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1 Introduction

Given a topological space X, we’re interested in spaces which “cover” X in a nice way.
Roughly speaking, a space Y is called a covering space of X if Y maps onto X in a locally
homeomorphic way, so that the pre-image of every point in X has the same cardinality. It
turns out that the covering spaces of X have a lot to do with the fundamental group of X.
The subgroups of π1(X) correspond exactly to the connected covering spaces of X. Also,
for nice enough spaces X, there’s a special covering space called the universal cover, on
which π1(X) acts. Covering spaces are important not just for algebraic topology but also
for differential geometry, Lie groups, Riemann surfaces, geometric group theory . . .

2 Definition and basic examples

Throughout, all spaces are topological spaces and all maps are continuous.

Definition 1. A covering space or cover of a space X is a space X̃ together with a map
p : X̃ → X satisfying the following condition: every point x ∈ X has an open neighborhood
Ux ⊆ X such that p−1(Ux) is a disjoint union of open sets, each of which is mapped by p
homeomorphically onto Ux.

You can visualize the pre-image of the neighborhood Ux as a “stack of pancakes”, each
pancake being homeomorphic to Ux. Some more terminology: sometimes the space X is
called the base space, the map p is called the covering map or projection, and the pre-image
p−1(x) of some point x in the base space is called the fiber over x.

Examples.

1. There’s always the trivial cover: a space covers itself, with the covering map being the
identity map.

2. The map p : R→ S1 given by p(t) = eit is a covering map, wrapping the real line round
and round the circle. The pre-image of a little open arc in the circle is a collection of
open intervals in the real line, offset by multiples of 2π.
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3. Another cover of the circle is the map p : S1 → S1 given by p(z) = zn, where n is a
positive integer. This wraps the circle around itself n times.

4. Consider the equivalence relation on R2 given by (x, y) ∼ (x + m, y + n), where m and
n are any integers. Let p : R2 → R2/∼ be the quotient map. Then the image of p is
the torus obtained by identifying opposite sides of a square, and p is a covering map.

5. The real projective plane RP 2 can be thought of in several equivalent ways: as the
set of lines through the origin in R3, as S2 with the equivalence relation x ∼ −x, and
as the set of non-zero points of R3 with the equivalence relation x ∼ λx, where λ is
a non-zero scalar. If we select the second way of thinking about RP 2, then S2 is a
covering space for RP 2, with the covering map being the quotient map.

6. The figure-of-eight graph has lots of covering spaces, and I’ll draw some of them on
the board.

Given a neighborhood Ux in the base space, the fiber over each point in Ux must have
the same cardinality. So, if the base space is connected, this cardinality is constant over the
whole space. The cardinality of each fiber is then called the number of sheets of the covering.
The cover of S1 in Example 3 has n sheets, while the cover of RP 2 by S2 is a two-sheeted
covering.

3 Liftings

In this section p : X̃ → X is always a covering space.
A lift of a map f : Y → X is a map f̃ : Y → X̃ such that p◦ f̃ = f . There are several key

results about existence and uniqueness of liftings, and these have important applications.
For instance, since a covering space is a topological space, it has a fundamental group.

The following proposition relates the fundamental group of a covering space to the funda-
mental group of the base space, and is proved using liftings of homotopies.

Proposition 2. Fix basepoints x0 ∈ X and x̃0 ∈ p−1(x0). Then the homomorphism

p∗ : π1(X̃, x̃0) → π1(X, x0)

is injective.

So, we may identify π1(X̃, x̃0) with the subgroup p∗(π1(X̃, x̃0)) of π1(X, x0). The choice
of basepoint does matter here: different choices of x̃0 in the fiber over x0 will yield conjugate
subgroups of π1(X, x0).

Examples.
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1. Let p : R → S1 be the covering map p(t) = eit and, for each positive integer n, let
pn : S1 → S1 be the covering map pn(z) = zn. Then π1(R, 0) is trivial, so its image
under p∗ is the trivial subgroup of π(S1, 1) = Z. The image of (pn)∗ is the subgroup
nZ of Z.

