PTOLEMY'S THEOREM AND ITS CONVERSE

RICHARD G. SWAN

Abstract

This is an expository note on Ptolemy's Theorem and its converse, giving a more algebraic proof of these results. We show that 4 points in the plane lie on a circle or straight line if and only if they satisfy Ptolemy's condition.

1. The Theorems

If A and B are points in the plane we write $A B$ for the distance between them.
Theorem 1.1 (Ptolemy's Theorem). Let A, B, C, D be 4 points lying in order on a circle. Then

$$
\begin{equation*}
A B \cdot C D+A D \cdot B C=A C \cdot B D \tag{1}
\end{equation*}
$$

The same conclusion holds if the 4 points lie in order on a straight line.
We refer to (1) as Ptolemy's condition. In the usual statement the points A, B, C, D are the vertices of a quadrilateral with $A C$ and $B D$ being the diagonals. The theorem says that if the quadrilateral can be inscribed in a circle then Ptolemy's condition is satisfied.

There is an excellent article on Ptolemy's Theorem and its applications in [2]. The following related results are also mentioned but no proof is given (as of 2019).
Theorem 1.2 (Converse of Ptolemy's Theorem). If 4 points A, B, C, D in the plane satisfy (1), they lie on a circle or straight line.

In other words, the quadrilateral with the given points as vertices can be inscribed in a circle or is a line segment. Note that the points may satisfy the condition in one ordering but not in a different ordering.

Theorem 1.3 (Ptolemy's inequality). Let A, B, C, D be 4 points in the plane. Then

$$
\begin{equation*}
A B \cdot C D+A D \cdot B C \geq A C \cdot B D \tag{2}
\end{equation*}
$$

Here the ordering of the points is irrelevant.

2. Proof of Ptolemy's Theorem

There are many well known geometric and trigonometric proofs of Theorem 1.1. See [2]. Here is a more algebraic one.

Suppose first that $a<b<c<d$ are 4 points on the line \mathbb{R}. For these points (1) takes the form

$$
\begin{equation*}
(b-a)(d-c)+(d-a)(c-b)=(c-a)(d-b) \tag{3}
\end{equation*}
$$

which is easily verified.

For the case of points on a circle we identify the plane with the complex numbers \mathbb{C}. By translation and scaling we can assume the circle is the unit circle $\{z \||z|=1\}$. Ptolemy's condition now takes the form

$$
\begin{equation*}
|b-a||d-c|+|d-a||c-b|=|c-a||d-b| \tag{4}
\end{equation*}
$$

where a, b, c, d are 4 points in order on the unit circle.
If $z=r e^{i \theta}$ with $r>0$ we choose θ to satisfy $0 \leq \theta<2 \pi$ and choose $\arg (z)=\theta$ and $\sqrt{z}=\sqrt{r} e^{i \theta / 2}$.

Lemma 2.1. Let $w, z \in \mathbb{C}$ with $|w|=|z|=1$ and $\arg (w) \leq \arg z$. Then $(z-w)=$ $i \sqrt{w} \sqrt{z}|z-w|$
Proof. Let $z=e^{i \theta}$ and $w=e^{i \phi}$. where $0 \leq \phi \leq \theta<2 \pi$. We have

$$
\begin{equation*}
(\sqrt{w} \sqrt{z})^{-1}(z-w)=\frac{\sqrt{z}}{\sqrt{w}}-\frac{\sqrt{w}}{\sqrt{z}}=e^{i \frac{\theta-\phi}{2}}-e^{i \frac{\phi-\theta}{2}}=2 i \sin \frac{\theta-\phi}{2} \tag{5}
\end{equation*}
$$

where $\sin \frac{\theta-\phi}{2}>0$ since $0 \leq \theta-\phi<2 \pi$. Taking absolute values in (5) shows that $|z-w|=2 \sin \frac{\theta-\phi}{2}$ so the lemma follows from (5).

Now let a, b, c, d be 4 points in order on the unit circle. Rotate the circle so that $0 \leq \arg (a) \leq \arg (b) \leq \arg (c) \leq \arg (d)<2 \pi$, The lemma shows that each term of (3) is the product of the corresponding term of (4) with the factor $-\sqrt{a} \sqrt{b} \sqrt{c} \sqrt{d}$. Since (3) is true, it follows that (4) is also true, proving Ptolemy's Theorem.

Remark 2.2. Let a, b, c, d be any 4 points of \mathbb{C}. In [1] Apostol observes that applying the triangle inequality to (3) gives a quick proof of Ptolemy's inequality.

