero on V0. In the finite-dimensional case, this says that dim V ⊥

0 =
dim (V/V0)

∗ = dim V/V0 = dim V − dim V0.
We saw that the inclusion i is injective and the restriction i∗ is surjective (actually, for

surjectivity, we need to extend a linear function of V0 to one of V , which we can do by
extending a basis of V0 to one for V for example); on the other hand, the quotient q is
surjective and the map q∗ is injective. In other words, we have just seen that the dual of any
injective map is surjective, and the dual of any surjective map is injective.

The perpendicular has a nice property: if we have any linear map T : V → W with dual
T ∗ : W ∗ → V ∗, then im T ∗ = (ker T )⊥. Indeed, we can factor the map as T = i ◦ q, where
q : V ³ V/V0 is the quotient, and i : V/V0 ↪→ W is injective. Then im T ∗ = im (i ◦ q)∗ =
im (q∗ ◦ i∗) = im q∗ = (ker T )⊥. Here we used the previous observation that i∗ is surjective.

In the finite-dimensional case, we see from surjectivity of the restriction i∗ that rank i∗ =
dim V ∗

0 = dim V0 = rank i. This property of the rank being invariant under dualization
generalizes to any linear map T : V → W :: we see that T = i ◦ q for q : V ³ V/(ker T ), and
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i : V/(ker T ) ↪→ W . Then rank T = rank i = rank q = rank i∗ = rank q∗ = rank T ∗.
Using bases of V and W and their dual bases for V ∗ and W ∗, we see that the matrices

for T ∗ and T are related by transposition: we reflect across the diagonal, turning an n×m-
matrix into an m×n-matrix. So we are just saying that the rank of a matrix is equal to the
rank of its transpose, which is obvious from the definition of rank of a matrix. [Actually, we
defined rank of an operator as the dimension of the column space of a corresponding matrix,
and the fact that this equals the rank of the dual operator is another way to see that the
dimension of the column space is the same as the dimension of the row space.]

6 Inner products and normal transformations

We have seen how if V is a finite-dimensional vector space, then there are noncanonical
isomorphisms between V and its dual space V ∗, for example by choosing a basis and then
taking the dual basis. We saw that this identification depends on the basis. But it doesn’t
depend completely on the basis: if we swapped the order of two of the basis vectors (or any
other permutation of them for that matter), one sees that the map is the same. So the time
has come to characterize what an identification of V with V ∗ really is.

Let’s start with a homomorphism T : V → V ∗. This assigns each v ∈ V with a linear
function fv = T (v) ∈ V ∗. This is evidently the same thing as a map B : V × V →
k, B(v, w) := fv(w) = T (v)(w) which is bilinear: B(a1v1+a2v2, w) = a1B(v1, w)+a2B(v2, w)
and B(v, a1w1 + a2w2) = a1B(v, w1) + a2B(v, w2). Let’s drop the B now and just think of it
as a pairing, (v, w) := B(v, w) ∈ k for any v, w ∈ V . Such a bilinear pairing (, ) is called a
bilinear form.

For the homomorphism to be an isomorphism, it is necessary and sufficient for V to be
finite-dimensional and for the homomorphism to be injective: that is, fv 6= 0 for any nonzero
choice of v. In terms of the bilinear form, this says that for every v 6= 0, there exists a w
such that B(v, w) 6= 0. An equivalent condition is that the homomorphism is surjective, or
that the dual T ∗ : V → V ∗ is injective, which means that for every w 6= 0, there exists v
such that B(v, w) 6= 0.

We define a bilinear form satisfying these properties to be nondegenerate: (i) ∀v ∈
V \ {0}, ∃w ∈ V such that B(v, w) 6= 0; (ii) ∀w ∈ V \ {0}, ∃v ∈ V such that B(v, w) 6= 0.
We just proved that the two conditions are equivalent if V is finite dimensional, and are
both equivalent to the map V → V ∗ being an isomorphism.

