K-THEORY OF COHERENT RINGS

RICHARD G. SWAN

ABSTRACT. We show that some basic results on the K-theory of noetherian rings can be extended to coherent rings.

1. INTRODUCTION

The main object of this paper is to show that $K_i(R[t]) = K_i(R)$ for coherent rings R which are regular (every finitely presented module has finite projective dimension). This gives a partial answer to a question of O. Braeunling who asked when this result holds for non-noetherian rings R. His question, which was suggested by [7], was forwarded to me by T. Y. Lam. At the same time, C. Quitté sent me a copy of his book (with H. Lombardi) [8] which recommends coherent rings as a substitute for noetherian rings in constructive mathematics. This suggested the above result.

An old result of Gersten [4, Th. 3.1] shows that $K_i(R[t]) = K_i(R)$ if R is regular and $R[x, y]$ is coherent. Here we show that it is sufficient to assume that only R is coherent using results of Quillen [6] not available when Gersten’s paper was written. Recent work relating coherence properties to the vanishing of negative K-theory can be found in [1].

Most of this paper is expository since the proofs are modifications of standard proofs in Algebraic K-Theory. To avoid endless repetition, I will only consider the case of left modules. The results, of course, are also true for right modules with the obvious changes. The symbol t in $R[t]$ and $R[t, t^{-1}]$ will always be an indeterminate.

2. COHERENT MODULES

For the readers convenience, we recall here the basic facts about coherent modules and rings. For a detailed and comprehensive account see [5] (for the commutative case).

Definition 2.1. Let R be an associative ring. A left R-module M is called pseudo-coherent if every map $R^n \to M$ with $n < \infty$ has a finitely generated kernel. In other words, every finitely generated submodule of M is finitely presented. A coherent module is a finitely generated pseudo-coherent module. The ring R is called coherent if it is coherent as a left R-module.

In [8] the terminology has been changed. The pseudo-coherent modules are called coherent and coherent modules are called finitely generated coherent modules. I will stick to the more familiar terminology here to avoid confusion with the usage in algebraic geometry.

I would like to thank Claude Quitté for sending me a copy of his book (with H. Lombardi) [8] and for other relevant references. I would also like to thank T. Y. Lam for sending me the question which inspired this paper and O. Braeunling for useful comments and references.
Lemma 2.2. If L is a finitely generated module and M is a pseudo–coherent module, every map $L \rightarrow M$ has a finitely generated kernel.

Proof. Let $F = R^n$ map onto L. The kernel of $F \rightarrow L \rightarrow M$ is finitely generated and maps onto the kernel of $L \rightarrow M$. \hfill \Box

Corollary 2.3. If L is a coherent module and M is a pseudo–coherent module, every map $L \rightarrow M$ has a coherent kernel.

The kernel is pseudocoherent as a submodule of L. It is finitely generated by Lemma 2.2

Let $\mathcal{M}(R)$ be the category of all left R–modules, and let $\mathcal{F}g(R)$, $\mathcal{F}p(R)$, and $\text{Coh}(R)$ be the full subcategories of $\mathcal{M}(R)$ of finitely generated, finitely presented, and coherent modules. If R is noetherian, $\mathcal{F}g(R) = \mathcal{F}p(R) = \text{Coh}(R)$.

Theorem 2.4. For any R, the subcategory $\text{Coh}(R)$ of $\mathcal{M}(R)$ is closed under kernels, cokernels, images, and extensions and therefore is an abelian category.

Proof. Let $f : M \rightarrow N$ with M and N coherent. Then $\ker f$ is coherent by Corollary 2.3 while $\text{im} f$ is pseudocoherent as a submodule of N and finitely generated as an image of M. Let $I = \text{im} f$ and $Q = \text{cok} f$. We have an exact sequence $0 \rightarrow I \rightarrow N \rightarrow Q \rightarrow 0$. Let $g : F \rightarrow Q$ with F free and finitely generated. Lift g to a map $h : F \rightarrow N$. Let $k : E \rightarrow I$ with E free and finitely generated. Applying the snake lemma to the diagram

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & E & \longrightarrow & E \oplus F & \longrightarrow & F & \longrightarrow & 0 \\
& & k & \downarrow & (k,h) & \downarrow & & g & \\
0 & \longrightarrow & I & \longrightarrow & N & \longrightarrow & Q & \longrightarrow & 0
\end{array}
\]

gives us the exact sequence $\ker(k,h) \rightarrow \ker g \rightarrow 0$ showing that $\ker g$ is finitely generated as required. Finally let $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ be exact with M' and M'' coherent. Let $f : F \rightarrow M$ be a map with F free and finitely generated and let $g : F \rightarrow M \rightarrow M''$. Applying the snake lemma to the diagram

\[
\begin{array}{cccccc}
0 & \longrightarrow & 0 & \longrightarrow & F & \longrightarrow & F & \longrightarrow & 0 \\
& & f & \downarrow & & \downarrow & g & \\
0 & \longrightarrow & M' & \longrightarrow & M & \longrightarrow & M'' & \longrightarrow & 0
\end{array}
\]

gives us the exact sequence $0 \rightarrow \ker f \rightarrow \ker g \rightarrow 0$. Since M' is coherent and $\ker g$ is finitely generated, Lemma 2.2 shows that $\ker f$ is finitely generated. \hfill \Box

Corollary 2.5. Let $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ be an exact sequence of left R–modules. If two of the modules M', M, M'' are coherent, so is the third.

Corollary 2.6. If M is coherent and N is finitely generated then the cokernel of any map $f : N \rightarrow M$ is coherent.

The image L of f is coherent since it is a finitely generated submodule of M and $\text{cok} f = M/L$.

Corollary 2.7. If R is left coherent then $\mathcal{F}p(R) = \text{Coh}(R)$.

If M is finitely presented it is the cokernel of a map $R^n \rightarrow R^n$ with $m,n < \infty$.

Lemma 2.8. Let \(A \) be a full subcategory of \(M(R) \) such that \(A \) is abelian and \(R \in \text{ob} \, A \). Then any map \(f : M \to N \) in \(A \) has the same kernel in \(A \) as in \(M(R) \).

