
K–THEORY OF COHERENT RINGS

RICHARD G. SWAN

Abstract. We show that some basic results on the K–theory of noetherian

rings can be extended to coherent rings.

1. Introduction

The main object of this paper is to show that Ki(R[t]) = Ki(R) for coherent
rings R which are regular (every finitely presented module has finite projective di-
mension). This gives a partial answer to a question of O. Braeunling who asked
when this result holds for non–noetherian rings R. His question, which was sug-
gested by [7], was forwarded to me by T. Y. Lam. At the same time , C. Quitté sent
me a copy of his book (with H. Lombardi) [8] which recommends coherent rings as
a substitute for noetherian rings in constructive mathematics. This suggested the
above result.

An old result of Gersten [4, Th. 3.1] shows that Ki(R[t]) = Ki(R) if R is regular
and R[x, y] is coherent. Here we show that it is sufficient to assume that only R is
coherent using results of Quillen [6] not available when Gersten’s paper was written.
Recent work relating coherence properties to the vanishing of neagtive K-theory
can be found in [1].

Most of this paper is expository since the proofs are modifications of standard
proofs in Algebraic K–Theory. To avoid endless repetition, I will only consider the
case of left modules. The results, of course, are also true for right modules with the
obvious changes. The symbol t in R[t] and R[t, t−1] will always be an indeterminate.

2. Coherent Modules

For the readers convenience, we recall here the basic facts about coherent modules
and rings. For a detailed and comprehensive account see [5] (for the commutative
case).

Definition 2.1. Let R be an associative ring. A left R–module M is called pseudo–
coherent if every map Rn → M with n < ∞ has a finitely generated kernel. In
other words, every finitely generated submodule of M is finitely presented. A
coherent module is a finitely generated pseudo–coherent module. The ring R is
called coherent if it is coherent as a left R-module.

In [8] the terminology has been changed. The pseudo-coherent modules are called
coherent and coherent modules are called finitely generated coherent modules. I
will stick to the more familiar terminology here to avoid confusion with the usage
in algebraic geometry.

I would like to thank Claude Quitté for sending me a copy of his book (with H. Lombardi)[8]
and for other relevant references. I would also like to thank T. Y. Lam for sending me the question
which inspired this paper and O. Braeunling for useful comments and references.
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Lemma 2.2. If L is a finitely generated module and M is a pseudo–coherent mod-
ule, every map L→M has a finitely generated kernel.

Proof. Let F = Rn map onto L. The kernel of F → L → M is finitely generated
and maps onto the kernel of L→M . �

Corollary 2.3. If L is a coherent module and M is a pseudo–coherent module,
every map L→M has a coherent kernel.

The kernel is pseudocoherent as a submodule of L. It is finitely generated by
Lemma 2.2

Let M(R) be the category of all left R–modules, and let Fg(R), Fp(R), and
Coh(R) be the full subcategories of M(R) of finitely generated, finitely presented,
and coherent modules. If R is noetherian, Fg(R) = Fp(R) = Coh(R).

Theorem 2.4. For any R, the subcategory Coh(R) ofM(R) is closed under kernels,
cokernels, images, and extensions and therefore is an abelian category.

Proof. Let f : M → N with M and N coherent. Then ker f is coherent by Corol-
lary 2.3 while im f is pseudocoherent as a submodule of N and finitely generated
as an image of M . Let I = im f and Q = ckr f . We have an exact sequence
0→ I → N → Q→ 0. Let g : F → Q with F free and finitely generated. Lift g to
a map h : F → N . Let k : E � I with E free and finitely generated. Applying the
snake lemma to the diagram

0 −−−−→ E −−−−→ E ⊕ F −−−−→ F −−−−→ 0

k

y (k,h)

y yg
0 −−−−→ I −−−−→ N −−−−→ Q −−−−→ 0

gives us the exact sequence ker(k, h) → ker g → 0 showing that ker g is finitely
generated as required. Finally let 0→M ′ →M →M ′′ → 0 be exact with M ′ and
M ′′ coherent. Let f : F →M be a map with F free and finitely generated and let
g : F →M →M ′′. Applying the snake lemma to the diagram

0 −−−−→ 0 −−−−→ F −−−−→ F −−−−→ 0y f

y yg
0 −−−−→ M ′ −−−−→ M −−−−→ M ′′ −−−−→ 0

gives us the exact sequence 0 → ker f → ker g → M ′. Since M ′ is coherent and
ker g is finitely generated, Lemma 2.2 shows that ker f is finitely generated. �

Corollary 2.5. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of left R–
modules. If two of the modules M ′, M , M ′′ are coherent, so is the third.

Corollary 2.6. If M is coherent and N is finitely generated then the cokernel of
any map f : N →M is coherent.

The image L of f is coherent since it is a finitely generated submodule of M and
ckr f = M/L.

Corollary 2.7. If R is left coherent then Fp(R) = Coh(R).

If M is finitely presented it is the cokernel of a map Rm → Rn with m,n <∞.
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Lemma 2.8. Let A be a full subcategory of M(R) such that A is abelian and
R ∈ obA. Then any map f : M → N in A has the same kernel in A as in M(R).

