CORRECTION TO: VECTOR BUNDLES AND PROJECTIVE MODULES

RICHARD G. SWAN

ABSTRACT. This corrects an error in the statement of Theorem 6 of my paper Vector Bundles and Projective Modules

Example 4 of [5] concerns the following question: If a projective module becomes free after extending the ground field (say from \mathbb{R} to \mathbb{C}) is it stably free? The example considered was the coordinate ring of the *n*-sphere $A_n = \mathbb{R}[x_0, \ldots, x_n]/(\sum_{i=1}^{n} x_i^2 - 1)$ and Theorem 6 claimed that there was an example over this ring for n = 4. This is incorrect. The error is in the assertion that $\mathbb{C} \otimes A \approx P \oplus P'$ in line -5 on page 276. I had originally worked out this example for the case of the 2-sphere mentioned in lines 5 and 6 on page 277. In this case, the argument is correct. If P is a $\mathbb{C} \otimes_{mathbbR} \Lambda$ -module, then $\mathbb{C} \otimes_{mathbbR} P \approx P \oplus P'$ where P' is the conjugate module defined by letting $\mathbb{C} \otimes_{mathbbR} \Lambda$ act on P via the automorphism $\mathbb{C} \otimes_{mathbbR} \Lambda \to \mathbb{C} \otimes_{mathbbR} \Lambda$ sending $z \otimes a$ to $\overline{z} \otimes a$ so the assertion $\mathbb{C} \otimes A \approx P \oplus P'$ is correct in this case. When writing this up, it struck me that the argument could be extended to the case of the 4-sphere by replacing $\mathbb C$ by the quaternions $\mathbb H$, but I failed to check the details with sufficient care and the argument runs afoul of the non–commutativity of the quaternions. Here P is an $\mathbb{H} \otimes_{mathbbR} \Lambda$ –module. To find $\mathbb{C} \otimes_{mathbbR} P$ we can regard P as a $\mathbb{C} \otimes_{mathbbR} \Lambda$ -module via the inclusion $\mathbb{C} \otimes_{mathbbR} \Lambda \subset \mathbb{H} \otimes_{mathbbR} \Lambda$. The automorphism sending $z \otimes a$ to $\overline{z} \otimes a$ extends to an automorphism of $\mathbb{H} \otimes_{mathbbR} \Lambda$ sending $q \otimes a$ to $jqj^{-1} \otimes a$ but this sends j to j not -j and so does not agree with the definition of P' in [5]. If, as in [5], we try the map sending $q \otimes a$ to $\bar{q} \otimes a$, we see that this is an anti-automorphism making the resulting module P' a right module so again this does not produce the module P' used in [5] and the statement that P' is the conjugate module of P on page 276, line -9 is incorrect.

The correct version of the theorem can be easily deduced from the results of [6]. The question can be reformulated in K-theoretic terms as follows: Let A be an \mathbb{R} -algebra. The base change map bch : $K_0(A) \to K_0(\mathbb{C} \otimes_{\mathbb{R}} A)$ is defined by sending [M] to $\mathbb{C} \otimes_{\mathbb{R}} M$. The question then is whether this map is injective. Here is the correct answer for $A = A_n$.

Theorem 0.1. The base change map $K_0(A_n) \to K_0(\mathbb{C} \otimes_{\mathbb{R}} A_n)$ is not injective if and only if $n \equiv 1, 2 \pmod{8}$.

Proof. The restriction map res : $K_0(\mathbb{C} \otimes_{\mathbb{R}} A) \to K_0(A)$ is defined by sending [M] to [M] i.e. we forget the complex structure. The composition res bch is multiplication by 2 since $\mathbb{C} \otimes_{\mathbb{R}} M$ is isomorphic to $M \oplus M$ as an A-module. Therefore, the kernel of bch is annihilated by 2. It is well-known that $K_0(\mathbb{C} \otimes_{\mathbb{R}} A_n)$ is 0 for n odd and \mathbb{Z} for n even [2, 3, 4] or [7, Theorem 10.2]. Therefore the kernel of bch for $A = A_n$ is equal to the torsion submodule of $K_0(A_n)$. Since $K_0(A_n) = \mathbb{Z} \oplus \widetilde{K}_0(A_n)$ this

is also the torsion submodule of $\widetilde{K}_0(A_n)$. By [6], $\widetilde{K}_0(A_n)$ is the same as $\widetilde{K}^0(S^n)$ which is periodic with period 8, the first 8 values, beginning with n = 1 being $\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}, 0, \mathbb{Z}, 0, 0, 0, \mathbb{Z}$ [1, Table 2]. Therefore $K_0(A_n)$ has non-trivial torsion if and only if $n \equiv 1, 2 \pmod{8}$.