It would be nice if the bilinear form were symmetric: B(v, w) = B(w, v), ∀v, w ∈ V . We
see that this is equivalent, in the finite-dimensional case, to saying that T and T ∗ induce the
same bilinear form.

If we restrict to the case k = R, a nice property for the bilinear form to have is (v, v) >
0,∀v ∈ R \ {0}, which we call positive-definiteness. Positive-definiteness in particular
implies nondegeneracy: B(v, v) > 0 gives both properties (i) and (ii) of nondegeneracy when
we take v = w.

All of these properties: positive-definiteness, symmetric, and bilinear, are all satisfied by
the dot product (a1, . . . , an) · (b1, . . . , bn) = a1b1 + . . . + anbn; in fact, every positive-definite
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symmetric bilinear form over a finite-dimensional real vector space is equivalent to Rn with
the dot product.

Definition 6.1. Over a real vector space V , an inner product is a positive-definite, sym-
metric, bilinear form. That is, a map B : V × V → k that is linear in each component
(B(a1v1 + a2v2, w) = a1B(v1, w) + a2B(v2, w) and similarly for the other component), is
symmetric (B(v, w) = B(w, v) for all v, w ∈ V ), and positive definite (B(v, v) > 0 for any
v 6= 0). An inner product space is a vector space equipped with an inner product.

Over complex vector spaces, however, we can’t get a positive-definite bilinear form, since
(v, v) > 0 implies (iv, iv) < 0 for i =

√−1. We can have nondegenerate bilinear forms,
and in fact all such forms are equivalent for a complex vector space (we can get from one to
another by changing basis).

To fix this problem, one can generalize the notion of bilinear form so that, in the case of
Cn, our form is (v, w) 7→ v · w̄, where · is the dot product. This however is no longer bilinear
but sesquilinear: (v, aw) = a(v, w) but (av, w) = ā(v, w), while still being real-linear. That
is, a sesquilinear form is conjugate-linear in the first component and complex-linear in the
second component.

With this definition, we can define a Hermitian inner product to be a sesquilinear
form satisfying (v, v) > 0, v 6= 0 (positive-definiteness), and (v, w) = (w, v), ∀v, w ∈ V
(conjugate-symmetry).

We summarize with the

Definition 6.2. For a complex vector space V , a (Hermitian) inner product is a
sesquilinear form (B(a1v1 + a2v2, w) = ā1B(v1, w) + ā2B(v2, w) and B(v, a1w1 + a2w2) =
a1B(v, w1) + a2B(v, w2)), which is conjugate-symmetric (B(v, w) = B(w, v)), and positive-
definite (B(v, v) > 0 for any v 6= 0.) Again, an inner product space is a vector space
equipped with an inner product.

In particular, any inner product over a finite-dimensional real vector space gives an
isomorphism V ∼= V ∗, and any Hermitian inner product over a finite-dimensional complex
vector space gives a conjugate-linear bijection V → V ∗. This allows us in both cases to
identify V with V ∗; note that if we then consider the inner product to be on V ∗, the resulting
identification V ∗ → (V ∗)∗ = V is the inverse map.

Recall again that this identification is given by v 7→ fv, fv(w) = (v, w). For any endo-
morphism T : V → V , we can consider the map fT †vV → k given by w 7→ (v, Tw). In
particular, fT †v ∈ V ∗, so fT †v = fw for some unique w ∈ V , which we call (you guessed it)
T †v. We can define a map T † : V → V which sends each v to T †v in this sense. It is clearly
a linear map, which we call the adjoint of T . That is,

Definition 6.3. Given an endomorphism T : V → V of a vector space V with inner product
(, ), the adjoint, T † : V → V is defined to be the unique map such that (v, Tw) = (T †v, w)
for all v, w ∈ V .
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By definition, we see that (T †)† = T .
What is the relation between T † and T ∗? We can see from the definition that viewing the

inner product as an identification V → V ∗, then T † is the map V → V we get by applying
this identification to T ∗ : V ∗ → V ∗. That is why the adjoint is sometimes written as T ∗, but
here we try to separate the concept of dual from adjoint.

