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Abstract. This is an expository note on Ptolemy’s Theorem and its converse,

giving a more algebraic proof of these results. We show that 4 points in

the plane lie on a circle or straight line if and only if they satisfy Ptolemy’s
condition.

1. The Theorems

If A and B are points in the plane we write AB for the distance between them.

Theorem 1.1 (Ptolemy’s Theorem). Let A, B, C, D be 4 points lying in order on
a circle. Then

(1) AB · CD +AD ·BC = AC ·BD

The same conclusion holds if the 4 points lie in order on a straight line.
We refer to (1) as Ptolemy’s condition. In the usual statement the points A, B,

C, D are the vertices of a quadrilateral with AC and BD being the diagonals. The
theorem says that if the quadrilateral can be inscribed in a circle then Ptolemy’s
condition is satisfied.

There is an excellent article on Ptolemy’s Theorem and its applications in [2].
The following related results are also mentioned but no proof is given (as of 2019).

Theorem 1.2 (Converse of Ptolemy’s Theorem). If 4 points A, B, C, D in the
plane satisfy (1), they lie on a circle or straight line.

In other words, the quadrilateral with the given points as vertices can be in-
scribed in a circle or is a line segment. Note that the points may satisfy the
condition in one ordering but not in a different ordering.

Theorem 1.3 (Ptolemy’s inequality). Let A, B, C, D be 4 points in the plane.
Then

(2) AB · CD +AD ·BC ≥ AC ·BD

Here the ordering of the points is irrelevant.

2. Proof of Ptolemy’s Theorem

There are many well known geometric and trigonometric proofs of Theorem 1.1.
See [2]. Here is a more algebraic one.

Suppose first that a < b < c < d are 4 points on the line R. For these points (1)
takes the form

(3) (b− a)(d− c) + (d− a)(c− b) = (c− a)(d− b)
which is easily verified.
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For the case of points on a circle we identify the plane with the complex numbers
C. By translation and scaling we can assume the circle is the unit circle {z‖|z| = 1}.
Ptolemy’s condition now takes the form

(4) |b− a||d− c|+ |d− a||c− b| = |c− a||d− b|
where a, b, c, d are 4 points in order on the unit circle.
If z = reiθ with r > 0 we choose θ to satisfy 0 ≤ θ < 2π and choose arg(z) = θ

and
√
z =
√
reiθ/2.

Lemma 2.1. Let w, z ∈ C with |w| = |z| = 1 and arg(w) ≤ arg z. Then (z −w) =
i
√
w
√
z|z − w|

Proof. Let z = eiθ and w = eiφ. where 0 ≤ φ ≤ θ < 2π. We have

(5) (
√
w
√
z)−1(z − w) =

√
z√
w
−
√
w√
z

= ei
θ−φ
2 − ei

φ−θ
2 = 2i sin

θ − φ
2

where sin θ−φ
2 > 0 since 0 ≤ θ − φ < 2π. Taking absolute values in (5) shows that

|z − w| = 2 sin θ−φ
2 so the lemma follows from (5). �

Now let a, b, c, d be 4 points in order on the unit circle. Rotate the circle so that
0 ≤ arg(a) ≤ arg(b) ≤ arg(c) ≤ arg(d) < 2π, The lemma shows that each term of

(3) is the product of the corresponding term of (4) with the factor −
√
a
√
b
√
c
√
d.

Since (3) is true, it follows that (4) is also true, proving Ptolemy’s Theorem.

Remark 2.2. Let a, b, c, d be any 4 points of C. In [1] Apostol observes that
applying the triangle inequality to (3) gives a quick proof of Ptolemy’s inequality.

.

3. Proof of the converse theorem

Given 4 points A,B,C,D in the plane satisfying Ptolemy’s condition

(6) AB · CD +AD ·BC = AC ·BD
we want to show that the points lie on a circle or straight line. Note that the
condition depends on the ordering of the points. We can avoid this nuisance by
using the following easily verified identity.

(7) (p+q+r)(−p+q+r)(p−q+r)(p+q−r) = −p4−q4−r4+2p2q2+2p2r2+2q2r2

Let F denote either side of (7) with p = AB ·CD, q = AD ·BC and r = AC ·BD.
Then F = 0 if and only if the points in some order satisfy Ptolemy’s condition.

As above we identify the plane with C. If every set of 3 points out of A,B,C,D
lies on a line, then all 4 points lie on a line and we are done. Therefore we can
assume that A, B, C lie on a circle which we can assume is the unit circle. To
avoid confusing AB = |A− B| with the product AB I will write a, b, c for A,B,C
considered as complex numbers, and write z for D. As usual we write z = x + iy
where x and y are real. We fix a, b, and c, and let z vary.

Ptolemy’s condition now becomes

(8) |b− a||z − c|+ |z − a||c− b| = |c− a||z − b|
As above we let p = |b− a||z − c|, q = |z − a||c− b|, r = |c− a||z − b| and let F

be the expression in (7). We write F (z) or F (x, y) to refer to the dependence on z.
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Ptolemy’s theorem implies that F (z) = 0 if |z| = 1. Our aim is to show conversely
that F (z) = 0 implies |z| = 1 so that z lies on the circle.

Now if a = a1 + ia2, then |z − a|2 = (x− a1)2 + (y − a2)2 which is a polynomial
of degree 2 in x and y. Similar arguments on the right hand terms of (7) now show
that F (x, y) is a polynomial of degree 4 in x and y.

Lemma 3.1. Let P (x, y) be a polynomial over C which vanishes when x2 + y2 = 1
with real x and y. Then x2 + y2 − 1 divides P .

Proof. Regard g = x2 + y2 − 1 as a monic polynomial in y and divide getting
P = gh + r where the remainder r has degree 1 in y so r = h(x)y + k(x). If
−1 < x < 1 there are 2 values of y for which g(x, y) = 0. Since r = 0 for these 2
values of y, h and k must be 0 for each x with −1 < x < 1 so h and k are 0 as
polynomials. �

This shows that we have F (x, y) = (x2 + y2− 1)G(x, y) where G is a polynomial
in x and y of degree 2.

(9) F (x, y) = (x2 + y2 − 1)G(x, y)

Lemma 3.2. Let h(z) = |z − a| with a, z ∈ C∗ and |a| = 1. Then h(z) = |z|h( 1
z̄ )

Proof. Using ā = a−1 we get |z − a| = |z||a|| 1a −
1
z | = |z||ā−

1
z | = |z||a−

1
z̄ | �

Applying this to the terms of F we see that

(10) F (z) = |z|4F (
1

z̄
)

We claim that G vanishes on the unit circle. Suppose G(w) 6= 0 where |w| = 1.
Choose z very close to w with |z| < 1. Then 1

z̄ is very close to 1
w̄ and G is non–zero

on the line joining z to 1
z̄ and so has the same sign at these points. The same is true

of F by (10) and therefore also for x2 + y2− 1 = |z|2− 1 by (9). This contradiction
show that our assumption was incorrect and so G must vanish on the unit circle. By
Lemma 3.1 x2 + y2 − 1 divides G so, by degrees, G = C(x2 + y2 − 1) = C(|z|2 − 1)
where C is a constant and F (z) = C(|z|2 − 1)2 showing that F (z) = 0 implies
|z| = 1.
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