VAN DER WAERDEN'S THEOREM ON ARITHMETIC PROGRESSIONS

RICHARD G. SWAN

ABSTRACT. We give a simplified version of a proof of van der Waerden's theorem that if a sufficiently long interval of integers is partitioned into a specified number of parts, one will contain an arithmetic progression of given length.

1. The Theorem

By a segment of \mathbb{Z} I will mean an interval $\Delta = \{x \in \mathbb{Z} \mid a \leq x \leq b\}$ for finite a and b. By the length of Δ I will mean b - a + 1, the number of elements of Δ .

Theorem 1.1 (van der Waerden [2]). Given positive integers k and ℓ there is an integer $n(k, \ell)$ with the following property. If a segment Δ of \mathbb{Z} of length at least $n(k, \ell)$ is the union of k sets $\Delta = \Delta_1 \cup \Delta_2 \cup \cdots \cup \Delta_k$ then for some j, Δ_j contains an arithmetic progression of length ℓ .

Van der Waerden's original proof was quite complicated. In [1] Khinchin presents a simpler proof due to M. A. Lukomskaya. I will give here a simplified version of her proof.

We can clearly assume that the Δ_i are disjoint. I will write

(1)
$$\Delta = \Delta_1 \sqcup \Delta_2 \sqcup \cdots \sqcup \Delta_k$$

to indicate this. If such a partition has been given I will write $a \sim b$ if a and b lie in the same Δ_j . The theorem asserts the existence of a function f(i) = a + id such that f(i) lies in Δ and $f(i) \sim f(0)$ for all $0 \leq i < \ell$.

We prove the theorem by induction on ℓ . It is trivial for $\ell = 1$ and also for $\ell = 2$ since we only need to make sure some Δ_j has length at least 2. We therefore assume the theorem is true for some $\ell \geq 2$ and prove it for $\ell + 1$.

By an m--fold arithmetic progression of length ℓ I will mean a function of the form

(2)
$$f(i_1, \dots, i_m) = a + \sum_{1}^{m} i_{\nu} d_{\nu}$$

with all $d_{\nu} > 0$ and $0 \le i_{\nu} < \ell$ for all $1 \le \nu \le m$. As an immediate consequence of the theorem we see that if Δ has length at least $n(k, \ell^m)$ and $\Delta = \Delta_1 \cup \Delta_2 \cup \cdots \cup \Delta_k$ then some Δ_j will contain an *m*-fold arithmetic progression $f(i_1, \ldots, i_m)$ of length ℓ such that *f* takes distinct values. We need only find an ordinary arithmetic progression a+id with $0 \le i < \ell^m$ in Δ_j and write $i = \sum_{0}^{m-1} i_{\nu} l^{\nu}$ where $0 \le i_{\nu} < \ell$.

The idea of the proof is to construct an *m*-fold arithmetic progression $f(i_1, \ldots, i_m)$ of length ℓ in some Δ_j using only the induction hypothesis. This will be done in

I would like to thank Daniel Glasscock for pointing out an error in an earlier version of this paper.

RICHARD G. SWAN

such a way that f can be extended to $i_{\nu} = \ell$ with values still in Δ . We then take a suitable subprogression.

2. The Proof

As observed in the last section it is sufficient to consider partitions $\Delta = \Delta_1 \sqcup \Delta_2 \sqcup \cdots \sqcup \Delta_k$ where the Δ_j are disjoint and we write $a \sim b$ if a and b lie in the same set Δ_j .

Lemma 2.1. Suppose Theorem 1.1 holds for a given value of $\ell \geq 2$. Then for any m > 0 there is an integer $N(k, m, \ell)$ with the following property. If a segment Δ has length at least $N(k, m, \ell)$ and $\Delta = \Delta_1 \sqcup \Delta_2 \sqcup \cdots \sqcup \Delta_k$ then Δ contains an m-fold arithmetic progression of length $\ell + 1$, $f(i_1, \ldots, i_m) = a + \sum_{j=1}^{m} i_{\nu} d_{\nu}$, with all $d_{\nu} > 0$ and $0 \leq i_{\nu} \leq \ell$ such that if $i_1, \ldots, i_s < \ell$ then $f(i_1, \ldots, i_s, j_{s+1}, \ldots, j_m) \sim$ $f(0, \ldots, 0, j_{s+1}, \ldots, j_m)$ for all j_{s+1}, \ldots, j_m .