Proof. Let K = ker f in M(R) and let L = ker f in A. Then L→M → N is 0 so
L→M factors through K. If x ∈ L maps to 0 in M , let R→ L by r 7→ rx. Then
R → L → M is 0. Since L → M is a monomorphism in A we see that R → L is
0 showing that x = 0. Therefore L → M is injective. We can now regard K and
L as submodules of M and clearly L ⊆ K. Let x ∈ K and let R → K by r 7→ rx.
Then R → M → N is 0. Since this is in A, R → M factors through L showing
that x ∈ L. Therefore L = K. �

Corollary 2.9. [4, Prop. 1.1(c)] A ring R is left noetherian if and only if Fg(R) is
an abelian category. It is left coherent if and only if Fp(R) is an abelian category.

Proof. The ’only if’ part follows from Theorem 2.4 and Corollary 2.7. Suppose that
Fg(R) is an abelian category. Let I be a left ideal of R. By Lemma 2.8 the kernel
I of the map R→ R/I lies in Fg(R) and so is finitely generated. Finally, if Fp(R)
is an abelian category then the kernel of f : Rn → R lies in Fp(R) and so is finitely
generated. �

3. Examples

Lemma 3.1. If R is a coherent ring, so is any localization RS (where S is a central
multiplicative set) and for any coherent RS–module M there is a coherent R–module
N with NS ≈M .

Proof. Let f : RnS → RS . By multiplying f by an element of S we can assume that
f lifts to g : Rn → R. The kernel of g is finitely generated and localizes to the
kernel of f . By Corollary 2.7 it is sufficient to prove the second part for finitely

presented modules. Given RmS
f−→ RnS →M → 0, some multiple sf with s in S lifts

to g : Rm → Rn and we take N = ckr g. �

Lemma 3.2.

(1) An R–module which is the filtered union of pseudo-coherent R–modules is
pseudocoherent over R.

(2) If a ring R is the filtered union of coherent subrings Rα and if R is flat
over each Rα then R is coherent.

Proof. The first statement is clear. For the second let x1, . . . , xn ∈ R and map
f : Rn → R by ei → xi. All xi lie in some Rα so we also get g : Rnα → Rα
with finitely generated kernel K. By flatness R ⊗Rα K is the kernel of f which is
therefore finitely generated. �

Corollary 3.3. A polynomial ring in infinitely many variables over a noetherian
ring is coherent. So are the rings of algebraic integers i.e. the integral closure of Z
in an algebraic field extension of Q.

Remark 3.4. An example in [10] shows that R[t] need not be coherent even if R
is. In contrast to the noetherian case, a quotient R/I of a coherent ring R may
not be a coherent ring. For example, any commutative ring can be a quotient of a
polynomial ring over Z in sufficiently many variables.
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Lemma 3.5. Let I be a 2–sided ideal of a ring R and let M be an R–module
annihilated by I so that M is also an R/I–module. If M is coherent over R then
M is also coherent over R/I.

Proof. M is clearly finitely generated. Let f : (R/I)n → M . Let g : Rn → M be
the composition Rn → (R/I)n → M . Then ker g maps onto ker f showing that
ker f is finitely generated. �

Corollary 3.6. If R is a coherent ring and I is a 2–sided ideal which is finitely
generated as a left ideal, then R/I is a coherent ring.

This is immediate from the lemma and Corollary 2.6. In particular, if the poly-
nomial ring R[x] is coherent so is R.

Corollary 3.7. Let R and I be as in the Lemma. If M is a coherent R–module
then M/IM is a coherent R/I–module.

By Corollary 2.7 it is sufficient to prove this for finitely presented modules which
is obvious.

Lemma 3.8. Let M be a coherent module over a coherent ring R. If s is a central
regular element of R then M/sM and sM = {x ∈ R | sx = 0} are coherent over
the coherent ring R/Rs.

Proof. R/Rs is coherent by Corollary 3.6 and M/sM is coherent by Corollary 3.7
even without the regularity assumption. For sM let F be a finitely generated R–
module mapping onto M with kernel N which is coherent. Applying the snake
lemma to the diagram

0 −−−−→ N −−−−→ F −−−−→ M −−−−→ 0

s

y s

y s

y
0 −−−−→ N −−−−→ F −−−−→ M −−−−→ 0

we get an exact sequence 0→ sM → N/sN → F/sF showing that sM is coherent
since N/sN and F/sF are. �

Recall that a subring R of a ring B is called a retract of B if there is a ring
homomorphism ε : B → R such that ε|R = id.

Lemma 3.9. If R is a retract of a coherent ring A which is flat over R then R is
coherent.

Proof. If 0 → K → Rn → R with n < ∞, tensoring with A gives 0 → A ⊗R K →
An → A so A⊗RK is finitely generated and therefore so is K = R⊗AA⊗RK. �

4. A useful exact sequence

Let R[t] be a polynomial ring in one variable over R. Let L be an R–module
and let F = R[t]⊗R L = L[t]. Filter F by letting Fn =

∑n
q=0Rt

q ⊗ L = L+ Lt+

Lt2 + · · ·+ Ltn. Let Fn = 0 for n < 0.

