CORRECTION TO: VECTOR BUNDLES AND PROJECTIVE MODULES

RICHARD G. SWAN

Abstract. This corrects an error in the statement of Theorem 6 of my paper Vector Bundles and Projective Modules

Example 4 of [5] concerns the following question: If a projective module becomes free after extending the ground field (say from \(\mathbb{R} \) to \(\mathbb{C} \)) is it stably free? The example considered was the coordinate ring of the \(n \)-sphere \(A_n = \mathbb{R}[x_0, \ldots, x_n]/(\sum_0^n x_i^2 - 1) \) and Theorem 6 claimed that there was an example over this ring for \(n = 4 \). This is incorrect. The error is in the assertion that \(\mathbb{C} \otimes A \approx P \oplus P' \) in line -5 on page 276. I had originally worked out this example for the case of the 2-sphere mentioned in lines 5 and 6 on page 277. In this case, the argument is correct. If \(P \) is a \(\mathbb{C} \otimes_{\text{mathbb{R}}} \Lambda \)-module, then \(\mathbb{C} \otimes_{\text{mathbb{R}}} \Lambda \approx P \oplus P' \) where \(P' \) is the conjugate module defined by letting \(\mathbb{C} \otimes_{\text{mathbb{R}}} \Lambda \) act on \(P \) via the automorphism \(\mathbb{C} \otimes_{\text{mathbb{R}}} \Lambda \rightarrow \mathbb{C} \otimes_{\text{mathbb{R}}} \Lambda \) sending \(z \otimes a \) to \(\bar{z} \otimes a \) so the assertion \(\mathbb{C} \otimes A \approx P \oplus P' \) is correct in this case. When writing this up, it struck me that the argument could be extended to the case of the 4-sphere by replacing \(\mathbb{C} \) by the quaternions \(\mathbb{H} \), but I failed to check the details with sufficient care and the argument runs afoot of the non-commutativity of the quaternions. Here \(P \) is an \(\mathbb{H} \otimes_{\text{mathbb{R}}} \Lambda \)-module. To find \(\mathbb{C} \otimes_{\text{mathbb{R}}} \Lambda \) we can regard \(P \) as a \(\mathbb{C} \otimes_{\text{mathbb{R}}} \Lambda \)-module via the inclusion \(\mathbb{C} \otimes_{\text{mathbb{R}}} \Lambda \subset \mathbb{H} \otimes_{\text{mathbb{R}}} \Lambda \). The automorphism sending \(z \otimes a \) to \(\bar{z} \otimes a \) extends to an automorphism of \(\mathbb{H} \otimes_{\text{mathbb{R}}} \Lambda \) sending \(q \otimes a \) to \(\bar{q} \otimes a \) but this sends \(j \) to \(j \) not \(-j \) and so does not agree with the definition of \(P' \) in [5]. If, as in [5], we try the map sending \(q \otimes a \) to \(\bar{q} \otimes a \), we see that this is an anti-automorphism making the resulting module \(P' \) a right module so again this does not produce the module \(P' \) used in [5] and the statement that \(P' \) is the conjugate module of \(P \) on page 276, line -9 is incorrect.

The correct version of the theorem can be easily deduced from the results of [6]. The question can be reformulated in K-theoretic terms as follows: Let \(A \) be an \(\mathbb{R} \)-algebra. The base change map \(\text{bch} : K_0(A) \rightarrow K_0(\mathbb{C} \otimes_{\mathbb{R}} A) \) is defined by sending \([M]\) to \(\mathbb{C} \otimes_{\mathbb{R}} M \). The question then is whether this map is injective. Here is the correct answer for \(A = A_n \).

Theorem 0.1. The base change map \(K_0(A_n) \rightarrow K_0(\mathbb{C} \otimes_{\mathbb{R}} A_n) \) is not injective if and only if \(n \equiv 1, 2 \pmod{8} \).

