

WOMP '04 Linear Algebra-Rough Outline

Karen Lange

1 References

1. Hoffman and Kunze, Linear Algebra
2. Halmos, Finite Dimensional Vector Spaces
3. Helson, Linear Algebra

2 Outline

Definition 2.1. A *vector space* is a set V with an addition operation $+$ and a scalar multiplication over a field k such that

1. $(V, +)$ is a commutative group,
2. $1_k a = a \ \forall a \in V$
3. $(\alpha\beta)a = \alpha(\beta a) \ \forall \alpha, \beta \in k, \forall a \in V$
4. $\alpha(a + b) = \alpha a + \alpha b \ \forall \alpha \in k, \forall a, b \in V$
5. $(\alpha + \beta)a = \alpha a + \beta a \ \forall \alpha, \beta \in k, \forall a \in V$

I'll try to use Greek letters for scalars (α, β, \dots) and English letters for vectors (a, b, v, \dots).

Definition 2.2. [Briefly]

- * *Subspace*
- * *Linear combination and Span*
Note finiteness in definition.
- * *Linearly independent set*

* *Direct sum*

* *Basis*

Theorem: Every vector space has a basis.

* *Dimension*

Theorem: Dimension is well defined.

Definition 2.3. $T : V \rightarrow W$ where V and W are vector spaces over k is a *linear transformation* if for all $\alpha, \beta \in k$ and $a, b \in V$,

$$T(\alpha a + \beta b) = \alpha T(a) + \beta T(b).$$

The set of all such T forms the vector space $\text{Hom}_k(V, W)$.

Definition 2.4. [More briefly!]

* $\text{ker}(T) = \{v \in V | T v = 0\}$, $\text{nullity}(T) = \dim(\text{ker}(T))$

* $\text{im}(T) = \{w \in W | (\exists v) T v = w\}$, $\text{rank}(T) = \dim(\text{im}(T))$

Theorem: Rank/Nullity (for finite dimensional V)

Theorem 2.5 (Change of Basis). Suppose V is an n -dimensional vector space over k . Let B_1 and B_2 be two bases for V . Then there exists an n by n invertible matrix S (called the change of basis matrix such that for all $v \in V$,

$$[v]_{B_2} = S[v]_{B_1}.$$

Using the same methods,

Theorem 2.6. Let V be an n -dimensional vector space and W be an m -dimensional one. Then every linear transformation $T : V \rightarrow W$ has the form T_A for some m by n dimensional matrix A where T_A is matrix multiplication with respect to given bases for V and W .

Definition 2.7. n by n matrices A and B (with coefficients in the same field) are *similar* if there exists an invertible matrix S such that $A = SBS^{-1}$.

Theorem 2.8 (Motivation for Similarity). A and B represent the same linear transformation with respect to different bases for V if and only if A and B are similar.

We now restrict our attention to $V = \mathcal{C}^n$ over \mathcal{C} and to a linear transformation $T : \mathcal{C}^n \rightarrow \mathcal{C}^n$ represented by the matrix A with respect to the standard basis. Note \mathcal{C} is algebraically closed.

Definition 2.9. * $\text{trace}(A)$

* $\text{determinant}(A)$

Theorem 2.10 (Existence and Uniqueness of Determinants). $\det(A)$ is the only complex function of n variables (the columns) that is multi-linear, skew-symmetric, and normalized so that $\det(I) = 1$.

Definition 2.11. [Eigenvalues, Preparation for JCF]

- * *Eigenvalue:* λ is an eigenvalue for T if $Tv = \lambda v$ for $v \neq 0$. v is called an eigenvector associated to λ .
- * *Characteristic polynomial:* $p_A(t) = \det(tI - A) = \prod_{i=1}^k (t - \lambda_i)^{m_i}$ for λ_i distinct.
Cayley's Theorem: $p_A(A) = 0$
- * *Algebraic multiplicity:* The algebraic multiplicity of λ_i is m_i .
- * *Minimal polynomial*
- * *diagonalizable:* A is diagonalizable if it is similar to a diagonal matrix.
Theorem: A is diagonalizable if and only if A has n linearly independent eigenvectors.
- * *Eigenspace:* $V_\lambda = \{v \in V | Tv = \lambda v\}$, $\dim(V_\lambda)$ is the geometric multiplicity of λ .
Note: Failure to be diagonalizable is a discrepancy between geometric and algebraic multiplicity.
- * *Generalized eigenspace:* $U_\lambda = \{v \in V | (\exists k > 0)(T - \lambda I)^k v = 0\}$

Theorem 2.12 (Jordan Canonical Form). Let A be an n by n complex matrix with distinct eigenvalues $\lambda_1, \dots, \lambda_k$. Then A is similar to a matrix which is the direct sum of Jordan blocks (unique up to a reordering of the blocks) with at least one block to each λ_i .