Lemma 4.1. Let f0, f1, . . . , fr ∈ Fk satisfy
∑r
i=0 t

ifi = 0 Then fr ∈ Fk−1

Proof. Let fi =
∑k
j=0 t

jaij where aij ∈ L. Then
∑r
i=0

∑k
j=0 t

itjaij = 0. The

leading term tr+kark must be 0 and the result follows. �
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Let M be a left R[t]–module. Recall the following result from [2].

Theorem 4.2 ([2]). There is an exact sequence (“The characteristic sequence”)

0→ R[t]⊗RM
α−→ R[t]⊗RM

β−→M → 0

where α(tn ⊗ x) = tn+1 ⊗ x− tn ⊗ tx and β(tn ⊗ x) = tnx.

In [11] I gave a modified version with smaller terms as follows:

Theorem 4.3. Let M be a finitely generated left R[t]–module which is contained
in a free module F . Write F = R[t] ⊗R L where L is free over R and filter F as
above by Fn = L + tL + · · · + tnL. Let Mn = M ∩ Fn. Then, for large n, there is
an exact sequence

(1) 0→ R[t]⊗RMn−1
α−→ R[t]⊗RMn

β−→M → 0

where α and β are as in Theorem 4.2.

Proof. It is easy to see that α and β define maps as indicated. Let n be large enough
that all chosen generators of M lie in Mn. Then β will be onto. That βα = 0 is
obvious. Suppose α(

∑r
i=0 t

i ⊗ ai) = 0. Then
∑r
i=0 t

i+1 ⊗ ai −
∑r
i=0 t

i ⊗ tai = 0
The leading term, tr+1 ⊗ ar, is 0 so ar = 0 and, by induction all ai = 0 showing
that α is injective,

Suppose β(
∑r
i=0 t

i ⊗ ai) = 0 where all ai are in Mn. Then
∑r
i=0 t

iai = 0. Since
ai ∈ Fn, Lemma 4.1 shows that ar ∈ Fn−1. Therefore α(tr−1 ⊗ ar) is defined. It is
tr⊗ar− tr−1⊗ tar so by subtracting it from

∑r
i=0 t

i⊗ai we can reduce the degree.
It follows by induction that kerβ = imα. �

5. K0

In this section and the next we examine the case of projective modules.

Lemma 5.1. If R is a coherent ring any finitely generated projective R-module is
coherent and, if M is a coherent R-module, there is a resolution

· · · → P1 → P0 →M → 0.

with all Pi finitely generated projective. If M also has finite projective dimension
there is such a resolution with Pn = 0 for all large n.

Proof. The first statement follows from Corollary 2.7. The resolution is constructed
in the standard way. Let P0 be projective, finitely generated, and map onto M with
kernel N . Similarly let P1 map onto N etc. If M has finite projective dimension
then ker(Pn+1 → Pn) will be projective for large n and we can stop there. �

Theorem 5.2. Let R be a left coherent ring such that each finitely presented R–
module has finite projective dimension. Then each finitely generated projective R[t]–
module P has a finite resolution by extended projective modules

0→ R[t]⊗R Qn → R[t]⊗R Qn−1 → · · · → R[t]⊗R Q0 → P → 0.

where each Qi is finitely generated projective over R.

Proof. Let P⊕S = F be free and finitely generated. Filter F as in Theorem 4.3 and
let Pn = P ∩ Fn. Since Pn is the kernel of Fn → S it is coherent by Corollary 2.3.
By Theorem 4.3 we get an exact sequence

0→ R[t]⊗R Pn−1
α−→ R[t]⊗R Pn → P → 0.
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Choose finite projective resolutions A′• for Pn−1 and B′• for Pn and extend these
to get resolutions A• = R[t] ⊗R A′• for R[t] ⊗R Pn−1 and B• = R[t] ⊗R B′• for
R[t] ⊗R Pn. Cover α by a map f : A• → B•, and let C• be the mapping cone
of f i.e. Cm = Am−1 ⊕ Bm with ∂(a, b) = (−∂a, ∂b + f(a)). Note that Cm =
R[t]⊗R A′m−1 ⊕R[t]⊗R B′m is extended from R. The exact sequence

· · · → Hm(A•)→ Hm(B•)→ Hm(C•)→ Hm−1(A•)→ . . .

shows that Hm(C•) = 0 for m 6= 0 and is P for m = 0, so C• is the required
resolution. �

Corollary 5.3. If R is a left coherent ring such that each finitely presented R–
module has finite projective dimension, then [M ] 7→ [R[t]⊗RM ] induces an isomor-
phism K0(R) ≈ K0(R[t]).

The map is onto by the theorem and is split injective by the map [N ] 7→ [N/tN ].

Remark 5.4. Since R[t] need not be coherent even if R is, it is not clear whether
this result can be extended to R[t1, . . . , tn] for n > 1.

6. Ki

Theorem 6.1. If R is a left coherent ring such that each finitely presented R–
module has finite projective dimension, then [M ] 7→ [R[t] ⊗R M ] induces isomor-
phisms Ki(R) = Ki(R[t]) and Ki(R[t, t−1]) = Ki(R)⊕Ki−1(R) for all i > 0.