Proof. The restriction map \(\text{res} : K_0(\mathbb{C} \otimes_{\mathbb{R}} A) \rightarrow K_0(A) \) is defined by sending \([M]\) to \([M]\) i.e. we forget the complex structure. The composition \(\text{bch} \circ \text{res} \) is multiplication by 2 since \(\mathbb{C} \otimes_{\mathbb{R}} M \) is isomorphic to \(M \oplus M \) as an \(A \)-module. Therefore, the kernel of \(\text{bch} \) is annihilated by 2. It is well-known that \(K_0(\mathbb{C} \otimes_{\mathbb{R}} A_n) \) is 0 for \(n \) odd and \(\mathbb{Z} \) for \(n \) even [2, 3, 4] or [7, Theorem 10.2]. Therefore the kernel of \(\text{bch} \) for \(A = A_n \) is equal to the torsion submodule of \(K_0(A_n) \). Since \(K_0(A_n) = \mathbb{Z} \oplus \tilde{K}_0(A_n) \) this
is also the torsion submodule of $\tilde{K}_0(A_n)$. By [6], $\tilde{K}_0(A_n)$ is the same as $\tilde{K}^0(S^n)$ which is periodic with period 8, the first 8 values, beginning with $n = 1$ being $\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}, 0, \mathbb{Z}, 0, 0, 0, \mathbb{Z}$ [1, Table 2]. Therefore $K_0(A_n)$ has non–trivial torsion if and only if $n \equiv 1, 2 \pmod{8}$.

We can also determine the maps bch and res explicitly for A_n. The summands of $K_0(A_n) = \mathbb{Z} \oplus \tilde{K}_0(A_n)$ are clearly stable under these maps and on the summand \mathbb{Z} $\text{bch} = 1$ and $\text{res} = 2$. On the other summand the maps are as follows.

Theorem 0.2. The maps $\tilde{K}_0(A_n) \xrightarrow{\text{bch}} K_0(\mathbb{C} \otimes_{\mathbb{R}} A_n) \xrightarrow{\text{res}} \tilde{K}_0(A_n)$ are 0 if n is odd or $n \equiv 6 \pmod{8}$. Otherwise they are as follows for appropriate choices of generators.

(1) $\mathbb{Z}/2\mathbb{Z} \xrightarrow{0} \mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z}$ if $n \equiv 2 \pmod{8}$.

(2) $\mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow \mathbb{Z}$ if $n \equiv 4 \pmod{8}$.

(3) $\mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{2} \mathbb{Z}$ if $n \equiv 0 \pmod{8}$.

Proof. If n is odd, $\tilde{K}_0(\mathbb{C} \otimes_{\mathbb{R}} A_n) = 0$ while $\tilde{K}_0(A_n) = 0$ if $n \equiv 6 \pmod{8}$. Let $q_n = \sum x_i^2$ as a quadratic form over \mathbb{R} and let $C(q_n)$ be the Clifford algebra of q_n. The group $\text{ABS}(q_n)$ is defined to be the cokernel of $C(q_n, 1, 1) \rightarrow C(q_n)$. This is the same as the group A_n of [1] as noted in [7, page 457]. It was shown in [6] that the map $\text{ABS}(q_n) \rightarrow \tilde{K}_0(A_n)$ is an isomorphism. The same is true for the complex analogue $\text{ABS}_\mathbb{C}(q_n) \rightarrow \tilde{K}_0(\mathbb{C} \otimes_{\mathbb{R}} A_n)$ as was observed much earlier by Fossum [3]. These maps clearly commute with bch and res so it is enough to prove the theorem for the maps $\text{ABS}(q_n) \xrightarrow{\text{bch}} \text{ABS}_\mathbb{C}(q_n) \xrightarrow{\text{res}} \text{ABS}(q_n)$. By [7, 7] $\text{ABS}(q)$ is generated by any simple $C(q)$–module. From [1, Table 1] where $C(q_n)$ is denoted $C_n^{\ast+1}$ we see that for $n \equiv 2 \pmod{8}$ we have $C(q_n) = M_m(\mathbb{C})$ an $m \times m$–matrix algebra over \mathbb{C} for an appropriate m and $C(q_n) = M_m(\mathbb{C}) \times M_m(\mathbb{C})$. Therefore a simple $C(q_n)$–module restricts to a simple $C(q_n)$–module showing that the map res is onto. If $n \equiv 4 \pmod{8}$, then $C(q_n) = M_m(\mathbb{H}) \times M_m(\mathbb{H})$ and $C(q_n) = M_{2m}(\mathbb{C}) \times M_{2m}(\mathbb{C})$. Here a simple $C(q_n)$–module again restricts to a simple $C(q_n)$–module as one sees by comparing dimensions so res = 1. If $n \equiv 0 \pmod{8}$, then $C(q_n) = M_m(\mathbb{R}) \times M_m(\mathbb{R})$ and $C(q_n) = M_m(\mathbb{C}) \times M_m(\mathbb{C})$. Here a simple $C(q_n)$–module extends to a simple $C(q_n)$–module so $\text{bch} = 1$.

References