Proof. Let \(K = \ker f \) in \(M(R) \) and let \(L = \ker f \) in \(A \). Then \(L \to M \to N \) is 0 so \(L \to M \) factors through \(K \). If \(x \in L \) maps to 0 in \(M \), let \(R \to L \) by \(r \mapsto rx \). Then \(R \to L \to M \) is 0. Since \(L \to M \) is a monomorphism in \(A \) we see that \(R \to L \) is 0 showing that \(x = 0 \). Therefore \(L \to M \) is injective. We can now regard \(K \) and \(L \) as submodules of \(M \) and clearly \(L \subseteq K \). Let \(x \in K \) and let \(R \to K \) by \(r \mapsto rx \). Then \(R \to M \to N \) is 0. Since this is in \(A \), \(R \to M \) factors through \(L \) showing that \(x \in L \). Therefore \(L = K \).

\[\square \]

Corollary 2.9. [4, Prop. 1.1(c)] A ring \(R \) is left noetherian if and only if \(\mathcal{F}g(R) \) is an abelian category. It is left coherent if and only if \(\mathcal{F}p(R) \) is an abelian category.

Proof. The ‘only if’ part follows from Theorem 2.4 and Corollary 2.7. Suppose that \(\mathcal{F}g(R) \) is an abelian category. Let \(I \) be a left ideal of \(R \). By Lemma 2.8 the kernel \(I \) of the map \(R \to R/I \) lies in \(\mathcal{F}g(R) \) and so is finitely generated. Finally, if \(\mathcal{F}p(R) \) is an abelian category then the kernel of \(f : R^n \to R \) lies in \(\mathcal{F}p(R) \) and so is finitely generated.

\[\square \]

3. Examples

Lemma 3.1. If \(R \) is a coherent ring, so is any localization \(R_S \) (where \(S \) is a central multiplicative set) and for any coherent \(R_S \)–module \(M \) there is a coherent \(R \)–module \(N \) with \(NS \approx M \).

Proof. Let \(f : R^n_S \to R_S \). By multiplying \(f \) by an element of \(S \) we can assume that \(f \) lifts to \(g : R^n \to R \). The kernel of \(g \) is finitely generated and localizes to the kernel of \(f \). By Corollary 2.7 it is sufficient to prove the second part for finitely presented modules. Given \(R^n_S \to R^n_S \to M \to 0 \), some multiple \(sf \) with \(s \in S \) lifts to \(g : R^n \to R^n \) and we take \(N = \text{coker} \, g \).

\[\square \]

Lemma 3.2.

1. An \(R \)–module which is the filtered union of pseudo-coherent \(R \)–modules is pseudocoherent over \(R \).

2. If a ring \(R \) is the filtered union of coherent subrings \(R_\alpha \) and if \(R \) is flat over each \(R_\alpha \) then \(R \) is coherent.

Proof. The first statement is clear. For the second let \(x_1, \ldots, x_n \in R \) and map \(f : R^n \to R \) by \(e_i \to x_i \). All \(x_i \) lie in some \(R_\alpha \) so we also get \(g : R^n_\alpha \to R_\alpha \) with finitely generated kernel \(K \). By flatness \(R \otimes_{R_\alpha} K \) is the kernel of \(f \) which is therefore finitely generated.

\[\square \]

Corollary 3.3. A polynomial ring in infinitely many variables over a noetherian ring is coherent. So are the rings of algebraic integers i.e. the integral closure of \(\mathbb{Z} \) in an algebraic field extension of \(\mathbb{Q} \).

Remark 3.4. An example in [10] shows that \(R[t] \) need not be coherent even if \(R \) is. In contrast to the noetherian case, a quotient \(R/I \) of a coherent ring \(R \) may not be a coherent ring. For example, any commutative ring can be a quotient of a polynomial ring over \(\mathbb{Z} \) in sufficiently many variables.
Lemma 3.5. Let I be a 2–sided ideal of a ring R and let M be an R–module annihilated by I so that M is also an R/I–module. If M is coherent over R then M is also coherent over R/I.

Proof. M is clearly finitely generated. Let $f : (R/I)^n \to M$. Let $g : R^n \to M$ be the composition $R^n \to (R/I)^n \to M$. Then $ker g$ maps onto $ker f$ showing that $ker f$ is finitely generated.

Corollary 3.6. If R is a coherent ring and I is a 2–sided ideal which is finitely generated as a left ideal, then R/I is a coherent ring.

This is immediate from the lemma and Corollary 2.6. In particular, if the polynomial ring $R[x]$ is coherent so is R.

Corollary 3.7. Let R and I be as in the Lemma. If M is a coherent R–module then M/IM is a coherent R/I–module.

By Corollary 2.7 it is sufficient to prove this for finitely presented modules which is obvious.

Lemma 3.8. Let M be a coherent module over a coherent ring R. If s is a central regular element of R then $M/sM = \{ x \in R | sx = 0 \}$ are coherent over the coherent ring R/sR.

Proof. R/sR is coherent by Corollary 3.6 and M/sM is coherent by Corollary 3.7 even without the regularity assumption. For sM let F be a finitely generated R–module mapping onto M with kernel N which is coherent. Applying the snake lemma to the diagram

\[
\begin{array}{cccccc}
0 & \longrightarrow & N & \longrightarrow & F & \longrightarrow & M & \longrightarrow & 0 \\
& & s & \downarrow & s & \downarrow & s & \downarrow & \\
0 & \longrightarrow & N & \longrightarrow & F & \longrightarrow & M & \longrightarrow & 0
\end{array}
\]

we get an exact sequence $0 \to sM \to N/sN \to F/sF$ showing that sM is coherent since N/sN and F/sF are.

Recall that a subring R of a ring B is called a retract of B if there is a ring homomorphism $\epsilon : B \to R$ such that $\epsilon | R = id$.

Lemma 3.9. If R is a retract of a coherent ring A which is flat over R then R is coherent.

Proof. If $0 \to K \to R^n \to R$ with $n < \infty$, tensoring with A gives $0 \to A \otimes_R K \to A^n \to A$ so $A \otimes_R K$ is finitely generated and therefore so is $K = R \otimes_A A \otimes_R K$.

4. A USEFUL EXACT SEQUENCE

Let $R[t]$ be a polynomial ring in one variable over R. Let L be an R–module and let $F = R[t] \otimes_R L = L[t]$. Filter F by letting $F_n = \sum_{i=0}^{n} R t^i \otimes L = L + Lt + Lt^2 + \cdots + Lt^n$. Let $F_n = 0$ for $n < 0$.

Lemma 4.1. Let $f_0, f_1, \ldots, f_r \in F_k$ satisfy $\sum_{i=0}^{r} t^i f_i = 0$ then $f_r \in F_{k-1}$.