We see just as with duals that (ST )† = T †S†.
What does an identification V ∼= V ∗ do to the perpendicular space W⊥ ⊂ V ∗ to a

subspace W ⊂ V ? We see that W⊥ becomes a subspace of V of dimension dim V − dim W .
This is true for any linear (or conjugate-linear) identification arising from a nondegenerate
bilinear (or sesquilinear) form. In the case of an inner product, we see that V = W ⊕W⊥,
i.e. W⊥ is a complement to W , because W ∩ W⊥ = {0} for a positive-definite space (in
general, all vectors in this intersection satisfy (v, v) = 0: such a vector space is called
isotropic.) We thus call W⊥ ⊂ V the orthogonal complement to W .

Now, let us discuss all this in terms of bases. For any basis S ⊂ V , we call the standard
inner product the unique inner product such that (v, w) = δv,w for any v, w ∈ S: that is, the
inner product of two basis vectors is 1 if they are the same and 0 otherwise. From the other
point of view, given an inner-product space, a basis of this type is called an orthonormal
basis; a set of elements with this inner product is called an orthonormal set if it doesn’t
necessarily span. Orthonormal bases exist for any finite-dimensional inner product space,
which can be found inductively just as we found a basis: given any orthonormal set S ⊂ V ,
if it doesn’t span V we just pick any vector in S⊥ ⊂ V to increase the basis. Such a vector
exists because we can find a nonzero element of V ∗ which vanishes on Span(S) 6= V , which
must be identified with some vector of V by the inner product.

For infinite-dimensional inner product spaces, orthonormal bases do not always exist!
(However, there is always an orthonormal set the closure of whose span is all of V , where we
use the topology given from the metric d(v, w) = (v−w, v−w); more on this in the Analysis
II talk.)

In the finite-dimensional case, we just proved that any inner-product space is isomorphic
to kn for some n, with the standard inner product (recall k = R or C as we defined inner
product). Let us restrict to this case for now, generalizations to Hilbert spaces coming in
another talk.

In terms of an orthonormal basis of V , we see that T † is just the conjugate-transpose of
T (which includes just transpose in the real case). The “conjugate” part can be viewed as
coming from the fact that the identification V → V ∗ coming from the inner-product sends
c times a basis vector to c̄ times the dual vector, for c ∈ C. Note that this is only true
for an orthonormal basis!

With respect to any inner product (or any bilinear or sesquilinear form) it makes sense
to consider the space of operators T such that (Tv, Tw) = (v, w) for all v, w ∈ V : that is,
operators preserving the form. For a real inner product (or bilinear form), such operators
are called orthogonal, and for a complex inner product, such operators are called unitary.
Using adjoint, this just says that T †T = Id, the identity. In terms of matrices, we are saying
that the matrix and its conjugate-transpose are inverses. If we look at what this means when
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multiplying the matrix, it says that the standard inner product of any two distinct rows (or
columns) is zero, and the standard inner product of a row (or column) with itself is one. In
other words, the rows (or columns) form an orthonormal basis of the vector space V .

Another special type of transformation is one that equals its own adjoint: T = T †; in
terms of an orthonormal basis, this says it equals its own conjugate transpose. Such matrices
are called “Hermitian” in the complex case, or “symmetric” in the real case (the symmetry
is across the diagonal!).

All of these transformations, Hermitian, symmetric, unitary, orthogonal, you may recall
from linear algebra obey a certain spectral theorem: that says that they are completely
diagonalizable over C; the symmetric matrices are additionally diagonalizable over R. More
precisely, these are precisely the matrices for which there is an orthonormal basis of eigen-
vectors, that is, an orthonormal basis in which the transformation is just a diagonal matrix.
This theorem is the subject of the next section. We just end with the statements:

Definition 6.4. A normal operator T : V → V on a vector space with an inner product
is an operator such that TT † = T †T . In particular, this includes Hermitian, symmetric,
unitary, or orthogonal transformations.

