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RICHARD G. SWAN

Abstract. We give a proof that the Morse sequence has no 3 times repeated
block and derive from it a sequence on 3 letters that has no repeated block.

1. The Morse Sequence

The Morse sequence is a sequence of a’s and b’s defined as follows: We start with
the sequence S0 = {a}.If Sn has been defined having 2n elements we define Sn+1 to
be SnSn where, if S is a sequence of a’s and b’s, S denotes the sequence obtained
from S by interchanging the a’s and b’s. The sequence is the union of these blocks
and thus looks like

abbabaabbaababba . . .

or, using vertical bars to separate the blocks Sn as in [1],

a | b | ba | baab | baababba | . . .

.
In [1] Jacobson makes use of the following interesting property to construct an

infinite semigroup with zero generated by two elements in which x3 = 0 for all
elements x.

Theorem 1.1. There is no non–void block U of a’s and b’s such that UUU occurs
in the Morse sequence.

For the proof, Jacobson refers to the paper [2] of Morse and Hedlund, but after
considerable searching I was unable to find this theorem in that paper. I therefore
worked out my own version of the proof which I will present here for whatever it
is worth. In the course of this I noticed that one can define a sequence on 3 letters
which has no repeated block UU . Starting with the Morse sequence delete the first
letter a and separate the remainder of the sequence into pairs:

bb ab aa bb aa ba bb . . .

Then replace each pair aa by x, each bb by y, and replace each ab and each ba
by z getting a sequence

y z x y x z y . . .

.

Theorem 1.2. There is no non–void block U of x’s, y’s and z’s such that UU
occurs in the sequence just defined.
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As in [1] it follows that there is an infinite semigroup with zero generated by
three elements in which x2 = 0 for all elements x. There is no such sequence or
semigroup on two generators since if no aa or bb occurs the sequence must consist
of alternate a’s and b’s.

2. Inventory

We will need some preliminary observations on short blocks contained in the
Morse sequence. I think the clearest way to present these is just to make a list of
all the possible blocks. The results will be clear from this.

We denote the terms of the Morse sequence by f(0)f(1)f(2) . . . . The definition
of the Morse sequence can be expressed by f(0) = a, and, for 2i ≤ n < 2i+1,
f(n) = f(n− 2i) where a = b and b = a as above. A block of the Morse sequence
will always mean a segment U of the form f(i)f(i + 1) . . . f(j). We write |U | for
the length j − i + 1 of U . An n-block will mean one of length n. By the parity
of an element f(i) of the Morse sequence I will mean i mod 2 and the parity of a
block U = f(i)f(i + 1) . . . will mean that of the first element f(i).

Lemma 2.1. A block of the Morse sequence of the form f(4i)f(4i+1)f(4i+2)f(4i+
3) is either abba or baab.

Proof. This is clear for the block S2. Suppose that the given block lies in Sn+1 =
SnSn for n ≥ 2. The first element of Sn is f(2n) with 4|2n so the given block lies
in either Sn or Sn and we use induction on n. �

It follows that an 8-block of the form f(4i)f(4i + 1) . . . f(4i + 7) must have one
of the forms

abba abba abba baab baab abba baab baab

where the elements of even parity are underlined. Since any block of length at most
4 lies in such an 8-block we obtain the following inventory of small blocks.

Length 2, even parity: ab, ba.
Length 2, odd parity: ab, ba, aa, bb.
Length 3, even parity: abb, baa, aba, bab
Length 3, odd parity: aab, bba, aba, bab
Length 4, even parity: abba, baab, baba, abab
Length 4, odd parity: aabb, bbaa, aaba, bbab, abaa, babb

From this it is easy to check the following facts.

Lemma 2.2. (1) A block of length 2 and even parity has the form ab or ba.
(2) The Morse sequence has no block of the form aaa or bbb.
(3) Let U be a block of length 3 not aba or bab. Then all occurrences of U in

the Morse sequence have the same parity.
(4) If U is a block with |U | ≥ 4 then all occurrences of U in the Morse sequence

have the same parity.

For the last statement it suffices to look at the first 4 letters in U .

Corollary 2.3. If |U | ≥ 3 is odd and U is not aba or bab then no UU occurs in
the Morse sequence.

This follows from the fact that the two occurrences of U would have different
parities.
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3. Proof of Theorem 1.1

We will prove the following stronger result.

Theorem 3.1. Let x be the first letter of U = x . . . . Then UUx does not occur in
the Morse sequence.

We first dispose of the case in which |U | is odd. This follows from Corollary 2.3
unless U = aba or U = bab. If U = aba, then x = a and UUx = abaabaa which is
impossible by Corollary 2.3 applied to baa. A similar argument applies if U = bab.