Proof. By the Fundamental Theorem [6] we have Ki(R[t]) = Ki(R)⊕NKi(R) and
Ki(R[t, t−1]) = Ki(R)⊕Ki−1(R)⊕NKi(R)⊕NKi(R) and NKi(R) = Nili−1(R).
(When i = 1 there is a more elementary proof of these results in [2]). Therefore it
will suffice to show that, under the hypothesis, Nili(R) = 0 for i ≥ 0.

Recall that for any exact category C, N il(C) is the category with objects (A,α)
where A ∈ C, and α is a nilpotent endomorphism of A. A morphism (A,α)→ (B, β)
in N il(C) is a morphism f : A→ B such that fα = βf . Taking C to be the category
of projective modules P(R) we get a category N = N il(P(R)). There are exact
functors N → P(R) by (A,α) 7→ A and P(R) → N by P 7→ (P, 0). These show
that Ki(R) is a direct summand of Ki(N ). Define Nili(R) to be the cokernel of
Ki(R)→ Ki(N ). Then Ki(N ) = Ki(R)⊕Nili(R)

Let Nil′i(R) be defined like Nili(R) with the category of projective modules
replaced by the category Coh(R) of coherent modules and N replaced by the cat-
egory N ′ = N il(Coh(R)). The previous remarks also apply to this case showing
that Ki(N ) = Ki(Coh(R))⊕Nil′i(R). �

Proposition 6.2. If R is a left coherent ring such that each finitely presented

R–module has finite projective dimension, then Nili(R)
≈−→ Nil′i(R).

Proof. We can regard N ′ as the full subcategory of the category of R[t]–modules
consisting of modules A which are coherent over R and are such that t|A is nilpo-
tent. It is closed under subobjects, quotients, and extensions and so is an abelian
category. The category N is a full subcategory of N ′ which is closed under kernels
of epimorphisms and extensions. The hypothesis and the next lemma show that
each module in N ′ has a finite resolution by modules in N so it follows from [9,
Th. 3,Cor 1] that Ki(N ) = Ki(N ′). It also follows from [9, Th. 3,Cor 1] that
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Ki(P(R)) = Ki(Coh(R)), so Proposition 6.2 follows from the 5–Lemma applied to
the diagram

0 −−−−→ Nili(R) −−−−→ Ki(N ) −−−−→ Ki(P(R)) −−−−→ 0y y≈ y≈
0 −−−−→ Nil′i(R) −−−−→ Ki(N ′) −−−−→ Ki(Coh(R)) −−−−→ 0.

�

Lemma 6.3. A finitely presented module M with a nilpotent endomorphism α can
be covered by a finitely generated projective module P with a nilpotent endomorphism
β so that (P, β) � (M,α).

Proof. Suppose αn+1 = 0. Let Q be projective with f : Q � M , let P = Qn+1,
and let β(x0, . . . , xn) = (0, x1, x2, . . . , xn−1). Map P to M by sending (x0, . . . , , xn)
to fx0 + αfx1 + α2fx2 + . . . . �

Theorem 6.1 now follows from the next lemma.

Lemma 6.4. If R is a coherent ring then Nil′i(R) = 0.

Proof. If [M,α] ∈ N ′, filter M by Mi = αiM . The Mi and their quotients are
all coherent and α induces 0 on each Mi/Mi+1. Theorem 4 of [9] now applies to
the categories Coh(R) ⊆ N ′. It follows that Ki(Coh(R)) = Ki(N ′) showing that
Nil′i(R) = 0. Although Coh(R) is not closed under extensions in N ′, it is closed
under subobjects, quotient objects, and finite products, which is all that is needed
for [9, Theorem 4]. �

7. G0

For a noetherian ring R, G0(R) is the Grothendieck group of the category of
finitely generated modules. For general rings I will defineG0(R) as the Grothendieck
group of the category of coherent modules. This seems, at the moment, to be a
good choice since Coh(R) is an abelian category and, in the noetherian case, it
agrees with the standard definition.

Throughout this section R[t] will denote a polynomial ring in one variable t.

Theorem 7.1. If R is a left coherent ring such that R[t] is also left coherent then
G0(R) ≈ G0(R[t]) by the map sending [M ] to [R[t]⊗RM ] and G0(R) ≈ G0(R[t, t−1])
sending [M ] to [R[t, t−1]⊗RM ].

Proof. Let R be as in Theorem 7.1 so that R[t] is also coherent, and so is R[t, t−1] by
Lemma 3.1. Therefore R[t]⊗RM and R[t, t−1]⊗RM ] will be coherent if M is since
coherent is the same as finitely presented over these rings by Corollary 2.7. If M
is a coherent R[t]–module then M/tM and tM = {x|x ∈ M, tx = 0} are coherent
R-modules by Lemma 3.8 We can therefore define a map G0(R[t]) → G0(R) by
sending [M ] to [M/tM ]− [tM ]. That this preserves the relations follows from the
snake lemma applied to the diagram

0 −−−−→ M ′ −−−−→ M −−−−→ M ′′ −−−−→ 0yt yt yt
0 −−−−→ M ′ −−−−→ M −−−−→ M ′′ −−−−→ 0
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Since G0(R)→ G0(R[t])→ G0(R) is easily seen to be the identity, all that remains
is to show that G0(R)→ G0(R[t]) is onto. Let M be a coherent R[t]–module and let
0 → N → F → F ′ → M → 0 be exact with F and F ′ free and finitely generated.
Filter F as in Theorem 4.3 and let Nn = N ∩ Fn. For large n we get an exact
sequence

0→ R[t]⊗R Nn−1 → R[t]⊗R Nn → N → 0.