Proof. Let $f_i = \sum_{j=0}^{k} t^{j} a_{ij}$ where $a_{ij} \in L$. Then $\sum_{i=0}^{r} t^i f_i = 0$. The leading term $t^{r+k} a_{rk}$ must be 0 and the result follows.
Let M be a left $R[t]$-module. Recall the following result from [2].

Theorem 4.2 ([2]). There is an exact sequence (“The characteristic sequence”)

$$0 \rightarrow R[t] \otimes_R M \xrightarrow{\alpha} R[t] \otimes_R M \xrightarrow{\beta} M \rightarrow 0$$

where $\alpha(t^n \otimes x) = t^{n+1} \otimes x - t^n \otimes tx$ and $\beta(t^n \otimes x) = t^n x$.

In [11] I gave a modified version with smaller terms as follows:

Theorem 4.3. Let M be a finitely generated left $R[t]$-module which is contained in a free module F. Write $F = R[t] \otimes_R L$ where L is free over R and filter F as above by $F_n = L + tL + \cdots + t^n L$. Let $M_n = M \cap F_n$. Then, for large n, there is an exact sequence

$$(1) \quad 0 \rightarrow R[t] \otimes_R M_{n-1} \xrightarrow{\alpha} R[t] \otimes_R M_n \xrightarrow{\beta} M \rightarrow 0$$

where α and β define maps as indicated. Let n be large enough that all chosen generators of M lie in M_n. Then β will be onto. That $\beta \alpha = 0$ is obvious. Suppose $\alpha(\sum_{i=0}^n t^i \otimes a_i) = 0$. Then $\sum_{i=0}^n t^i \otimes a_i - \sum_{i=0}^n t^i \otimes ta_i = 0$. The leading term, $t^{r+1} \otimes a_r$, is 0 so $a_r = 0$ and, by induction all $a_i = 0$ showing that α is injective.

Suppose $\beta(\sum_{i=0}^r t^i \otimes a_i) = 0$ where all a_i are in M_n. Then $\sum_{i=0}^r t^i a_i = 0$. Since $a_i \in F_n$, Lemma 4.1 shows that $a_r \in F_{n-1}$. Therefore $\alpha(t^{r-1} \otimes a_r)$ is defined. It is $t^r a_r - t^{r-1} \otimes a_r$ so by subtracting it from $\sum_{i=0}^r t^i \otimes a_i$ we can reduce the degree. It follows by induction that $\ker \beta = \text{im} \alpha$. \qed

5. K_0

In this section and the next we examine the case of projective modules.

Lemma 5.1. If R is a coherent ring any finitely generated projective R-module is coherent and, if M is a coherent R-module, there is a resolution

$$\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0,$$

with all P_i finitely generated projective. If M also has finite projective dimension there is such a resolution with $P_n = 0$ for all large n.

Proof. The first statement follows from Corollary 2.7. The resolution is constructed in the standard way. Let P_0 be projective, finitely generated, and map onto M with kernel N. Similarly let P_1 map onto N etc. If M has finite projective dimension then $\ker(P_{n+1} \rightarrow P_n)$ will be projective for large n and we can stop there. \qed

Theorem 5.2. Let R be a left coherent ring such that each finitely presented R-module has finite projective dimension. Then each finitely generated projective $R[t]$-module P has a finite resolution by extended projective modules

$$0 \rightarrow R[t] \otimes_R Q_n \rightarrow R[t] \otimes_R Q_{n-1} \rightarrow \cdots \rightarrow R[t] \otimes_R Q_0 \rightarrow P \rightarrow 0,$$

where each Q_i is finitely generated projective over R.

Proof. Let $P \otimes S = F$ be free and finitely generated. Filter F as in Theorem 4.3 and let $P_n = P \cap F_n$. Since P_n is the kernel of $F_n \rightarrow S$ it is coherent by Corollary 2.3. By Theorem 4.3 we get an exact sequence

$$0 \rightarrow R[t] \otimes_R P_{n-1} \xrightarrow{\alpha} R[t] \otimes_R P_n \rightarrow P \rightarrow 0.$$
Choose finite projective resolutions A'_\bullet for P_{n-1} and B'_\bullet for P_n and extend these to get resolutions $A_\bullet = R[t] \otimes_R A'_\bullet$ for $R[t] \otimes_R P_{n-1}$ and $B_\bullet = R[t] \otimes_R B'_\bullet$ for $R[t] \otimes_R P_n$. Cover α by a map $f : A_\bullet \to B_\bullet$, and let C_\bullet be the mapping cone of f i.e. $C_m = A_{m-1} \oplus B_m$ with $\partial(a,b) = (-\partial a, \partial b + f(a))$. Note that $C_m = R[t] \otimes_R A_{m-1}' \oplus R[t] \otimes_R B_m'$ is extended from R. The exact sequence
\[
\cdots \to H_m(A_\bullet) \to H_m(B_\bullet) \to H_m(C_\bullet) \to H_{m-1}(A_\bullet) \to \cdots
\]
shows that $H_m(C_\bullet) = 0$ for $m \neq 0$ and is P for $m = 0$, so C_\bullet is the required resolution.

Corollary 5.3. If R is a left coherent ring such that each finitely presented R–module has finite projective dimension, then $[M] \mapsto [R[t] \otimes_R M]$ induces an isomorphism $K_i(R) \approx K_0(R[t])$.

The map is onto by the theorem and is split injective by the map $[N] \mapsto [N/tN]$.

Remark 5.4. Since $R[t]$ need not be coherent even if R is, it is not clear whether this result can be extended to $R[t_1, \ldots, t_n]$ for $n > 1$.

6. K_i

Theorem 6.1. If R is a left coherent ring such that each finitely presented R–module has finite projective dimension, then $[M] \mapsto [R[t] \otimes_R M]$ induces isomorphisms $K_i(R) = K_i(R[t])$ and $K_i(R[t, t^{-1}]) = K_i(R) \oplus K_{i-1}(R)$ for all $i > 0$.

Proof. By the Fundamental Theorem [6] we have $K_i(R[t]) = K_i(R) \oplus NK_i(R)$ and $K_i(R[t, t^{-1}]) = K_i(R) \oplus K_{i-1}(R) \oplus NK_i(R) \oplus NK_i(R)$ and $NK_i(R) = Nil_{i-1}(R)$. (When $i = 1$ there is a more elementary proof of these results in [2]). Therefore it will suffice to show that, under the hypothesis, $Nil_i(R) = 0$ for $i \geq 0$.

