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Abstract. We give a simplified version of a proof of van der Waerden’s theo-
rem that if a sufficiently long interval of integers is partitioned into a specified
number of parts, one will contain an arithmetic progression of given length.

1. The Theorem

By a segment of Z I will mean an interval ∆ = {x ∈ Z | a ≤ x ≤ b} for finite a
and b. By the length of ∆ I will mean b− a + 1, the number of elements of ∆.

Theorem 1.1 (van der Waerden [2]). Given positive integers k and ` there is an
integer n(k, `) with the following property. If a segment ∆ of Z of length at least
n(k, `) is the union of k sets ∆ = ∆1 ∪∆2 ∪ · · · ∪∆k then for some j, ∆j contains
an arithmetic progression of length `.

Van der Waerden’s original proof was quite complicated. In [1] Khinchin presents
a simpler proof due to M. A. Lukomskaya. I will give here a simplified version of
her proof.

We can clearly assume that the ∆j are disjoint. I will write

(1) ∆ = ∆1 t∆2 t · · · t∆k

to indicate this. If such a partition has been given I will write a ∼ b if a and b lie
in the same ∆j . The theorem asserts the existence of a function f(i) = a + id such
that f(i) lies in ∆ and f(i) ∼ f(0) for all 0 ≤ i < `.

We prove the theorem by induction on `. It is trivial for ` = 1 and also for
` = 2 since we only need to make sure some ∆j has length at least 2. We therefore
assume the theorem is true for some ` ≥ 2 and prove it for ` + 1.

By an m–fold arithmetic progression of length ` I will mean a function of the
form

(2) f(i1, . . . , im) = a +
m∑
1

iνdν

with all dν > 0 and 0 ≤ iν < ` for all 1 ≤ ν ≤ m. As an immediate consequence of
the theorem we see that if ∆ has length at least n(k, `m) and ∆ = ∆1∪∆2∪· · ·∪∆k

then some ∆j will contain an m–fold arithmetic progression f(i1, . . . , im) of length
` such that f takes distinct values. We need only find an ordinary arithmetic
progression a+id with 0 ≤ i < `m in ∆j and write i =

∑m−1
0 iν lν where 0 ≤ iν < `.

The idea of the proof is to construct an m–fold arithmetic progression f(i1, . . . , im)
of length ` in some ∆j using only the induction hypothesis. This will be done in
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such a way that f can be extended to iν = ` with values still in ∆. We then take
a suitable subprogression.

2. The Proof

As observed in the last section it is sufficient to consider partitions ∆ = ∆1 t
∆2 t · · · t ∆k where the ∆j are disjoint and we write a ∼ b if a and b lie in the
same set ∆j .

Lemma 2.1. Suppose Theorem 1.1 holds for a given value of ` ≥ 2. Then for
any m > 0 there is an integer N(k, m, `) with the following property. If a segment
∆ has length at least N(k, m, `) and ∆ = ∆1 t ∆2 t · · · t ∆k then ∆ contains an
m–fold arithmetic progression of length `+1, f(i1, . . . , im) = a+

∑m
1 iνdν , with all

dν > 0 and 0 ≤ iν ≤ ` such that if i1, . . . , is < ` then f(i1, . . . , is, js+1, . . . , jm) ∼
f(0, . . . , 0, js+1, . . . , jm) for all js+1, . . . , jm.

Proof. We use induction on m. For m = 1 we can take N(k, 1, `) = 2n(k, `). If the
length of ∆ is at least 2n(k, `) write ∆ = ∆′ t∆′′ where ∆′ and ∆′′ are contiguous
intervals of length at least n(k, `). Choose an arithmetic progression a + id with
d > 0 and 0 ≤ i < ` in ∆′. Now a and a + d lie in ∆′ because ` ≥ 2 so d ≤ n(k, `).
Since a + (`− 1)d lies in ∆′ it follows that a + `d lies in ∆.

Suppose the lemma is true for a given m. Let q = N(k, m, `) and define N(k, m+
1, `) = q+2n(kq, `). Suppose ∆ has length at least N(k, m+1, `). Write ∆ = ∆′t∆′′

where ∆′ and ∆′′ are contiguous intervals, ∆′ has length 2n(kq, `) and ∆′′ has length
at least q. Define an equivalence relation on ∆′ by x ≈ y if x+z ∼ y+z for all z with
0 ≤ z < q. This relation has kq possible equivalence classes. Since ∆′ has length
2n(kq, `) we can find an arithmetic progression a+id with d > 0 and 0 ≤ i ≤ ` in ∆′

such that a+id ≈ a+jd if 0 ≤ i, j < `. Therefore c+id ∼ c for all a ≤ c < a+q and
0 ≤ i < `. Since [a, a+ q) lies in ∆ and has length q, the induction hypothesis gives
us an m–fold arithmetic progression g(i1, . . . , im) = b +

∑m
1 iνdν in [a, a + q) such

that for i1, . . . , is < ` we have g(i1, . . . , is, js+1, . . . , jm) ∼ g(0, . . . , 0, js+1, . . . , jm)
for all js+1, . . . , jm. Define f(i0, . . . , im) = i0d + g(i1, . . . , im). If i0, . . . , is <
` with s > 0 then f(i0, . . . , is, js+1, . . . , jm) = i0d + g(i1, . . . , is, js+1, . . . , jm) ∼
g(i1, . . . , is, js+1, . . . , jm) ∼ g(0, . . . , 0, js+1, . . . , jm) = f(0, . . . , 0, js+1, . . . , jm) for
all js+1, . . . , jm as required. �

To prove the theorem we now set n(k, ` + 1) = N(k, k, `). Given a partition
∆ = ∆1 t ∆2 t · · · t ∆k find f as in the lemma and set ar = f(0, . . . , 0, `, . . . , `)
with r zeros where 0 ≤ r ≤ k. There are k + 1 of these so two, say ar and as, lie
in the same ∆j . Say r < s and define h(i) = f(0, . . . , 0, i, . . . , i, `, . . . , `) with r 0’s,
s− r i’s, and k − s `’s. Then h(i) ∼ h(0) for 0 ≤ i < ` and h(`) = ar ∼ as = h(0)
so h is the required arithmetic progression.
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