Now for any k, Nk is the kernel of Fk → F ′ and so is coherent over R by Corol-
lary 2.3. It follows that [N ] lies in the image of G0(R)→ G0(R[t]) and therefore so
does [M ] = [N ]− [F ] + [F ′].

For the last statement it suffices to show that G0(R[t]) → G0(R[t, t−1]) is an
isomorphism. We use the following standard fact (adapted to the coherent case).

Lemma 7.2. Let A be a coherent ring with a central multiplicative set S. Let N
be the full subcategory of N ∈ Coh(A) such that NS = 0. Then

K0(N )
i−→ G0(A)

j−→ G0(AS)→ 0

is exact.

Proof. We define a mapping G0(AS) → ckr i as follows. If N is a coherent AS-
module then by Lemma 3.1 there is a coherent A-module M with MS ≈ N . If L is
another such module Lemma 9.1 shows we can multiply the isomorphism LS ≈MS

by an element of S so that it lifts to a map g : L → M . The kernel and cokernel
of g are in N so [L] = [M ] in ckr i = G0(A)/ imK0(N ). Define f : G0(AS)→ ckr i

by f([N ]) = [M ]. If 0 → N ′
p−→ N → N ′′ → 0 multiply p by an element of S and

lift it to a map q : M ′ → M . We get 0 → K → M ′
q−→ M → M ′′ → 0. Localizing

shows M ′′S ≈ N ′′ and K lies in N so [M ′] + [M ′′] ≡ [M ] mod K0(N ) showing that
our map is well defined. The two maps between G0(A)/ imK0(N ) and G0(AS) are
easily seen to be inverses, proving the lemma. �

Apply this to A = R[t] and AS = R[t, t−1] with S = {tn|n ≥ 0}. We have to show
that NS = 0 implies [N ] = 0 in G0(R[t]). Since N is finitely generated, tnN = 0
for some n. Filtering N by coherent submodules N ⊇ tN ⊇ t2N ⊇ · · · ⊇ tnN = 0
shows that it will suffice to consider the case where tN = 0. By Lemma 3.5 N is
coherent as an R-module so the characteristic sequence Theorem 4.2

0→ R[t]⊗R N → R[t]⊗R N → N → 0

shows that [N ] = 0 in G0(R[t]) so G0(R[t])→ G0(R[t, t−1]) is an isomorphism. �

8. Graded Rings

The next three sections are devoted to the proof of the analogues of the above
results for the functors Gi. We follow Quillen [9] closely (except for writing Gi(R)
instead of K ′i(R)) and begin by looking at the case of graded polynomial rings in
preparation for the treatment of Gi in the final section.

Let B =
⊕∞

n=0Bn be a graded ring and let M =
⊕∞

n=0Mn be a graded B–

module. I will use M to denote M as an ungraded module. For the present
purposes I will call M coherent if M is a coherent module and write Cohgr(R) for
the category of coherent graded R–modules and degree preserving morphisms.

If M =
⊕∞

n=0Mn we let M(−p) be M with a new grading M(−p)n = Mn−p.
We have HomB(B(−p),M) = Mp. By a free graded module I will mean a direct
sum

⊕
iB(−pi) where pi ≥ 0.



K–THEORY OF COHERENT RINGS 9

Lemma 8.1. Let M be a graded module over a graded ring.

(1) M is finitely generated if and only if M is finitely generated.
(2) M is finitely presented if and only if M is finitely presented.

Proof. The ”only if” statements are clear. If a1, . . . , an generate M let ai =
∑
j aij

where aij ∈ Mj . The aij are then homogeneous generators of M . If M is finitely
presented it is finitely generated so we can map a finitely generated free module F
onto M getting an exact sequence 0 → N → F → M → 0. After dropping the
grading we see that N is finitely generated and therefore so is N . �

Let R be a coherent ring and let B = R[x1, . . . , xr] with r < ∞. Grade B by
deg xi = 1 and assume that B is coherent and therefore so is R by Corollary 3.6 or
Lemma 3.9. Our aim is to compute Gi(B) = Ki(Cohgr(B)). Define exact functors
bp : Coh(R) → Cohgr(B) by bp(M) = B(−p) ⊗R M . They are exact since B
is free over R. They are graded using the grading of B(−p) so that bp(M)n =
B(−p)n⊗RM . Since M ∈ Coh(R) is finitely presented by Corollary 2.7 so is bp(M)
which is therefore coherent so we get a map βp : Gi(R)→ Gi(B).

Theorem 8.2. Let B = R[x1, . . . , xr], with r < ∞ be a polynomial ring over
a ring R graded by deg xi = 1 for all i. If B is coherent then β =

⊕
p≥0 βp :⊕

p≥0Gi(R)→ Gi(B) is an isomorphism.