Recall that for any exact category C, $Nil(C)$ is the category with objects (A, α) where $A \in C$, and α is a nilpotent endomorphism of A. A morphism $(A, \alpha) \to (B, \beta)$ in $Nil(C)$ is a morphism $f : A \to B$ such that $f \alpha = \beta f$. Taking C to be the category of projective modules $\mathcal{P}(R)$ we get a category $\mathcal{N} = Nil(\mathcal{P}(R))$. There are exact functors $\mathcal{N} \to \mathcal{P}(R)$ by $(A, \alpha) \mapsto A$ and $\mathcal{P}(R) \to \mathcal{N}$ by $P \mapsto (P, 0)$. These show that $K_i(R)$ is a direct summand of $K_i(\mathcal{N})$. Define $Nil_i(R)$ to be the cokernel of $K_i(\mathcal{R}) \to K_i(\mathcal{N})$. Then $K_i(\mathcal{N}) = K_i(R) \oplus Nil_i(R)$

Let $Nil'_i(R)$ be defined like $Nil_i(R)$ with the category of projective modules replaced by the category $\text{Coh}(R)$ of coherent modules and \mathcal{N} replaced by the category $\mathcal{N}' = Nil(\text{Coh}(R))$. The previous remarks also apply to this case showing that $K_i(\mathcal{N}) = K_i(\text{Coh}(R)) \oplus Nil'_i(R)$.

Proposition 6.2. If R is a left coherent ring such that each finitely presented R–module has finite projective dimension, then $Nil_i(R) \approx Nil'_i(R)$.

Proof. We can regard \mathcal{N}' as the full subcategory of the category of $R[t]$–modules consisting of modules A which are coherent over R and are such that $t \cdot A$ is nilpotent. It is closed under subobjects, quotients, and extensions and so is an abelian category. The category \mathcal{N} is a full subcategory of \mathcal{N}' which is closed under kernels of epimorphisms and extensions. The hypothesis and the next lemma show that each module in \mathcal{N}' has a finite resolution by modules in \mathcal{N} so it follows from [9, Th. 3, Cor 1] that $K_i(\mathcal{N}) = K_i(\mathcal{N}')$. It also follows from [9, Th. 3, Cor 1] that
Lemma 6.3. A finitely presented module M with a nilpotent endomorphism α can be covered by a finitely generated projective module P with a nilpotent endomorphism β so that $(P, \beta) \to (M, \alpha)$.

Proof. Suppose $\alpha^{n+1} = 0$. Let Q be projective with $f : Q \to M$, let $P = Q^{n+1}$, and let $\beta(x_0, \ldots, x_n) = (0, x_1, x_2, \ldots, x_{n-1})$. Map P to M by sending (x_0, \ldots, x_n) to $fx_0 + \alpha fx_1 + \alpha^2 fx_2 + \ldots$.

Theorem 6.1 now follows from the next lemma.

Lemma 6.4. If R is a coherent ring then $\text{Nil}_i'(R) = 0$.

Proof. If $[M, \alpha] \in \mathcal{N}'$, filter M by $M_i = \alpha^i M$. The M_i and their quotients are all coherent and α induces 0 on each M_i/M_{i+1}. Theorem 4 of [9] now applies to the categories $\text{Coh}(R) \subseteq \mathcal{N}'$. It follows that $K_i(\text{Coh}(R)) = K_i(\mathcal{N}')$ showing that $\text{Nil}_i'(R) = 0$. Although $\text{Coh}(R)$ is not closed under extensions in \mathcal{N}', it is closed under subobjects, quotient objects, and finite products, which is all that is needed for [9, Theorem 4].

7. G_0

For a noetherian ring R, $G_0(R)$ is the Grothendieck group of the category of finitely generated modules. For general rings I will define $G_0(R)$ as the Grothendieck group of the category of coherent modules. This seems, at the moment, to be a good choice since $\text{Coh}(R)$ is an abelian category and, in the noetherian case, it agrees with the standard definition.

Throughout this section $R[t]$ will denote a polynomial ring in one variable t.

Theorem 7.1. If R is a left coherent ring such that $R[t]$ is also left coherent then $G_0(R[t]) \approx G_0(R[t])$ by the map sending $[M]$ to $[R[t] \otimes_R M]$ and $G_0(R) \approx G_0(R[t, t^{-1}])$ sending $[M]$ to $[R[t, t^{-1}] \otimes_R M]$.

Proof. Let R be as in Theorem 7.1 so that $R[t]$ is also coherent, and so is $R[t, t^{-1}]$ by Lemma 3.1. Therefore $R[t] \otimes_R M$ and $R[t, t^{-1}] \otimes_R M$ will be coherent if M is since coherent is the same as finitely presented over these rings by Corollary 2.7. If M is a coherent $R[t]$-module then M/tM and $M = \{x|x \in M, tx = 0\}$ are coherent R-modules by Lemma 3.8. We can therefore define a map $G_0(R[t]) \to G_0(R)$ by sending $[M]$ to $[M/tM] - [\hat{i}M]$. That this preserves the relations follows from the snake lemma applied to the diagram

$$
\begin{array}{cccccc}
0 & \longrightarrow & M' & \longrightarrow & M & \longrightarrow & M'' & \longrightarrow & 0 \\
\downarrow t & & \downarrow t & & \downarrow t & & \\
0 & \longrightarrow & M' & \longrightarrow & M & \longrightarrow & M'' & \longrightarrow & 0
\end{array}
$$
Since $G_0(R) \rightarrow G_0(R[t]) \rightarrow G_0(R)$ is easily seen to be the identity, all that remains is to show that $G_0(R) \rightarrow G_0(R[t])$ is onto. Let M be a coherent $R[t]$–module and let $0 \rightarrow N \rightarrow F \rightarrow F' \rightarrow M \rightarrow 0$ be exact with F and F' free and finitely generated. Filter F as in Theorem 4.3 and let $N_n = N \cap F_n$. For large n we get an exact sequence

$$0 \rightarrow R[t] \otimes_R N_{n-1} \rightarrow R[t] \otimes_R N_n \rightarrow N \rightarrow 0.$$

Now for any k, N_k is the kernel of $F_k \rightarrow F'$ and so is coherent over R by Corollary 2.3. It follows that $[N]$ lies in the image of $G_0(R) \rightarrow G_0(R[t])$ and therefore so does $[M] = [N] - [F] + [F']$.

