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Abstract. This corrects an error in the statement of Theorem 6 of my paper

Vector Bundles and Projective Modules

Example 4 of [5] concerns the following question: If a projective module becomes
free after extending the ground field (say from R to C) is it stably free? The example
considered was the coordinate ring of the n–sphere An = R[x0, . . . , xn]/(

∑n
0 x2

i −1)
and Theorem 6 claimed that there was an example over this ring for n = 4. This
is incorrect. The error is in the assertion that C ⊗ A ≈ P ⊕ P ′ in line −5 on
page 276. I had originally worked out this example for the case of the 2–sphere
mentioned in lines 5 and 6 on page 277. In this case, the argument is correct.
If P is a C ⊗mathbbR Λ–module, then C ⊗mathbbR P ≈ P ⊕ P ′ where P ′ is the
conjugate module defined by letting C⊗mathbbR Λ act on P via the automorphism
C⊗mathbbR Λ→ C⊗mathbbR Λ sending z⊗a to z̄⊗a so the assertion C⊗A ≈ P ⊕P ′

is correct in this case. When writing this up, it struck me that the argument could
be extended to the case of the 4–sphere by replacing C by the quaternions H, but
I failed to check the details with sufficient care and the argument runs afoul of the
non–commutativity of the quaternions. Here P is an H ⊗mathbbR Λ–module. To
find C ⊗mathbbR P we can regard P as a C ⊗mathbbR Λ–module via the inclusion
C⊗mathbbR Λ ⊂ H⊗mathbbR Λ. The automorphism sending z ⊗ a to z̄ ⊗ a extends
to an automorphism of H⊗mathbbR Λ sending q⊗a to jqj−1⊗a but this sends j to
j not −j and so does not agree with the definition of P ′ in [5]. If, as in [5], we try
the map sending q ⊗ a to q̄ ⊗ a, we see that this is an anti–automorphism making
the resulting module P ′ a right module so again this does not produce the module
P ′ used in [5] and the statement that P ′ is the conjugate module of P on page 276,
line −9 is incorrect.

The correct version of the theorem can be easily deduced from the results of
[6]. The question can be reformulated in K-theoretic terms as follows: Let A be an
R–algebra. The base change map bch : K0(A)→ K0(C⊗R A) is defined by sending
[M ] to C ⊗R M . The question then is whether this map is injective. Here is the
correct answer for A = An.

Theorem 0.1. The base change map K0(An) → K0(C ⊗R An) is not injective if
and only if n ≡ 1, 2 (mod 8).

Proof. The restriction map res : K0(C⊗R A)→ K0(A) is defined by sending [M ] to
[M ] i.e. we forget the complex structure. The composition res bch is multiplication
by 2 since C⊗R M is isomorphic to M ⊕M as an A–module. Therefore, the kernel
of bch is annihilated by 2. It is well–known that K0(C ⊗R An) is 0 for n odd and
Z for n even [2, 3, 4] or [7, Theorem 10.2]. Therefore the kernel of bch for A = An

is equal to the torsion submodule of K0(An). Since K0(An) = Z ⊕ K̃0(An) this
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is also the torsion submodule of K̃0(An). By [6], K̃0(An) is the same as K̃0(Sn)
which is periodic with period 8, the first 8 values, beginning with n = 1 being
Z/2Z, Z/2Z, 0, Z, 0, 0, 0, Z [1, Table 2]. Therefore K0(An) has non–trivial torsion if
and only if n ≡ 1, 2 (mod 8). �

We can also determine the maps bch and res explicitly for An. The summands
of K0(An) = Z⊕ K̃0(An) are clearly stable under these maps and on the summand
Z bch = 1 and res = 2. On the other summand the maps are as follows.

Theorem 0.2. The maps K̃0(An) bch−−→ K̃0(C ⊗R An) res−−→ K̃0(An) are 0 if n is
odd or n ≡ 6 (mod 8). Otherwise they are as follows for appropriate choices of
generators.

(1) Z/2Z
0−→ Z � Z/2Z if n ≡ 2 (mod 8).

(2) Z
2−→ Z

1−→ Z if n ≡ 4 (mod 8).
(3) Z

1−→ Z
2−→ Z if n ≡ 0 (mod 8).

Proof. If n is odd, K̃0(C ⊗R An) = 0 while K̃0(An) = 0 if n ≡ 6 (mod 8). Let
qn =

∑n
0 x2

i as a quadratic form over R and let C(qn) be the Clifford algebra of
qn. The group ABS(qn) is defined to be the cokernel of C(qn⊥1)→ C(qn). This is
the same as the group An of [1] as noted in [7, page 457]. It was shown in [6] that
the map ABS(qn)→ K̃0(An) is an isomorphism. The same is true for the complex
analogue ABSC(qn) → K̃0(C ⊗R An) as was observed much earlier by Fossum [3].
These maps clearly commute with bch and res so it is enough to prove the theorem
for the maps ABS(qn) bch−−→ ABSC(qn) res−−→ ABS(qn). By [7, ] ABS(q) is generated by
any simple C(q)–module. From [1, Table 1] where C(qn) is denoted C ′n+1 we see that
for n ≡ 2 (mod 8) we have C(qn) = Mm(C) an m×m–matrix algebra over C for an
appropriate m and CC(qn) = Mm(C)×Mm(C). Therefore a simple CC(qn)–module
restricts to a simple C(qn)–module showing that the map res is onto. If n ≡ 4
(mod 8), then C(qn) = Mm(H)×Mm(H) and CC(qn) = M2m(C)×M2m(C). Here
a simple CC(qn)–module again restricts to a simple C(qn)–module as one sees by
comparing dimensions so res = 1. If n ≡ 0 (mod 8), then C(qn) = Mm(R)×Mm(R)
and CC(qn) = Mm(C)×Mm(C). Here a simple C(qn)–module extends to a simple
CC(qn)–module so bch = 1. �
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