Theorem 6.5. (Complex spectral theorem). Let V be any finite-dimensional complex inner
product space. T : V → V is a normal operator iff there exists an orthonormal eigenbasis of
V , i.e. an orthonormal basis in which T is diagonal.

Theorem 6.6. (Real spectral theorem). Let V be any finite-dimensional real inner product
space. T : V → V is a symmetric operator iff there exists an orthonormal eigenbasis of V .

7 Proof of the spectral theorem

The condition TT † = T †T is exactly the same as the condition (Tv, Tv) = (T †v, T †v),∀v ∈
V . So, this means that Tv = 0 ⇔ T †v = 0, using positive-definiteness. This shows that
T 2v = 0 implies T †Tv = 0, which then implies (Tv, Tv) = 0 so Tv = 0. Inductively we then
see that T kv = 0 ⇔ Tv = 0 ⇔ T †v = 0. We have proved

Lemma 7.1. If T is a normal operator, then T kv = 0 ⇔ Tv = 0 ⇔ T †v = 0. That is, looking
at the vector space V0 = {v ∈ V | T jv = 0, for some j ≥ 1}, we have V0 = ker T = ker T †.

Corollary 7.2. For any λ ∈ k, we have Vλ := ker (T−λId)j = ker (T−λId) = ker (T †−λ̄Id)
for any (eigenvalue) λ.

Proof. We see that T −λId is still normal since (T −λId)† = T †− λ̄Id, and T, T †, and Id all
commute.

The space Vλ appearing above is called the generalized eigenspace of λ, with the
eigenspace of λ being the case j = 1, i.e. vectors satisfying Tv = λv. It is a nice fact that
if k is algebraically closed, we can decompose the vector space into generalized eigenspaces
(for an arbitrary operator, without using an inner product space):
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Theorem 7.3. If V is a finite-dimensional space over an algebraically closed field k (i.e.
one where every polynomial has a root, such as k = C), then V can be decomposed into a
direct sum of generalized eigenspaces for a finite number of eigenvalues. That is,

V = Vλ1 ⊕ · · · ⊕ Vλl
, (7.1)

where Vλi
is the generalized eigenspace with eigenvalue λi.

Corollary 7.4. The complex spectral theorem.

Proof. Since C is algebraically closed (the fundamental theorem of algebra), V decomposes
into a direct sum of generalized eigenspaces. Corollary 7.2 just says that these are all
eigenspaces of T and T †, with the eigenvalue under T † of Vλ being λ̄. Also, the eigenspaces
for different eigenvalues are orthogonal: if v ∈ Vλ, w ∈ Vλ′ , then (v, Tw) = (v, λ′w) =
λ′(v, w) = (T †v, w) = (λ̄v, w) = λ(v, w), so λ 6= λ′ implies (v, w) = 0. So, if we pick
orthonormal bases of each Vλ, then we get an orthonormal basis of all of V ; and in this basis,
T is diagonal with the eigenvalues on the diagonal (with multiplicity of λ equalling dim Vλ).

For the opposite direction, if T is a diagonal matrix in an orthonormal basis of V , then
T † is just the complex conjugate in this basis, so TT † = T †T , with diagonal equalling the
absolute-value squared of each eigenvalue with multiplicity. Note that the use of orthonormal
here was to see that T † is the conjugate-transpose (which is not in general true for a non-
orthonormal basis).

Corollary 7.5. The real spectral theorem.

Proof. If T is symmetric (or even Hermitian in the complex case), then v ∈ Vλ \ {0} shows
that λ(v, v) = (v, Tv) = (T †v, v) = (Tv, v) = λ̄(v, v), so that λ = λ̄, or λ ∈ R. Viewing T as
a linear transformation on Cn by choosing a basis of the real vector space V and replacing T
with its matrix, we see that a (possibly complex) orthonormal change-of-basis will diagonalize
T . But this change-of-basis can be taken to be real, since if λ is an eigenvalue of T viewed as
a complex matrix, it is real from the above, and then dim Vλ = dim V −rank (T−λId) (since
the generalized eigenspace is actually the eigenspace, or j = 1 in the definition of generalized
eigenspace since T is normal). But rank can be calculated over the reals, since it involves
linear dependence of a matrix with real coefficients. So viewing T as a real transformation
again, Vλ ⊂ V has the same dimension we found considering it to be a complex matrix. So,
as a real vector space, V has a generalized-eigenspace decomposition for T with the same
eigenvalues and multiplicities that we found considering T to be a complex matrix. Corollary
7.2 again shows us this is an eigenspace decomposition, and again (over the real numbers)
we can get an orthonormal basis of eigenvectors of T by choosing any orthonormal basis of
each eigenspace.

