Notation and assumptions.

1. $\gamma_x(t)$ denotes the maximal integral curve of a vector field v with initial position $\gamma_x(0) = x$. Furthermore $\phi_t(x)$ is defined to be $\gamma_x(t)$.

2. All vector fields below are assumed to be C^∞.

3. Let v be a vector field on a manifold N and let $f : M \to N$ be C^∞. The vector field f^*v on M is defined under the assumption $f'(x) : T_xM \to T_{f(x)}N$ is an isomorphism for all $x \in M$ by the formula $(f^*v)_x = f'(x)^{-1}v(f(x))$ for all $x \in M$.

Homework

1. Let v be a vector field on \mathbb{R}. Assume that $v(a) = v(b) = 0$ and $a < b$. Let $a < x < b$.

 (a) Prove that the integral curve $\gamma_x(t)$ is defined for all $t \in \mathbb{R}$.

 (b) Show that $\gamma_x(\mathbb{R})$ is contained in the open interval (a, b).

2. With assumptions and notation as above, prove that $\gamma_x(\mathbb{R}) = (a, b)$ if and only if $\{y \in (a, b) : v(y) = 0\}$ is empty.

3. Let $v(x) = P(x) \frac{dx}{dt}$ where P is a polynomial in one variable.

 (a) Find an example of a P and $x \in \mathbb{R}$ such that the integral curve $\gamma_x(t)$ is not defined for all $t \in \mathbb{R}$.

 (b) Show that if $\deg(P) \leq 1$ the integral curves of v are defined for all $(x, t) \in \mathbb{R} \times \mathbb{R}$.

4. Consider the vector field $v(x) = f(x) \frac{dx}{dt}$ defined for $x \in V$ a nbhd of 0. Assume that $f(0) = 0$ and $f'(0) = c \neq 0$. Show there is a nbhd U of 0 in \mathbb{R} and a diffeomorphism h of U to an open subset of V with $h(0) = 0$ such that h^*v equals $cx \frac{dx}{dt}$.

5. Find the condition a function f defined on an open subset $\Omega \subset \mathbb{R}^3$ must satisfy in order that the vector sub-bundle of the tangent bundle spanned by vector fields ∂_1 and $\partial_2 + f \partial_3$ is involutive.

6. Let $S : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Consider the vector field v on \mathbb{R}^n given by $v(x) = Sx$ for all $x \in \mathbb{R}^n$. Show that $\text{Re}(a) < 0$ (resp. > 0) for every eigenvalue of S if and only if $\|\gamma_x(t)\| \to 0$ (resp. $\to \infty$) as $t \to \infty$ for every non-zero $x \in \mathbb{R}^n$.

7. Let v be a vector field on M that vanishes at a given point $p \in M$. There is a nbhd $U(p)$ of p in M and an interval $(-c, c)$ such that $\phi_t : U(p) \to M$ is defined for all $t \in (-c, c)$. Recall that $\phi_t(p) = p$ and thus we obtain the linear transformation $\phi'_t(p) \in \text{End}(T_pM)$. The map $t \mapsto \phi'_t(p)$ is C^∞. Denote its derivative $\frac{d}{dt}\phi'_t(p)|_{t=0}$ by $\rho(v) \in \text{End}(T_pM)$.

 (a) Show that if vector fields v and w both vanish at p, then $[v, w]$ also vanishes at p.

 (b) For v, w as above, show that $\rho[v, w] = [\rho(v), \rho(w)]$. (One way is to do the next two parts first.)

 (c) When M be an open subset of \mathbb{R}^n, the vector field is given by $v : M \to \mathbb{R}^n$. Its derivative at $p \in M$ is a linear transformation $v'(p) : \mathbb{R}^n \to \mathbb{R}^n$. Under the assumption that v, w are vector fields on M that vanish at p, show that $[v, w]'(p) = [v'(p), w'(p)]$.

 (d) Notation as in part (c) with $v(p) = 0$. Show that $\rho(v) = v'(p)$.