We can also determine the maps bch and res explicitly for A_n . The summands of $K_0(A_n) = \mathbb{Z} \oplus \widetilde{K}_0(A_n)$ are clearly stable under these maps and on the summand \mathbb{Z} bch = 1 and res = 2. On the other summand the maps are as follows.

Theorem 0.2. The maps $\widetilde{K}_0(A_n) \xrightarrow{\text{bch}} \widetilde{K}_0(\mathbb{C} \otimes_{\mathbb{R}} A_n) \xrightarrow{\text{res}} \widetilde{K}_0(A_n)$ are 0 if n is odd or $n \equiv 6 \pmod{8}$. Otherwise they are as follows for appropriate choices of generators.

- (1) $\mathbb{Z}/2\mathbb{Z} \xrightarrow{0} \mathbb{Z} \twoheadrightarrow \mathbb{Z}/2\mathbb{Z}$ if $n \equiv 2 \pmod{8}$.
- (2) $\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{1} \mathbb{Z}$ if $n \equiv 4 \pmod{8}$.
- (3) $\mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{2} \mathbb{Z}$ if $n \equiv 0 \pmod{8}$.

Proof. If n is odd, $\widetilde{K}_0(\mathbb{C} \otimes_{\mathbb{R}} A_n) = 0$ while $\widetilde{K}_0(A_n) = 0$ if $n \equiv 6 \pmod{8}$. Let $q_n = \sum_{i=1}^{n} x_i^2$ as a quadratic form over \mathbb{R} and let $C(q_n)$ be the Clifford algebra of q_n . The group $ABS(q_n)$ is defined to be the cokernel of $C(q_n \perp 1) \rightarrow C(q_n)$. This is the same as the group A_n of [1] as noted in [7, page 457]. It was shown in [6] that the map $ABS(q_n) \to \widetilde{K}_0(A_n)$ is an isomorphism. The same is true for the complex analogue $ABS_{\mathbb{C}}(q_n) \to K_0(\mathbb{C} \otimes_{\mathbb{R}} A_n)$ as was observed much earlier by Fossum [3]. These maps clearly commute with bch and res so it is enough to prove the theorem for the maps $ABS(q_n) \xrightarrow{bch} ABS_{\mathbb{C}}(q_n) \xrightarrow{res} ABS(q_n)$. By [7,] ABS(q) is generated by any simple C(q)-module. From [1, Table 1] where $C(q_n)$ is denoted C'_{n+1} we see that for $n \equiv 2 \pmod{8}$ we have $C(q_n) = M_m(\mathbb{C})$ an $m \times m$ -matrix algebra over \mathbb{C} for an appropriate m and $C_{\mathbb{C}}(q_n) = M_m(\mathbb{C}) \times M_m(\mathbb{C})$. Therefore a simple $C_{\mathbb{C}}(q_n)$ -module restricts to a simple $C(q_n)$ -module showing that the map res is onto. If $n \equiv 4$ (mod 8), then $C(q_n) = M_m(\mathbb{H}) \times M_m(\mathbb{H})$ and $C_{\mathbb{C}}(q_n) = M_{2m}(\mathbb{C}) \times M_{2m}(\mathbb{C})$. Here a simple $C_{\mathbb{C}}(q_n)$ -module again restricts to a simple $C(q_n)$ -module as one sees by comparing dimensions so res = 1. If $n \equiv 0 \pmod{8}$, then $C(q_n) = M_m(\mathbb{R}) \times M_m(\mathbb{R})$ and $C_{\mathbb{C}}(q_n) = M_m(\mathbb{C}) \times M_m(\mathbb{C})$. Here a simple $C(q_n)$ -module extends to a simple $C_{\mathbb{C}}(q_n)$ -module so bch = 1.

References

- 1. M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), 3–38.
- L. Claborn and R. Fossum, Generalizations of the notion of class group, Ill. J. Math. 12 (1968), 228–253.
- 3. R. Fossum, Vector bundles over spheres are algebraic, Invent. Math. 8 (1969), 222-225.
- 4. J. P. Jouanolou, Quelques calculs en K–Theorie des schemas, in Algebraic K–Theory I, Lect. Notes in Math. 341, Springer–Verlag, Berlin 1973.
- R. G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277.
- 6. R. G. Swan, K-Theory of quadric hypersurfaces, Ann. of Math. 122 (1985), 113-153.
- R. G. Swan, Vector bundles, projective modules, and the K-theory of spheres, Proc. of the John Moore Conference, Algebraic Topology and Algebraic K-Theory, ed. W. Browder, Ann. of Math. Study 113 (1987),432–522.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF CHICAGO, CHICAGO, IL 60637 *E-mail address*: swan@math.uchicago.edu