Due Friday May 29 in class.

1. Let $A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 5 & 6 \\ 3 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \\ 2 & 5 \end{bmatrix}$, $v = \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix}$ and $w = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$. Which of these matrices and vectors are we allowed to multiply? (For example, we can multiply Cw, but not CB or wC.) In each case where we are allowed to multiply, calculate the product. You should get 7 answers.

2. Exercise 2.3.3 from Sally.

3. Exercise 2.3.6 from Sally.

4. Given an $m \times n$ matrix $A = (a_{ij})$, we define the transpose tA of A as the $n \times m$ matrix with ij’th entry a_{ji}. Show that $^t(AB) = ^tB^tA$.

Bonus: Define $V^* = \mathcal{L}(V,F)$. Then V^* is a vector space of the same dimension as V, and given a basis $\{v_1, \ldots, v_n\}$ for V we get a corresponding basis $\{v_1^*, \ldots, v_n^*\}$ for V^* where $v_i^*(\alpha_1 v_1 + \ldots + \alpha_n v_n) = \alpha_i$. Given a linear transformation $T : V \to W$, show that there is an induced linear transformation $T^* : W^* \to V^*$ sending $f : W \to F$ to the composite $f \circ T : V \to F$. Show that if A is the matrix for T then tA is the matrix for T^*, using the corresponding basis for V^* and W^*.

5. Exercise 2.4.10 from Sally.

6. Exercise 2.4.13 from Sally.

7. Problem 28-7 from Spivak. What does this have to do with determinants and inverse matrices?