Proof. We define an inverse mapping γ =
⊕

p≥0 γp : Gi(B) →
⊕

p≥0Gi(R) as

follows. If N ∈ Cohgr(B) let Q(N) = R ⊗B N = N/B+N where B+ =
⊕

n>0Bn
is the kernel of the retraction B → R. We have Q(N) =

⊕
Qn(N) with Qn(N) =

Nn/Dn(N) where Dn(N) = (B+N)n =
⊕n

i=1BiNn−i, the decomposable elements
of Nn. Since N is coherent it is finitely presented and therefore so is Q(N) which, as
well as its summands Qn(N), is therefore coherent. Q is right exact but not exact

in general. The Tor sequence for 0→ N ′ → N → N ′′ → 0 is · · · → TorB1 (R,N ′′)→
Q(N ′)→ Q(N)→ Q(N ′′)→ 0. Therefore Q will be exact on the full subcategory

N of Cohgr(B) of objects N such that TorBi (R,N) = 0 for all i > 0. Since R
has Tor-dimension r <∞ over B the resolution theorem [9, §4,Cor. 3] shows that
Ki(N ) = Ki(Cohgr(B)). Define γp : Ki(N )→ Ki(Coh(R)) to be the map induced
by the functor Qp : N → Coh(R).

For N ∈ N let FpN be the submodule of N generated by all Ni with i ≤ p and
let FpN be the full subcategory of the FpN for all N ∈ N .

Lemma 8.3. FpN is closed under extensions and so is an exact category. Moreover
N is the union of these subcategories.

Proof. If 0 → N ′ → N → N ′′ → 0 is exact and N ′ and N ′′ are in FpN then N ′

and N are generated by homogeneous elements {x′i} and {y′′j } of degree at most p.
Lift the y′′j to elements yj of the same degree in N . Then {x′i} and {yi} generate
N so FpN = N . Any N in N is finitely generated and so lies in FpN when p is
greater than the degrees of its generators. �

Since Qn is 0 on FpN for n > p, the same is true of γn : Ki(FpN ) → Gi(R) so
we can define a map γ =

⊕∞
0 γn : Ki(FpN ) →

⊕∞
0 Gi(R). Taking the limit as

p→∞ we get the required map γ =
⊕∞

0 γn : Ki(N )→
⊕∞

0 Gi(R).
We can also replace Cohgr(B) by N in discussing the maps βp since bp(M) lies

in N by the following lemma.
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Lemma 8.4. [9, §7, Proof of Lemma 1] If R is a subring of B, B is flat over R,

and X is any R–module then TorBi (R,B ⊗R X) = 0 for all i > 0

Proof. Let Ti(X) = TorBi (R,B⊗RX). This is an exact ∂–functor because B is flat
over R. It is effaceable since B ⊗R X is projective over B if X is projective over
R. Thefore the Ti are the derived functors of T0 but T0(X) = R ⊗B B ⊗R X = X
which is exact so its higher derived functors are 0. �

We now have the required maps.
∞⊕
0

Gi(R)
β−→ Ki(N )

γ−→
∞⊕
0

Gi(R)

The composition is induced by the functor taking M in Coh(R) to Qn ◦ bp(M) =
Qn(B(−p) ⊗R M) which is the degree n part of R ⊗B B(−p) ⊗R M = M graded
by assigning the degree p to all elements. This is M if n = p and otherwise 0. This
shows that γ ◦ β is the identity.

The composition β ◦ γ is the sum of the compositions βp ◦ γp. where βp ◦ γp is
induced by bp ◦Qp. The next lemma shows that the functor βp ◦ γp is isomorphic
to the functor N 7→ FpN/Fp−1N . It follows that the functors Fp are exact on N .
If we replace N with FpN we have a finite filtration and can apply the theorem
on characteristic filtrations [9, §3 Cor.3] to conclude that the endomorphisms of Ki

induced by the functors N 7→ FpN/Fp−1N sum to the identity showing that β ◦γ is
the identity. Taking the limit as p→∞ then shows that this is true for N , proving
Theorem 8.2. �

The following lemma makes no use of coherence. The definitions of FpN , Q(N) =⊕
nQn(N), and Qp(N) = Np/Dp(N) are the same as above.

Lemma 8.5. [9, §7, Lemma 1] Let B =
⊕∞

n=0Bn be a graded ring with B0 = R

and let N be a finitely generated graded B-module. If TorB1 (R,N) = 0 then there is

an isomorphism θp : B(−p)⊗R Qp(N)
≈−→ FpN/Fp−1N .

Proof. SinceNp ⊆ FpN andDp(N) ⊆ Fp−1N there is a mapQp(N) = Np/Dp(N)→
FpN/Fp−1N . The right hand side is a B-module so this extends to give us our map
θp. Since FpN is generated by Fp−1N and Np, θp is onto.

Remark 8.6. To be consistent with the previous notation we regard Qp(N) as an
ungraded module and write B(−p)⊗R Qp(N) instead of B ⊗R Qp(N).

We use the following facts.

(1) Q(N) = 0 implies N = 0.
(2) θp is onto.
(3) Q(Fp−1N) � Q(FpN) is injective.
(4) Q(θp) is an isomorphism.