For the last statement it suffices to show that $G_0(R[t]) \rightarrow G_0(R[t, t^{-1}])$ is an isomorphism. We use the following standard fact (adapted to the coherent case).

Lemma 7.2. Let A be a coherent ring with a central multiplicative set S. Let N be the full subcategory of $N \in \text{Coh}(A)$ such that $N_S = 0$. Then

$$K_0(N) \xrightarrow{i} G_0(A) \xrightarrow{j} G_0(A_S) \rightarrow 0$$

is exact.

Proof. We define a mapping $G_0(A_S) \rightarrow \text{ckr} i$ as follows. If N is a coherent A_S-module then by Lemma 3.1 there is a coherent A-module M with $M_S \approx N$. If L is another such module Lemma 9.1 shows we can multiply the isomorphism $L_S \approx M_S$ by an element of S so that it lifts to a map $g : L \rightarrow M$. The kernel and cokernel of g are in \mathcal{N} so $[L] = [M]$ in $\text{ckr} i = G_0(A)/\text{im} K_0(N)$. Define $f : G_0(A_S) \rightarrow \text{ckr} i$ by $f([N]) = [M]$. If $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ multiply p by an element of S and lift it to a map $q : M' \rightarrow M$. We get $0 \rightarrow K \rightarrow M' \rightarrow M'' \rightarrow 0$. Localizing shows $M''_S \approx N''$ and K lies in \mathcal{N} so $[M'] + [M''] \equiv [M]$ mod $K_0(N)$ showing that our map is well defined. The two maps between $G_0(A)/\text{im} K_0(N)$ and $G_0(A_S)$ are easily seen to be inverses, proving the lemma.

Apply this to $A = R[t]$ and $A_S = R[t, t^{-1}]$ with $S = \{t^n | n \geq 0\}$. We have to show that $N_S = 0$ implies $[N] = 0$ in $G_0(R[t])$. Since N is finitely generated, $t^n N = 0$ for some n. Filtering N by coherent submodules $N \supseteq tN \supseteq t^2N \supseteq \cdots \supseteq t^n N = 0$ shows that it will suffice to consider the case where $tN = 0$. By Lemma 3.5 N is coherent as an R-module so the characteristic sequence Theorem 4.2

$$0 \rightarrow R[t] \otimes_R N \rightarrow R[t] \otimes_R N \rightarrow N \rightarrow 0$$

shows that $[N] = 0$ in $G_0(R[t])$ so $G_0(R[t]) \rightarrow G_0(R[t, t^{-1}])$ is an isomorphism.

8. Graded Rings

The next three sections are devoted to the proof of the analogues of the above results for the functors G_i. We follow Quillen [9] closely (except for writing $G_i(R)$ instead of $K_i^*(R)$) and begin by looking at the case of graded polynomial rings in preparation for the treatment of G_i in the final section.

Let $B = \bigoplus_{n=0}^{\infty} B_n$ be a graded ring and let $M = \bigoplus_{n=0}^{\infty} M_n$ be a graded B–module. I will use M to denote M as an ungraded module. For the present purposes I will call M coherent if \overline{M} is a coherent module and write $\text{Cohgr}(R)$ for the category of coherent graded R–modules and degree preserving morphisms.

If $M = \bigoplus_{n=0}^{\infty} M_n$ we let $M(-p)$ be M with a new grading $M(-p)_n = M_{n+p}$. We have $\text{Hom}_B(B(-p), M) = M_p$. By a free graded module I will mean a direct sum $\bigoplus_i B(-p_i)$ where $p_i \geq 0$.
Lemma 8.1. Let M be a graded module over a graded ring.

1. M is finitely generated if and only if \overline{M} is finitely generated.
2. M is finitely presented if and only if \overline{M} is finitely presented.

Proof. The "only if" statements are clear. If a_1, \ldots, a_n generate \overline{M} let $a_i = \sum_j a_{ij}$ where $a_{ij} \in M_j$. The a_{ij} are then homogeneous generators of M. If M is finitely presented it is finitely generated so we can map a finitely generated free module F onto M getting an exact sequence $0 \to N \to F \to M \to 0$. After dropping the grading we see that N is finitely generated and therefore so is N. \qed

Let R be a coherent ring and let $B = R[x_1, \ldots, x_r]$ with $r < \infty$. Grade B by $\deg x_i = 1$ and assume that B is coherent and therefore so is R by Corollary 3.6 or Lemma 3.9. Our aim is to compute $G_i(B) = K_i(\text{Cohgr}(B))$. Define exact functors $b_p : \text{Coh}(R) \to \text{Cohgr}(B)$ by $b_p(M) = B(-p) \otimes_R M$. They are exact since B is free over R. They are graded using the grading of $B(-p)$ so that $b_p(M)_n = B(-p)_n \otimes_R M$. Since $M \in \text{Coh}(R)$ is finitely presented by Corollary 2.7 so is $b_p(M)$ which is therefore coherent so we get a map $\beta_p : G_i(R) \to G_i(B)$.

Theorem 8.2. Let $B = R[x_1, \ldots, x_r]$, with $r < \infty$ be a polynomial ring over a ring R graded by $\deg x_i = 1$ for all i. If B is coherent then $\beta = \bigoplus_{p \geq 0} \beta_p : \bigoplus_{p \geq 0} G_i(R) \to G_i(B)$ is an isomorphism.

Proof. We define an inverse mapping $\gamma = \bigoplus_{p \geq 0} \gamma_p : G_i(B) \to \bigoplus_{p \geq 0} G_i(R)$ as follows. If $N \in \text{Cohgr}(B)$ let $Q(N) = R \otimes_B N = N/B^+ N$ where $B^+ = \bigoplus_{n > 0} B_n$ is the kernel of the retraction $B \to R$. We have $Q(N) = \bigoplus Q_n(N)$ with $Q_n(N) = N_n/D_n(N)$ where $D_n(N) = (B^+ N)_n = \bigoplus_{i=1}^r B_i N_{n-i}$, the decomposable elements of N_n. Since N is coherent it is finitely presented and therefore so is $Q(N)$ which, as well as its summands $Q_n(N)$, is therefore coherent. Q is right exact but not exact in general. The Tor sequence for $0 \to N' \to N \to N'' \to 0$ is $\cdots \to \text{Tor}_i^B(R,N'') \to \text{Tor}_i^B(R,N') \to Q(N') \to Q(N) \to Q(N'') \to 0$. Therefore Q will be exact on the full subcategory N of $\text{Cohgr}(B)$ of objects N such that $\text{Tor}_i^B(R,N) = 0$ for all $i > 0$. Since R has Tor-dimension $r < \infty$ over B the resolution theorem [9, §4, Cor. 3] shows that $K_i(N) = K_i(\text{Cohgr}(B))$. Define $\gamma_p : K_i(N) \to K_i(\text{Coh}(R))$ to be the map induced by the functor $Q_p : N \to \text{Coh}(R)$.