Alternatively, we could have shown that the complex eigenspace decomposition actually
was given by a real change-of-basis since taking the complex conjugate of the coefficients of
a real eigenvector gives another eigenvector with the same eigenvalue, so each eigenspace is
invariant under complex conjugation and is hence given by a real change-of-basis.

Anyway, the converse follows just as before: any diagonal matrix (over the reals) is
invariant under transposition and is hence a symmetric matrix.
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Proof. (Proof of Theorem 7.3) Note first that this follows from Jordan decomposition, which
will be done using more general machinery in a later talk. We prove the theorem in a
more elementary way. Since the space of endomorphisms (or matrices if we pick a basis)
is (dim V )2-dimensional, the matrices Id, T, T 2, . . . , T (dim V )2−1 must be linearly dependent,
so there is a polynomial of degree ≤ (dim V )2 − 1 that T satisfies as an endomorphism.
(Actually, there is a polynomial of degree ≤ n, but we’ll get to that later.) If we are over an
algebraically closed field, such as C, then the polynomial factors into linear factors.

Now, we have something like (T−a1)(T−a2) · · · (T−am) = 0. So, not all of the T−ai can
be invertible. So there is some ai and some vector v such that (T − aiId)v = 0. This v is an
eigenvector of eigenvalue ai. We have proved that every endomorphism of a finite-
dimensional vector space over an algebraically closed field has an eigenvalue and
eigenvector.

This result does not hold when any of the assumptions are false! For example, a rotation
of R2 has no eigenvector, and the shift-right operator on the space of sequences of elements
of k, indexed by integers, with finitely many nonzero entries has no eigenvector (even over
an algebraically closed field k).

So, if T is any endomorphism, and λ any eigenvalue (which means that there exists v 6= 0
such that Tv = λv), then we can define Vλ 6= 0 as the generalized eigenspace as above. We
can find j ≥ 1 such that (T − λ)jVλ = {0}; for instance, taking j = dim Vλ works, since if
at any point rank(T − λ)j = rank(T − λ)j+1, the rank will never change as j increases, so it
had better be 0 since we defined Vλ so that everything is eventually killed!

Now, ker[(T − λ)j] = Vλ since ⊂ is true by definition and ⊃ is what we just deduced.
So we see that V = Vλ ⊕ im (T − λId)j, as the two vector spaces do not intersect. Since
T (im (T−λId)j) = im (T−λId)j, we can restrict to im (T−λId)j, which has strictly smaller
dimension, and apply induction to find that

V = Vλ1 ⊕ · · · ⊕ Vλl
, (7.2)

for some finite list of eigenvalues λ1, . . . , λl.

Remark 7.6. We see from the construction that T actually satisfies the polynomial

(x− λ1)
dim Vλ1 · · · (x− λl)

dim Vλl (7.3)

of degree dim V , which is called the characteristic polynomial. This can also be defined
as det (xId − T ); so if we have a non-algebraically closed field, we see that the polynomial
given from the above decomposition taken over the algebraic closure actually lives in the
field we started with (which makes sense from the point of view of Galois theory since all
the Galois automorphisms of the algebraic closure fixing the ground field will fix the set and
multiplicity of eigenvalues).

To prove more generally that T satisfies this polynomial f(x) := det (xId − T ), it is
easiest to multiply the matrix (xI − T ) by its matrix of cofactors C (having in the i, j-th
position the determinant of the submatrix obtained by deleting the i-th row and the j-th
column) and we see that C(xI − T ) = det (xI − T )Id, so plugging in T we get 0 = f(T ).
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This is known as the Cayley-Hamilton theorem and will be generalized in second-quarter
algebra and used to prove fundamental results such as “Nakayama’s Lemma”.