2. Let p : S2 → RP 2 be the covering map which identifies antipodes. Since S2 has trivial
fundamental group, the image under p∗ is also trivial.

3. The fundamental group of a covering space which is a graph can be calculated using
the Seifert–Van Kampen Theorem. You can then use Proposition 2 to show that,
for instance, the free group on two generators has subgroups which are free on three
generators, and on countably many generators.

Another important result on liftings concerns liftings of paths in the base space.

Proposition 3. Let f : I → X be a path with starting point f(0) = x0. Then for each

x̃0 ∈ p−1(x0), there is a unique lift f̃ : I → X̃ so that f̃(0) = x̃0.

In particular, once we fix a basepoint x0 in X, then for each x̃0 ∈ p−1(x0), every loop in

X based at x0 has a unique lift to a path in the covering space X̃ starting at x̃0. This is
used to prove the following result.

Proposition 4. When X and X̃ are path-connected, the number of sheets of the covering
space p : (X̃, x̃0) → (X, x0) equals the index of p∗(π1(X̃, x̃0)) in π1(X, x0).

4 Maps between covering spaces

Suppose p1 : X̃1 → X and p2 : X̃2 → X are two covering spaces. A homomorphism of
covering spaces is a map f : X̃1 → X̃2 so that p1 = p2 ◦ f . An isomorphism of covering
spaces is an invertible map (that is, homeomorphism) f : X̃1 → X̃2 so that p1 = p2 ◦ f .

An isomorphism from a covering space to itself is sometimes called a deck transformation
or covering transformation (think of shuffling a deck of cards). Deck transformations permute
fibers. The set of deck transformations of a covering space forms a group under composition.
By a unique lifting property, a deck transformation is completely determined by where it
sends a single point.

Examples.

1. Each translation of the real line by an integer multiple of 2π is a deck transformation
of the covering space p : R→ S1, where p(t) = eit. The group of deck transformations
is isomorphic to Z.
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2. Rotating the circle S1 by an integer multiple of 2π/n is a deck transformation of the
covering space z 7→ zn. The group of deck transformations is cyclic of order n.

3. Each translation of R2 by a vector (m,n), where m and n are integers, is a deck
transformation of the covering space of the torus. The group of deck transformations
is isomorphic to Z2.

5 The universal cover and subgroups of the fundamen-

tal group

We saw that the induced homomorphism from the fundamental group of a covering space
to the fundamental group of the base space is injective. This leads to the question: can
every subgroup of π1(X, x0) be realized as p∗(π1(X̃0, x̃0)) for some covering space p : X̃ → X
and x̃0 ∈ p−1(x0)? It turns out that the answer is yes if X is a reasonably nice space
(path-connected, locally path-connected and semilocally simply connected, to be precise).

To prove this, you first construct a universal cover : that is, a covering space X̃ of X
which is simply connected. The universal cover is unique up to isomorphism.

Examples. The universal cover of the circle is the real line, of the torus is R2, of RP 2 is
the sphere S2, and of the figure-of-eight graph is the infinite 4-valent tree.

Since the universal cover X̃ is simply connected, π1(X̃, x̃0) is trivial, so its image under
p∗ is the trivial subgroup of π1(X, x0). To realize all the other subgroups of π1(X, x0), you
take quotients of the universal cover.

Another important feature of the universal cover is that the fundamental group of the
base space acts on the universal cover by deck transformations. The action is determined as
follows. Take a basepoint x0 ∈ X and a preimage x̃0 of x0 in the universal cover X̃. Then
each element of π1(X, x0) is represented by a loop f : I → X based at x0. There is a unique

lift f̃ : I → X̃ starting at x̃0. Then we define the action of the homotopy class [f ] on x̃0 by

[f ] · x̃0 = f̃(1).

The quotient under this group action is the base space.

6 References

For the more geometrically minded, Allen Hatcher’s Algebraic Topology and William Massey’s
A Basic Course in Algebraic Topology are recommended. Peter May’s A Concise Course in
Algebraic Topology shows the approach of algebraic topologists today.
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