For $N \in N$ let $F_p N$ be the submodule of N generated by all N_i with $i \leq p$ and let $F_p N$ be the full subcategory of the $F_p N$ for all $N \in N$.

Lemma 8.3. $F_p N$ is closed under extensions and so is an exact category. Moreover N is the union of these subcategories.

Proof. If $0 \to N' \to N \to N'' \to 0$ is exact and N' and N'' are in $F_p N$ then N' and N'' are generated by homogeneous elements $\{x^p_i\}$ and $\{y^p_i\}$ of degree at most p. Lift the y^p_i to elements y_j of the same degree in N. Then $\{x^p_i\}$ and $\{y_i\}$ generate N so $F_p N = N$. Any N in N is finitely generated and so lies in $F_p N$ when p is the degrees of its generators. \qed

Since Q_n is 0 on $F_p N$ for $n > p$, the same is true of $\gamma_n : K_i(F_p N) \to G_i(R)$ so we can define a map $\gamma = \bigoplus_{n=0}^\infty \gamma_n : K_i(F_p N) \to \bigoplus_{n=0}^\infty G_i(R)$. Taking the limit as $p \to \infty$ we get the required map $\gamma = \bigoplus_{n=0}^\infty \gamma_n : K_i(N) \to \bigoplus_{n=0}^\infty G_i(R)$.

We can also replace $\text{Cohgr}(B)$ by N in discussing the maps β_p since $b_p(M)$ lies in N by the following lemma.
Lemma 8.4. [9, §7, Proof of Lemma 1] If R is a subring of B, B is flat over R, and X is any R–module then $\text{Tor}_i^B(R, B \otimes_R X) = 0$ for all $i > 0$.

Proof. Let $T_i(X) = \text{Tor}_i^B(R, B \otimes_R X)$. This is an exact ∂–functor because B is flat over R. It is effaceable since $B \otimes_R X$ is projective over B if X is projective over R. Therefore the T_i are the derived functors of T_0 but $T_0(X) = R \otimes_B B \otimes_R X = X$ which is exact so its higher derived functors are 0.

We now have the required maps.

$$
\bigoplus_0 \infty G_i(R) \xrightarrow{\beta} K_i(N) \xrightarrow{\gamma} \bigoplus_0 \infty G_i(R)
$$

The composition is induced by the functor taking M in $\text{Coh}(R)$ to $Q_n \circ b_p(M) = Q_n(B(-p) \otimes_R M)$ which is the degree n part of $R \otimes_B B(-p) \otimes_R M = M$ graded by assigning the degree p to all elements. This is M if $n = p$ and otherwise 0. This shows that $\gamma \circ \beta$ is the identity.

The composition $\beta \circ \gamma$ is the sum of the compositions $\beta_p \circ \gamma_p$, where $\beta_p \circ \gamma_p$ is induced by $b_p \circ Q_p$. The next lemma shows that the functor $\beta_p \circ \gamma_p$ is isomorphic to the functor $N \mapsto F_pN/F_{p-1}N$. It follows that the functors F_p are exact on \mathcal{N}. If we replace \mathcal{N} with $F_p\mathcal{N}$ we have a finite filtration and can apply the theorem on characteristic filtrations [9, §3 Cor.3] to conclude that the endomorphisms of K_i induced by the functors $N \mapsto F_pN/F_{p-1}N$ sum to the identity showing that $\beta \circ \gamma$ is the identity. Taking the limit as $p \to \infty$ then shows that this is true for \mathcal{N}, proving Theorem 8.2.

The following lemma makes no use of coherence. The definitions of $F_p\mathcal{N}, Q(N) = \bigoplus_n Q_n(N)$, and $Q_p(N) = N_p/D_p(N)$ are the same as above.

Lemma 8.5. [9, §7, Lemma 1] Let $B = \bigoplus_{n=0}^{\infty} B_n$ be a graded ring with $B_0 = R$ and let N be a finitely generated graded B–module. If $\text{Tor}_i^B(R, N) = 0$ then there is an isomorphism $\theta_p : B(-p) \otimes_R Q_p(N) \xrightarrow{\sim} F_pN/F_{p-1}N$.

Proof. Since $N_p \subseteq F_p\mathcal{N}$ and $D_p(N) \subseteq F_{p-1}N$ there is a map $Q_p(N) = N_p/D_p(N) \to F_p\mathcal{N}/F_{p-1}\mathcal{N}$. The right hand side is a B–module so this extends to give us our map θ_p. Since $F_p\mathcal{N}$ is generated by $F_{p-1}N$ and N_p, θ_p is onto.

Remark 8.6. To be consistent with the previous notation we regard $Q_p(N)$ as an ungraded module and write $B(-p) \otimes_R Q_p(N)$ instead of $B \otimes_R Q_p(N)$.

We use the following facts.

1. $Q(N) = 0$ implies $N = 0$.
2. θ_p is onto.
3. $Q(F_{p-1}N) \to Q(F_pN)$ is injective.
4. $Q(\theta_p)$ is an isomorphism.

For (1), if $N_n = 0$ for all $n \leq m$ then $D_m(N) = 0$ so $N_m = Q_m(N) = 0$. (2) was proved above. For (3) and (4) we observe that $Q_n(F_pN) = 0$ for $n > p$ while $Q_n(F_pN) = Q_n(N)$ for $n \leq p$. This implies (3). For (4) observe that if M is a graded module generated by M_p then $Q(M) = M_p$ because $B^+M = \sum_{n \geq p} M_n$. This condition is satisfied by $B(-p) \otimes_R Q_p(N)$ which has $(B(-p) \otimes_R Q_p(N))_p = Q_p(N)$ and by $F_p\mathcal{N}/F_{p-1}\mathcal{N}$ which has $(F_p\mathcal{N}/F_{p-1}\mathcal{N})_p = N_p/D_p(N) = Q_p(N)$. $Q(\theta)$ corresponds to the identity map $Q_p(N) \to Q_p(N)$, the map used to define θ.