Written with matrices, the spectral theorem looks like:

Theorem 7.7. If T is any n × n-matrix such that TT † = T †T , then there exists a unitary
matrix U such that T = UDU−1 where D is a diagonal matrix. If T is in fact symmetric with
real coefficients, we can take U to be an orthogonal matrix (equivalently, a unitary matrix
with real coefficients).

Remark 7.8. Working in the real case, it would be nice to also have a spectral decomposition
of normal operators that aren’t symmetric (e.g. to include orthogonal transformations). We
may not even get a single real eigenvector in this case; for example, rotations in R2 that
are not 180◦ or 360◦. However, since the matrix is real, we see that for every eigenvalue
λ ∈ C, λ̄ is also an eigenvalue, and dim (Vλ) = dim (Vλ̄), since we can conjugate all of our
work without changing the original matrix (or see Remark 7.6 regarding the characteristic
polynomial). In fact, by pairing up elements with conjugate eigenvalues in an orthonormal
eigenbasis in which the normal matrix is diagonal, we can write any normal matrix N as
N = O1N2(O1)

−1, where O1 is (real) orthogonal, and N2 is a direct sum of one-by-one real
matrices and two-by-two orthogonal matrices (actually, with positive determinant: rotations
and scalings, or multiplication by a complex number viewing R2 as the complex plane: this
complex number is an eigenvalue). That is, N2 is block-diagonal with these pieces.

More generally, the fact that C is given from R just by adjoining
√−1, or equivalently

that any polynomial splits into linear and quadratic factors (applied to the characteristic
polynomial), shows that any real matrix is equivalent to a block upper-triangular one with
one-by-one or two-by-two blocks along the diagonal, the latter being orthogonal matrices with
positive determinant. Using Jordan decomposition we could restrict the above-diagonal to
just have some ones (between rows with the same one-by-one block) and some two-by-two
identity blocks (between pairs of rows with the same two-by-two orthogonal block). Being
normal means not only that there is nothing on the superdiagonal, but moreover that the
change-of-basis was actually orthogonal.

There is uniqueness of the diagonal form (in the normal case) and of the Jordan form (in
the general complex or even real case) up to permutation of blocks (which include groups
of diagonal blocks that are linked by superdiagonal identity matrices). In the real case to
get uniqueness we need the two-by-two blocks to be scalings by a positive number composed
with rotations counterclockwise by 0◦ to 180◦, not inclusive. We can generalize this type of
Jordan form to give a Jordan form of an arbitrary matrix over any nonalgebraically closed
field, where we allow the diagonal blocks to be of arbitrary size, but expressing (in a unique
way) an irreducible polynomial which is a factor of the characteristic polynomial. The upper-
triangular part would be some identity matrices in-between identical diagonal blocks. The
correct way to understand these Jordan forms for nonalgebraically closed fields k is to think
of each n×n-matrix in a diagonal or superdiagonal block as a single number over an algebraic
extension field of k of degree n, which adjoins a single root of the corresponding degree-n
irreducible factor of the characteristic polynomial.
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8 Determinants

We finally move on to determinants (having already defined the characteristic polynomial!)
Over the real numbers, the determinant of a two-by-two matrix gives the signed area of
the parallelogram that the two vectors make: the sign is positive or negative according to
the right-hand rule. In general, the determinant of an n × n-matrix over the reals is ± the
volume of the parallelopiped that the n vectors make, the sign given by a certain orientation
one can define from the order of the vectors.

For two-by-two matrices, we have the familiar formula

det

(
a b
c d

)
= ad− bc, (8.1)

which one could readily prove has the area property described above.
In general, determinant is a way of telling whether a matrix is invertible or not: if the

determinant is nonzero or not. In the case of Rn, if the determinant is nonzero, then the
vectors must span, since they make a parallelopiped with nonzero volume; on the other hand,
the volume is zero just in the case when the span lies in some hyperplane.