Proof. We use induction on m. For m = 1 we can take $N(k, 1, \ell) = 2n(k, \ell)$. If the length of Δ is at least $2n(k, \ell)$ write $\Delta = \Delta' \sqcup \Delta''$ where Δ' and Δ'' are contiguous intervals of length at least $n(k, \ell)$. Choose an arithmetic progression a + id with d > 0 and $0 \le i < \ell$ in Δ' . Now a and a + d lie in Δ' because $\ell \ge 2$ so $d \le n(k, \ell)$. Since $a + (\ell - 1)d$ lies in Δ' it follows that $a + \ell d$ lies in Δ .

Suppose the lemma is true for a given m. Let $q = N(k, m, \ell)$ and define $N(k, m+1, \ell) = q+2n(k^q, \ell)$. Suppose Δ has length at least $N(k, m+1, \ell)$. Write $\Delta = \Delta' \sqcup \Delta''$ where Δ' and Δ'' are contiguous intervals, Δ' has length $2n(k^q, \ell)$ and Δ'' has length at least q. Define an equivalence relation on Δ' by $x \approx y$ if $x+z \sim y+z$ for all z with $0 \leq z < q$. This relation has k^q possible equivalence classes. Since Δ' has length $2n(k^q, \ell)$ we can find an arithmetic progression a+id with d > 0 and $0 \leq i \leq \ell$ in Δ' such that $a+id \approx a+jd$ if $0 \leq i, j < \ell$. Therefore $c+id \sim c$ for all $a \leq c < a+q$ and $0 \leq i < \ell$. Since [a, a+q) lies in Δ and has length q, the induction hypothesis gives us an m-fold arithmetic progression $g(i_1, \ldots, i_m) = b + \sum_{1}^m i_\nu d_\nu$ in [a, a+q) such that for $i_1, \ldots, i_s < \ell$ we have $g(i_1, \ldots, i_s, j_{s+1}, \ldots, j_m) \sim g(0, \ldots, 0, j_{s+1}, \ldots, j_m)$ for all j_{s+1}, \ldots, j_m . Define $f(i_0, \ldots, 0, j_{s+1}, \ldots, j_m) = i_0d + g(i_1, \ldots, i_s, j_{s+1}, \ldots, j_m) \sim g(i_1, \ldots, i_s, j_{s+1}, \ldots, j_m) \sim g(0, \ldots, 0, j_{s+1}, \ldots, j_m)$ for all j_{s+1}, \ldots, j_m as required.

To prove the theorem we now set $n(k, \ell + 1) = N(k, k, \ell)$. Given a partition $\Delta = \Delta_1 \sqcup \Delta_2 \sqcup \cdots \sqcup \Delta_k$ find f as in the lemma and set $a_r = f(0, \ldots, 0, \ell, \ldots, \ell)$ with r zeros where $0 \le r \le k$. There are k + 1 of these so two, say a_r and a_s , lie in the same Δ_j . Say r < s and define $h(i) = f(0, \ldots, 0, i, \ldots, i, \ell, \ldots, \ell)$ with r 0's, s - r i's, and $k - s \ell$'s. Then $h(i) \sim h(0)$ for $0 \le i < \ell$ and $h(\ell) = a_r \sim a_s = h(0)$ so h is the required arithmetic progression.

References

- 1. A. Y. Khinchin, Three Pearls of Number Theory, Dover Publications, Mineola, NY 1998.
- B. L. van der Waerden, Beweis einer Baudetsche Vermuting, Nieuw Arch. Wiskunde 15 (1927), 212–216.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF CHICAGO, CHICAGO, IL 60637 *E-mail address:* swan@math.uchicago.edu