We now prove the theorem by induction on |U |. The case |U | = 1 is clear.
Define two subsequences of the Morse sequence by Meven = f(0)f(2)f(4) . . . and
Modd = f(1)f(3)f(5) . . . . The sequence Meven looks exactly like the original
Morse sequence whileModd looks like the original Morse sequence with the a’s and
b’s interchanged. These observations follow from the following lemma.

Lemma 3.2. f(2n) = f(n) and f(2n + 1) = f(n).

Proof. This is clear for n = 0. We use induction on n. Suppose the result holds
for n < 2i and suppose that 2i ≤ n < 2i+1. Then 2i+1 ≤ 2n < 2i+2 so f(2n) =
f(2n − 2i+1) = f(2(n − 2i)). Since n − 2i < 2i, the induction hypothesis shows
that this is f(n− 2i) = f(n). Since f(2n + 1) = f(2n) by Lemma 2.2(1) the second
statement follows. �

Suppose now that UUx occurs with |U | even and with even parity. Let V = U ∩
Meven. Then V = x . . . andMeven contains the block UUx∩Meven = V V x. Since
|V | = |U |/2 < |U |, this is impossible by the induction hypothesis. If UUx occurs
with |U | even and with odd parity we use the same argument on V = U ∩Modd.

4. Related sequences

In order to construct sequences with no repeated block we make use of the
following consequence of Theorem 3.1.

Corollary 4.1. If the non–void block U has even length, the Morse sequence con-
tains no block UU of odd parity.

Proof. Let U = xV y and let z be the letter following the second U in the block
UU so the Morse sequence contains the block xV yxV yz. The x’s have odd parity
and the y’s have even parity. By Lemma 2.2(1), x = y = z so the Morse sequence
contains the block UUx contradicting Theorem 3.1. �

We define a new sequence on 4 elements as follows. Omit the first term f(0) of the
Morse sequence and divide the remaining elements into pairs f(1)f(2) | f(3)f(4) | . . . .
Replace each pair f(2n− 1)f(2n) by a single letter as follows. Replace aa by x, bb
by y, ab by u, and ba by v, getting a sequence yuxyxvy . . . .

Corollary 4.2. This sequence contains no non–void block of the form UU .

Proof. By replacing x by aa, y by bb, u by ab, and v by ba, we get a block of
the Morse sequence of the form V V of odd parity and with |V | even contradicting
Corollary 4.1. �

The following observation enables us to produce a sequence on 3 elements with
the same property.
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Lemma 4.3. In the sequence just defined u always occurs in a block yux and v
always occurs in a block xvy.

Proof. Each u is the image of a block ab of the Morse sequence of odd parity. By
Lemma 2.2(1), the letter before the a must be b. By Corollary 4.2 the letter before
that b must be b otherwise we would get a block uu. Similarly the letter after our
ab must be a and the letter after that must also be a. A similar argument applies
to v. �

The sequence of Theorem 1.2 is obtained from the present sequence by replacing
all u’s and v’s by z’s. By Lemma 4.3 no zz can occur and by Corollary 4.2 no xx or
yy can occur so there is no block UU with |U | = 1. Any longer block lifts uniquely
to a block of our 4-element sequence since xz must lift to xv, yz to yu, zx to ux and
zy to vy. Each of the two blocks U will lift to a block V of the 4 element sequence
giving us a block V V which contradicts Corollary 4.2. This proves Theorem 1.2.

To conclude I will point out an alternative construction for this sequence: We
start with the Morse sequence replacing a by y and b by x. Call this sequenceM0.
We then insert a letter between each consecutive pair of letters ofM0 according to
the following rules: Between two consecutive x’s ofM0 we insert a y, between two
consecutive y’s of M0 we insert an x, and between each xy or yx of M0 we insert
a z.

To see that this gives the same sequence let g(0)g(1)g(2) . . . be the sequence
of Theorem 1.2. Then g(n) is determined by f(2n + 1)f(2n + 2) so the elements
g(2n)g(2n + 1)g(2n + 2) are determined by the block

f(4n + 1)f(4n + 2)f(4n + 3)f(4n + 4)f(4n + 5)f(4n + 6)

. Using Lemma 3.2 this block is easily seen to be

f(n)f(n)f(n)f(n + 1)f(n + 1)f(n + 1)

so the elements g(2n)g(2n + 1)g(2n + 2) are determined by f(n) and f(n + 1)
according to the table

f(n) f(n+1) g(2n) g(2n+1) g(2n+2)
a a y x y
a b y z x
b a x z y
b b x y x

It follows that g(0)g(2)g(4) . . . is the Morse sequence with y and x in place of a
and b and g(2n + 1) is determined by the rules given above.
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