Define $T_i(N) = \text{Tor}^p(R, N)$, an exact ∂-functor with $T_0 = Q$. We have $T_1(N) = 0$ by the hypothesis. For large $p F_p N = N$ because N is finitely generated. Assuming $T_1(F_p N) = 0$, we will show that $T_1(F_{p-1} N) = 0$, proving that this is true for all p. At the same time we show that $K^p = \ker \theta_p = 0$ so θ_p is an isomorphism. The exact sequence $0 \to K^p \to B(-p) \otimes_R Q_p(N) \to F_p N/F_{p-1} N \to 0$ gives us an exact sequence

$$0 \to T_1(F_p N/F_{p-1} N) \to Q(K^p) \to Q(B(-p) \otimes_R Q_p(N)) \xrightarrow{Q(\theta_p)} Q(F_p N/F_{p-1} N)$$

Note that $T_1(B(-p) \otimes_R Q_p(N)) = 0$ by Lemma 8.4. The map on the right is an isomorphism by (4). This shows that $T_1(F_p N/F_{p-1} N) = Q(K^p)$.

Assume now that $T_1(F_p N) = 0$. The exact T_1-sequence for $0 \to F_p N \to F_p N/F_{p-1} N \to 0$ is

$$0 = T_1(F_p N) \to T_1(F_p N/F_{p-1} N) \to Q(F_{p-1} N) \to Q(F_p N)$$

The map on the right is injective by (3). This shows that $T_1(F_p N/F_{p-1} N) = Q(K^p)$ is 0 so $K^p = 0$ by (1). From the same sequence we get $T_2(F_p N/F_{p-1} N) \to T_1(F_{p-1} N) \to T_1(F_p N) = 0$. Since $K^p = 0$, θ_p is an isomorphism so $T_2(F_p N/F_{p-1} N) = T_2(B(-p) \otimes_R Q_p(N)) = 0$ by Lemma 8.4. It follows that $T_1(F_{p-1} N) = 0$ completing the induction. □

9. Localization

Let $A = \bigoplus_{n \geq 0} A_n$ be a graded ring and let S be a central multiplicative subset of A consisting of homogeneous elements. Then A_S is a graded ring with $\deg x/s = \deg x - \deg s$. We allow elements of negative degree here.

Lemma 9.1. Let S be a central multiplicative subset of a ring A and let M and N be A–modules with M finitely presented. If $\gamma : M_S \to N_S$ is an A_S–homomorphism there is an A–homomorphism $g : M \to N$ and an element s of S with $g_S = s \gamma$.

Proof. Suppose $M = F$ is free and finitely generated by e_1, \ldots, e_n. Let $\gamma(e_k) = x_k/s$ with s in S. Then $g(e_k) = x_k$ is the required map. Let $F' \xrightarrow{i} F \xrightarrow{j} M \to 0$ be a finite presentation of M. By the previous remark we can find $h : F \to N$ such that $h_S = s \gamma \circ j_S$. Now $h \circ i$ localizes to 0 since $j_S \circ i_S = 0$ so the image of $h \circ i$, being finitely generated, is annihilated by some $t \in S$. Therefore $th \circ i = 0$ so th factors through the cokernel of i giving us the required map g. We have $g \circ j = th$ so $g_S \circ j_S = th_S = ts \gamma \circ j_S$ and therefore $g_S = th_S = ts \gamma$ since j_S is an epimorphism. □

If $F : A \to B$ is an exact covariant functor of abelian categories then the full subcategory \mathcal{S} of objects A of A with $F(A) = 0$ is a Serre subcategory and we have an exact functor $A/\mathcal{S} \to B$. If this is an equivalence of categories we get an exact localization sequence

$$\cdots \to K_i(\mathcal{S}) \to K_i(A) \to K_i(B) \to K_{i-1}(\mathcal{S}) \to \cdots$$

by the Localization Theorem [9, §5 Th. 5].

Theorem 9.2 ([11], Theorem 5.11). In this situation if the following two conditions are satisfied then $A/\mathcal{S} \to B$ is an equivalence of categories.

1. For each $B \in \mathcal{B}$ there is an $A \in \mathcal{A}$ with $F(A) \approx B$.
(2) If \(A, A' \in \mathcal{A} \) and \(f : F(A) \to F(A') \) in \(\mathcal{B} \) there is an object \(A'' \) and maps
\[A \leftarrow A'' \twoheadrightarrow A'\]
such that \(F(h) \) is an isomorphism and \(f = F(g)F(h)^{-1} \).

Corollary 9.3. Let \(A = \bigoplus_{n \geq 0} A_n \) be a graded ring and let \(S \) be a central multiplicative subset of \(A \) consisting of homogeneous elements. Let \(\mathcal{S} \) be the full subcategory of \(\text{Cohgr}(A) \) of all modules \(M \) with \(M_S = 0 \). Then \(\text{Cohgr}(A)/\mathcal{S} \approx \text{Cohgr}(A_S) \).

Proof. We have to check the two conditions of Theorem 9.2 with \(\mathcal{A} = \text{Cohgr}(A) \) and \(\mathcal{B} = \text{Cohgr}(A_S) \).

1. Any \(N \in \mathcal{B} \) is finitely presented so we can write \(F_S' \xrightarrow{\gamma} F_S \to N \to 0 \) with \(F_S \) free and finitely generated over \(A_S \). By Lemma 9.1 we can write \(s\gamma = gs \) and \(N = \text{coker} \gamma = \text{coker} g_S \) since \(s \) is a unit in \(A_S \). Therefore \(N = M_S \) where \(M = \text{coker} g \).

2. Suppose \(\gamma : M_S \to N_S \) in \(\text{Cohgr}(A_S) \). By Lemma 9.1 write \(s\gamma = gs \) where \(g : M \to N \). Then we have \(M \xleftarrow{\alpha} M(-d) \xrightarrow{\beta} N \) and \(s \) localizes to an isomorphism as required. Note that \(M(-d) = M \) as a module but we have changed the grading by \(d = \text{deg} s = \text{deg} g \) to make the two maps have degree 0.

\(\square \)

In the next lemma we allow \(A \) and its modules to have elements of negative degree.