3. Proof of the converse theorem

Given 4 points A, B, C, D in the plane satisfying Ptolemy's condition

$$
\begin{equation*}
A B \cdot C D+A D \cdot B C=A C \cdot B D \tag{6}
\end{equation*}
$$

we want to show that the points lie on a circle or straight line. Note that the condition depends on the ordering of the points. We can avoid this nuisance by using the following easily verified identity.
(7) $(p+q+r)(-p+q+r)(p-q+r)(p+q-r)=-p^{4}-q^{4}-r^{4}+2 p^{2} q^{2}+2 p^{2} r^{2}+2 q^{2} r^{2}$

Let F denote either side of (7) with $p=A B \cdot C D, q=A D \cdot B C$ and $r=A C \cdot B D$. Then $F=0$ if and only if the points in some order satisfy Ptolemy's condition.

As above we identify the plane with \mathbb{C}. If every set of 3 points out of A, B, C, D lies on a line, then all 4 points lie on a line and we are done. Therefore we can assume that A, B, C lie on a circle which we can assume is the unit circle. To avoid confusing $A B=|A-B|$ with the product $A B$ I will write a, b, c for A, B, C considered as complex numbers, and write z for D. As usual we write $z=x+i y$ where x and y are real. We fix a, b, and c, and let z vary.

Ptolemy's condition now becomes

$$
\begin{equation*}
|b-a||z-c|+|z-a||c-b|=|c-a||z-b| \tag{8}
\end{equation*}
$$

As above we let $p=|b-a||z-c|, q=|z-a||c-b|, r=|c-a||z-b|$ and let F be the expression in (7). We write $F(z)$ or $F(x, y)$ to refer to the dependence on z.

Ptolemy's theorem implies that $F(z)=0$ if $|z|=1$. Our aim is to show conversely that $F(z)=0$ implies $|z|=1$ so that z lies on the circle.

Now if $a=a_{1}+i a_{2}$, then $|z-a|^{2}=\left(x-a_{1}\right)^{2}+\left(y-a_{2}\right)^{2}$ which is a polynomial of degree 2 in x and y. Similar arguments on the right hand terms of (7) now show that $F(x, y)$ is a polynomial of degree 4 in x and y.
Lemma 3.1. Let $P(x, y)$ be a polynomial over \mathbb{C} which vanishes when $x^{2}+y^{2}=1$ with real x and y. Then $x^{2}+y^{2}-1$ divides P.

Proof. Regard $g=x^{2}+y^{2}-1$ as a monic polynomial in y and divide getting $P=g h+r$ where the remainder r has degree 1 in y so $r=h(x) y+k(x)$. If $-1<x<1$ there are 2 values of y for which $g(x, y)=0$. Since $r=0$ for these 2 values of y, h and k must be 0 for each x with $-1<x<1$ so h and k are 0 as polynomials.

This shows that we have $F(x, y)=\left(x^{2}+y^{2}-1\right) G(x, y)$ where G is a polynomial in x and y of degree 2 .

$$
\begin{equation*}
F(x, y)=\left(x^{2}+y^{2}-1\right) G(x, y) \tag{9}
\end{equation*}
$$

Lemma 3.2. Let $h(z)=|z-a|$ with $a, z \in \mathbb{C}^{*}$ and $|a|=1$. Then $h(z)=|z| h\left(\frac{1}{\bar{z}}\right)$
Proof. Using $\bar{a}=a^{-1}$ we get $|z-a|=|z||a|\left|\frac{1}{a}-\frac{1}{z}\right|=|z|\left|\bar{a}-\frac{1}{z}\right|=|z|\left|a-\frac{1}{\bar{z}}\right|$
Applying this to the terms of F we see that

$$
\begin{equation*}
F(z)=|z|^{4} F\left(\frac{1}{\bar{z}}\right) \tag{10}
\end{equation*}
$$

We claim that G vanishes on the unit circle. Suppose $G(w) \neq 0$ where $|w|=1$. Choose z very close to w with $|z|<1$. Then $\frac{1}{\bar{z}}$ is very close to $\frac{1}{\bar{w}}$ and G is non-zero on the line joining z to $\frac{1}{\bar{z}}$ and so has the same sign at these points. The same is true of F by (10) and therefore also for $x^{2}+y^{2}-1=|z|^{2}-1$ by (9). This contradiction show that our assumption was incorrect and so G must vanish on the unit circle. By Lemma $3.1 x^{2}+y^{2}-1$ divides G so, by degrees, $G=C\left(x^{2}+y^{2}-1\right)=C\left(|z|^{2}-1\right)$ where C is a constant and $F(z)=C\left(|z|^{2}-1\right)^{2}$ showing that $F(z)=0$ implies $|z|=1$.

References

[1] T. M. Apostol, Ptolemy's inequality and the chordal metric, Math. Mag 40(1967), 233-235.
[2] Wikipedia entry for Ptolemy's Theorem.
Department of Mathematics, The University of Chicago, Chicago, IL 60637
E-mail address: swan@math.uchicago.edu