Let’s be more precise: let V m be the direct product of m copies of V ::

Definition 8.1. Given any vector space V , we define the vector space ΛmV ∗ := {m-linear maps A :
V m → k such that A(v1, v2, . . . , vm) = 0 if any vi = vj, i 6= j.

In particular, if we consider wi = vi+vj = wj, then we see that A(v1, v2, . . . , vi−1, wi, vi+1, . . . , vj−1, wj, vj+1, . . . , vm) =
0 implies that A(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vm) = −A(v1, . . . , vn), so ΛmV ∗

includes only completely skew-symmetric, m-linear maps from collections of m vectors to the
field k. Actually, this is an equivalent definition, except if the characteristic of k is 2, when
we need the alternating definition (i.e. that A(v1, . . . , vn) = 0 if they are not all distinct.)

In fact, if we change the order of the vi’s in any way, we get ± the result we had before by
applying A, depending on whether we made an odd or even number of swaps (one can prove
that the parity of the number of swaps is invariant, and is equal to the parity of the number
of pairs i, j such that vi, vj end up in the wrong order). If we had applied permutation
σ ∈ Sn, we define sign(σ) = ±1 to be this sign (just as in group theory).

Moreover, if vm = a1v1 + . . . am−1vm−1 is in the span of the first m − 1 vectors, then
A(v1, . . . , vm) = a1(v1, . . . , vm−1, v1)+a2(v1, v2, . . . , vm−1, v2)+. . .+am−1A(v1, . . . , vm−1, vm−1) =
0. So already we see that we can detect if a set of m vectors is linearly dependent or not
by seeing whether all A ∈ ΛmV ∗ kill it or not (we haven’t actually shown that a linearly
independent set has an A that is nonzero on it, but we will see this.)

Now, for any operator T : V → V , we can define an operator (T ∗)∧m : ΛmV ∗ → ΛmV ∗

by (T ∗)∧m(A)(v1, . . . , vm) := A(Tv1, . . . , T vm). One can see that (T ∗)∧m must be a linear
tranformation because T is, using m-linearity and skew-symmetry of A.

We see that the set ΛnV ∗ must be one-dimensional, because if we have a basis (v1, . . . , vn),
then A(w1, . . . , wn) is determined by A(v1, . . . , vn) for any wi, using the n-linearity, alternat-
ing condition, and skew-symmetry. So we see that (T ∗)∧n must be multiplication by some

16



scalar, which we call the determinant of T . In particular, it is clear that this scalar is 1 if
T is the identity.

There is one problem with the above: we didn’t really prove that ΛnV ∗ is one-dimensional
because we didn’t show that ΛmV ∗ 6= {0} for any m! To do this, I’ll just give the deter-
minant formula. Take a linearly independent set v1, . . . , vm ∈ V . Complete this to a basis
v1, . . . , vn of V . Then we can define an A which has the property A(v1, . . . , vm) = 1, but
A(vj, w1, . . . , wm−1) = 0 for any j > m and any wi’s. We can do this by writing vectors in
the basis (vi), and defining, for wi = ai1v1 + . . . ainvn,

A(w1, . . . , wm) =
∑

σ∈Sm

sign(σ)a1σ(1)a2σ(2) · · · amσ(m), (8.2)

which can be verified to have the desired property. In particular, A(v1, . . . , vm) = 1 6= 0. So
we can detect linear independence with the set ΛmV ∗.

Setting m = n, the above formula (8.2) gives the determinant of the given n×n-matrix;
i.e. this is how we define the determinant for matrices.

One can actually see that, for a basis v1, . . . , vn of V , the A’s defined for a choice of 1 ≤
i1 < . . . < im ≤ n by A(vi1 , . . . , vim) = 1, A(vj, w1, . . . , wm−1) = 0 for j /∈ {i1, . . . , im}, ∀wi ∈
V , form a basis of ΛmV ∗ and hence this latter space has dimension

(
n
m

)
. More on this will

be in the multilinear algebra course!!