Lemma 9.4. If \(A \) is a coherent graded ring having a central unit \(s \) in \(A_1 \) then \(A_0 \) is also coherent, \(\text{Cohgr}(A) \approx \text{Coh}(A_0) \), and \(G_i(A_0) \to G_i(A) \) induced by \(M \to A \otimes A_0 \) and \(M \) is an isomorphism.

Proof. Since \(s \) is a unit \(s^n : A_0 \approx A_n \) so \(A = \bigoplus A_0 s^n \) showing that \(A \) is a Laurent polynomial ring \(A_0[s, s^{-1}] \) and therefore \(A_0 \) is coherent by Lemma 3.9. Similarly if \(N \) is a graded \(A \)-module \(s^n : N_0 \approx N_n \) so \(N = N_0[s, s^{-1}] \) Define \(f : \text{Coh}(A_0) \to \text{Cohgr}(A) \) by \(f(M) = A \otimes A_0 M \) and \(g : \text{Cohgr}(A) \to \text{Coh}(A_0) \) by \(g(N) = N_0 \). These maps are inverse equivalences of categories.

\(\square \)

10. \(G_i \)

Theorem 10.1. If \(R \) is a ring such that the polynomial ring \(R[x, y] \) is coherent then \(G_i(R) \to G_i(R[x]) \), induced by the functor \(M \mapsto R[x] \otimes_R M \), is an isomorphism.

Proof. We can assume that \(i > 0 \) because of Theorem 7.1. Let \(A = R[t, s] \) and \(B = R[t] \) be polynomial rings graded by \(\deg t = \deg s = 1 \). The localization sequence \([9, \S 5 \text{Th. 5}]\) for \(A \to A_s \) is \(\cdots \to G_i(N) \to G_i(A) \to G_i(A_s) \to G_{i-1}(N) \to \cdots \) where \(N \) is the Serre subcategory of \(A \)-modules \(M \) such that \(M_s = 0 \). By the Devissage Theorem \([9, \S 5 \text{Th.4}]\) \(G_i(N) \approx G_i(A/(s)) = G_i(B) \).

By Lemma 9.4 \(G_i(A_s) = G_i((A_0)_0) \). Since \(A_s = R[t, s, s^{-1}] \) we see that \((A_s)_0 = R[z] \) where \(z = t/s \). Therefore the localization sequence takes the form
\[\cdots \to G_i(B) \xrightarrow{j_s} G_i(A) \to G_i(R[z]) \to G_{i-1}(B) \to \cdots\]

Here \(A \) and \(B \) are graded rings and the map \(j_s : G_i(B) \to G_i(A) \) is induced by the inclusion of \(\text{Cohgr}(B) \) in \(\text{Cohgr}(A) \) while the map \(G_i(A) \to G_i(R[z]) \) is induced by \(N \mapsto (N_s)_0 \).
By Theorem 8.2 we have an isomorphism $\alpha = \bigoplus_{p \geq 0} \alpha_p : \bigoplus_{p \geq 0} G_i(R) \to G_i(A)$ induced by $a_p : M \mapsto A(-p) \otimes_R M$, and similarly $\beta = \bigoplus_{p \geq 0} \beta_p : \bigoplus_{p \geq 0} G_i(R) \to G_i(B)$ given by $b_p(M) \mapsto B(-p) \otimes_R M$. We have a diagram

$$
\begin{array}{cccc}
\bigoplus_{p \geq 0} G_i(R) & \xrightarrow{f} & \bigoplus_{p \geq 0} G_i(R) \\
\downarrow{\alpha} & & \downarrow{\beta} \\
G_i(B) & \xrightarrow{j_*} & G_i(A)
\end{array}
$$

The exact sequence $0 \to A(-p - 1) \to A(-p) \to B(-p) \to 0$ tensored with M gives us an exact sequence of functors $0 \to M_{p+1} \to M_p \to M_{p-1} \to 0$. By the characteristic filtration theorem [9, §3 Cor.3] this implies that $j_*\beta_p = \alpha_p - \alpha_{p+1}$. If $x = (x_p) \in \bigoplus_{p \geq 0} G_i(R)$ then $j_*\beta(x) = \sum_{p \geq 0} j_*\beta_p(x_p) = \sum_{p \geq 0} \alpha_p(x_p) - \sum_{p \geq 0} \alpha_{p+1}(x_p)$ so $j_*\beta(x) = \sum_{p \geq 0} \alpha_p(x_p - x_{p-1}) = \alpha(y)$ with $y_p = x_p - x_{p-1}$ where we set $x_p = 0$ when $p < 0$.

The map $G_i(B) \to G_i(A)$ is therefore isomorphic to the map $f : \bigoplus_{p \geq 0} G_i(R) \to \bigoplus_{p \geq 0} G_i(R)$ given by $(x_p) \mapsto (y_p)$ where $y_p = x_p - x_{p-1}$. We can recover the x_p from the y_p by $x_p = y_0 + y_1 + \cdots + y_p$ so the map is injective. The image is the set of (y_p) for which $\sum_p y_p = 0$ so the cokernel is $G_i(R)$ via the map $\bigoplus_p G_i(R) \to G_i(R)$ sending (y_p) to $\sum_p y_p$. The map $G_i(R) \xrightarrow{\alpha} G_i(A) \to \mathrm{cok} j_* \approx G_i(R[z])$ is therefore an isomorphism. It is induced by the functor sending an R-module M to $(A \otimes_R M)_{j_*}$ if $R[z] \otimes_R M$ as required.

Corollary 10.2. If R is a ring such that the polynomial ring $R[x, y]$ is coherent then $G_i(R[z, x^{-1}]) = G_i(R) \oplus G_{i-1}(R)$ for $i > 0$.

Proof. Observe that in the localization sequence

$$
\cdots \to G_i(R) \to G_i(R[x]) \to G_i(R[x, x^{-1}]) \to G_{i-1}(R) \to G_{i-1}(R[x]) \to \cdots
$$

the map $G_i(R) \to G_i(R[x])$ is 0 because of the exact characteristic sequence $0 \to M[x] \to M[x] \to M \to 0$ (Theorem 4.2) and the theorem on characteristic filtrations [9, §3 Cor.3].

References

11. R. G. Swan, Serre’s problem, Queen’s papers in Pure and Appl. Math. 42, Queen’s University, Kingston, Ont. 1975.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF CHICAGO, CHICAGO, IL 60637
E-mail address: swan@math.uchicago.edu