For (1), if Nn = 0 for all n ≤ m then Dm(N) = 0 so Nm = Qm(N) = 0. (2)
was proved above. For (3) and (4) we observe that Qn(FpN) = 0 for n > p while
Qn(FpN) = Qn(N) for n ≤ p. This implies (3). For (4) observe that if M is a
graded module generated by Mp then Q(M) = Mp because B+M =

∑
n>pMn.

This condition is satisfied by B(−p) ⊗R Qp(N) which has (B(−p) ⊗R Qp(N))p =
Qp(N) and by FpN/Fp−1N which has (FpN/Fp−1N)p = Np/Dp(N) = Qp(N).
Q(θ) corresponds to the identity map Qp(N)→ Qp(N), the map used to define θ.
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Define Ti(N) = TorBi (R,N), an exact ∂-functor with T0 = Q. We have T1(N) =
0 by the hypothesis. For large p FpN = N because N is finitely generated. As-
suming T1(FpN) = 0, we will show that T1(Fp−1N) = 0, proving that this is true
for all p. At the same time we show that Kp = ker θp = 0 so θp is an isomorphism.
The exact sequence 0→ Kp → B(−p)⊗R Qp(N)→ FpN/Fp−1N → 0 gives us an
exact sequence

0→ T1(FpN/Fp−1N)→ Q(Kp)→ Q(B(−p)⊗R Qp(N))
Q(θ)−−−→
≈

Q(FpN/Fp−1N)

Note that T1(B(−p) ⊗R Qp(N)) = 0 by Lemma 8.4. The map on the right is an
isomorphism by (4). This shows that T1(FpN/Fp−1N) = Q(Kp).

Assume now that T1(FpN) = 0. The exact T1-sequence for 0 → Fp−1N →
FpN → FpN/Fp−1N → 0 is

0 = T1(FpN)→ T1(FpN/Fp−1N)→ Q(Fp−1N) � Q(FpN)

The map on the right is injective by (3). This shows that T1(FpN/Fp−1N) = Q(Kp)
is 0 so Kp = 0 by (1). From the same sequence we get T2(FpN/Fp−1N) →
T1(Fp−1N)→ T1(FpN) = 0. SinceKp = 0, θp is an isomorphism so T2(FpN/Fp−1N)
= T2(B(−p) ⊗R Qp(N)) = 0 by Lemma! 8.4. It follows that T1(Fp−1N) = 0 com-
pleting the induction. �

9. Localization

Let A =
⊕

n≥0An be a graded ring and let S be a central multiplicative subset

of A consisting of homogeneous elements. Then AS is a graded ring with deg x/s =
deg x− deg s. We allow elements of negative degree here.

Lemma 9.1. Let S be a central multiplicative subset of a ring A and let M and N
be A–modules with M finitely presented. If γ : MS → NS is an AS–homomorphism
there is an A–homomorphism g : M → N and an element s of S with gS = sγ.

Proof. Suppose M = F is free and finitely generated by e1, . . . , en. Let γ(ek) =

xk/s with s in S. Then g(ek) = xk is the required map. Let F ′
i−→ F

j−→ M → 0
be a finite presentation of M . By the previous remark we can find h : F → N
such that hS = sγ ◦ jS . Now h ◦ i localizes to 0 since jS ◦ iS = 0 so the image of
h ◦ i, being finitely generated, is annihilated by some t ∈ S. Therefore th ◦ i = 0
so th factors through the cokernel M of i giving us the required map g. We have
g ◦ j = th so gS ◦ jS = thS = tsγ ◦ jS and therefore gS = thS = tsγ since jS is an
epimorphism. �

If F : A → B is an exact covariant functor of abelian categories then the full
subcategory S of objects A of A with F (A) = 0 is a Serre subcategory and we have
an exact functor A/S → B. If this is an equivalence of categories we get an exact
localization sequence

· · · → Ki(S)→ Ki(A)→ Ki(B)→ Ki−1(S)→ . . .

by the Localization Theorem [9, §5 Th. 5].

Theorem 9.2 ([11],Theorem 5.11 ). In this situation if the following two conditions
are satisfied then A/S → B is an equivalence of categories..

(1) For each B ∈ B there is an A ∈ A with F (A) ≈ B.
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(2) If A,A′ ∈ A and f : F (A) → F (A′) in B there is an object A′′ and maps

A
h←− A′′ g−→ A′ such that F (h) is an isomorphism and f = F (g)F (h)−1

Corollary 9.3. Let A =
⊕

n≥0An be a graded ring and let S be a central multiplica-
tive subset of A consisting of homogeneous elements. Let S be the full subcategory
of Cohgr(A) of all modules M with MS = 0. Then Cohgr(A)/S ≈ Cohgr(AS).

Proof. We have to check the two conditions of Theorem 9.2 with A = Cohgr(A)
and B = Cohgr(AS).