Remark 8.2. (cf. Remark 7.6) To see that the characteristic polynomial we defined earlier
is the same as det (xId − T ), note first that xId − T has the same generalized eigenspace
decomposition as T , with each eigenvalue λ of T becoming the eigenvalue x−λ with the same
multiplicity (and generalized eigenspace). Then, note that determinant is the same as the
product of the determinants when restricted to each generalized eigenspace, because we can
pick a basis of V by taking bases of each eigenspace (this generalizes to any decomposition
of V into spaces left invariant by T ). We can then prove inductively that the determinant
of T on Vλ is λdim Vλ : we induct on the minimum j ≥ 1 such that Vλ = ker (T − λ)j.
The result is obvious if j = 1, since T |Vλ

= λId in this case. Otherwise, we see that
Vλ
∼= ker (T − λ) ⊕ V/[ker (T − λ)]. We see that the determinant is equal to the product

of the determinant of T on each of these; more generally, if W ⊂ V is any T -invariant
subspace, TW ⊂ W , then picking any basis of W and extending to a basis of V shows that
det T = det T |W det TV/W , since what T does to the part of the basis from W is the first
term, and what T does to the rest of the basis modulo things from W is the second term
(i.e. in A(v1, . . . , vn), we can consider the vi, i > m to be taken modulo Span(v1, . . . , vm)).
But (T − λj+1)Vλ = {0} implies (T − λj)|V/ker (T−λ) = 0, so the induction hypothesis shows
that det T = λdim ker (T−λ)λdim V/ker (T−λ) = λdim V , as desired.

9 The classical linear groups

Now that we have defined all of the types of matrices, we can define the classical matrix
groups. For any vector space V over a field k, GL(V ) is the group of invertible endomorphisms
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of V . For V = kn we write this as GL(n, k). We define SL(V ) to be the group of matrices of
determinant one (one can verify that det Tdet S = det (TS) by our definition, so this makes
a group), which is called SL(n, k) for kn. For any vector space V with a bilinear form B, we
let O(B, V ) be the set of transformations preserving the form in the sense that B(Tv, Tw) =
B(v, w) for any v, w ∈ V (orthogonal group). Also, SO(B, V ) = O(B, V ) ∩ SL(V ) is
the special orthogonal group. For kn with the dot product, we write these as O(n, k) and
SO(n, k). For the case k = Rn, we may consider something like the dot product but with
a basis v1, . . . , vn where B(vi, vi) = 1 if i ≤ m and B(vi, vi) = −1 if i > m, then we
write this group as O(n,m) (we usually only consider such things over R.) We also have
SO(n,m). Similarly, the group of unitary matrices over a complex vector space V is U(V ),
and SU(V ) = U(V )∩SL(V ). For V = Cn we denote this by U(n), SU(n) (unitary matrices
are usually only defined over complex numbers).

Finally, the symplectic group Sp(V ) is the group of matrices preserving a symplectic
form in the same sense as given above for a bilinear form. Only we didn’t define symplectic
forms! These forms are just nondegenerate bilinear forms which are alternating instead of
symmetric: this means B(v, v) = 0 for all v. In particular, this shows B(v, w) = −B(w, v);
in fact, this skew-symmetry is equivalent to the alternating condition except for fields of
characteristic two, that is where 1 + 1 = 0: in those cases we need to say B(v, v) = 0∀v ∈ V
because the skew-symmetry condition only makes the form symmetric (and the general
phenomena one sees with skew-symmetry generalizes better to the alternating condition,
not the symmetry condition, in this case). Similarly, for k2n with the standard symplectic
form B((a1, . . . , a2n), (b1, . . . , b2n)) =

∑n
i=1(aibn+i − an+ibi), we call this Sp(2n, k). As you

probably guessed, one can show that any symplectic form on a finite-dimensional vector
space V is equivalent (under change-of-basis) to this one (for n = 1

2
dim V )! (There are no

symplectic forms on odd-dimensional vector spaces.)
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