(1) Any N ∈ B is finitely presented so we can write F ′S
γ−→ FS → N → 0 with

FS and F ′S free and finitely generated over AS . By Lemma 9.1 we can write
sγ = gS and N = ckr γ = ckr gS since s is a unit in AS . Therefore N = MS

where M = ckr g.
(2) Suppose γ : MS → NS in Cohgr(AS). By Lemma 9.1 write sγ = gS where

g : M → N . Then we have M
s←− M(−d)

g−→ N and s localizes to an
isomorphism as required. Note that M(−d) = M as a module but we have
changed the grading by d = deg s = deg g to make the two maps have
degree 0.

�

In the next lemma we allow A and its modules to have elements of negative
degree.

Lemma 9.4. If A is a coherant graded ring having a central unit s in A1 then
A0 is also coherent, Cohgr(A) ≈ Coh(A0), and Gi(A0) → Gi(A) induced by M 7→
A⊗A0 M is an isomorphism.

Proof. Since s is a unit sn : A0 ≈ An so A =
⊕
A0s

n showing that A is a Laurent
polynomial ring A0[s, s−1] and therefore A0 is coherent by Lemma 3.9. Similarly
if N is a graded A-module sn : N0 ≈ Nn so N = N0[s, s−1] Define f : Coh(A0) →
Cohgr(A) by f(M) = A⊗A0

M and g : Cohgr(A)→ Coh(A0) by g(N) = N0. These
maps are inverse equivalences of categories. �

10. Gi

Theorem 10.1. If R is a ring such that the polynomial ring R[x, y] is coherent then
Gi(R)→ Gi(R[x]), induced by the functor M 7→ R[x]⊗RM , is an isomorphism.

Proof. We can assume that i > 0 because of Theorem 7.1. Let A = R[t, s] and B =
R[t] be polynomial rings graded by deg t = deg s = 1. The localization sequence [9,
§5 Th. 5] for A → As is · · · → Gi(N ) → Gi(A) → Gi(As) → GI−1(N ) . . . where
N is the Serre subcategory of A–modules M such that Ms = 0. By the Devissage
Theorem [9, §5 Th.4] Gi(N ) ≈ Gi(A/(s)) = Gi(B).

By Lemma 9.4 Gi(As) = Gi((As)0). Since As = R[t, s, s−1] we see that (As)0 =
R[z] where z = t/s.Therefore the localization sequence takes the form

· · · → Gi(B)
j∗−→ Gi(A)→ Gi(R[z])→ Gi−1(B)→ . . .

Here A and B are graded rings and the map j∗ : Gi(B)→ Gi(A) is induced by the
inclusion of Cohgr(B) in Cohgr(A) while the map Gi(A)→ Gi(R[z]) is induced by
N 7→ (Ns)0.
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By Theorem 8.2 we have an isomorphism α =
⊕

p≥0 αp :
⊕

p≥0Gi(R)→ Gi(A)

induced by ap : M 7→ A(−p) ⊗R M . and similarly β =
⊕

p≥0 βp :
⊕

p≥0Gi(R) →
Gi(B) given by bp(M) 7→ B(−p)⊗RM . We have a diagram⊕

p≥0Gi(R)
f−−−−→

⊕
p≥0Gi(R)

≈
yβ ≈

yα
Gi(B)

j∗−−−−→ Gi(A)

The exact sequence 0 → A(−p − 1)
s−→ A(−p) → B(−p) → 0 tensored with M

gives us an exact sequence of functors 0 → ap+1 → ap → jbp → 0. By the charac-
teristic filtration theorem [9, §3 Cor.3] this implies that j∗βp = αp − αp+1. If x =
(xp) ∈

⊕
p≥0Gi(R) then j∗β(x) =

∑
p≥0 j∗βp(xp) =

∑
p≥0 αp(xp)−

∑
p≥0 αp+1(xp)

so j∗β(x) =
∑
p≥0 αp(xp − xp−1) = α(y) with yp = xp − xp−1 where we set xp = 0

when p < 0.
The map Gi(B)→ Gi(A) is therefore isomorphic to the map f :

⊕
p≥0Gi(R)→⊕

p≥0Gi(R) given by (xp) 7→ (yp) where yp = xp − xp−1. We can recover the xp
from the yp by xp = y0 + y1 + · · · + yp so the map is injective. The image is the
set of (yp) for which

∑
p yp = 0 so the cokernel is Gi(R) via the map

⊕
pGi(R)→

Gi(R) sending (yp) to
∑
p yp. The map Gi(R)

α0−→ Gi(A) → ckr j∗ ≈ Gi(R[z]) is
therefore an isomorphism. It is induced by the functor sending an R-module M to
(A⊗RM)s)0 = (As)0 ⊗RM = R[z]⊗RM as required. �

Corollary 10.2. If R is a ring such that the polynomial ring R[x, y] is coherent
then Gi(R[x, x−1]) = Gi(R)⊕Gi−1(R) for i > 0.

Proof. Observe that in the localization sequence

· · · → Gi(R)→ Gi(R[x])→ Gi(R[x, x−1])→ Gi−1(R)→ Gi−1(R[x])→ . . .

the map Gi(R) → Gi(R[x]) is 0 because of the exact characteristic sequence
0 → M [x] → M [x] → M → 0 (Theorem 4.2) and the theorem on characteris-
tic filtrations [9, §3 Cor.3]. �
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