Introduction

Math 318 is one of the nine courses offered for first-year mathematics graduate students at the University of Chicago. It is the second of three courses in the year-long geometry/topology sequence.

These notes are being live-TeXed, though I edit for typos and add diagrams requiring the TikZ package separately. I am using the editor TeXstudio.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the material here should be credited to the lecturer, not to me.

Please email any corrections or suggestions to chonoles@math.uchicago.edu.
Lecture 1 (2013-02-15)

Today we’ll talk about a method for reducing nth order differential equations to first order differential equations. Thus, for example, we can express acceleration as a function of position and velocity.

Let $\Omega \subset \mathbb{R}^n$ be open, and let $a : \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ be a given function (representing acceleration). Then given $(x_0, y_0) \in \Omega \times \mathbb{R}^n$, there is a unique $\gamma : (-\epsilon, \epsilon) \to \Omega$ such that $\gamma(0) = x_0$, $\gamma'(0) = y_0$, and $\gamma''(t) = a(\gamma(t), \gamma'(t))$ for all $t \in (-\epsilon, \epsilon)$.

The trick was to introduce the space $\Omega \times \mathbb{R}^n$. Put $M = \Omega \times \mathbb{R}^n$, and let $\delta(t) = (\gamma(t), \gamma'(t))$. Any vector field on M can be thought of as a function $M \to \mathbb{R}^n \times \mathbb{R}^n$; let $\vec{v} : M \to \mathbb{R}^n \times \mathbb{R}^n$ be the vector field defined by

$$\vec{v}(x, y) = (y, a(x, y)).$$

If γ is as above, then we have $\delta(0) = (x_0, y_0) \in M$, and $\delta'(t) = (\gamma'(t), \gamma''(t)) = \vec{v}(\delta(t))$. Thus, curves γ satisfying our requirements are precisely integral curves of the vector field \vec{v} on M.

Theorem. Let M be a C^∞ manifold and let v be C^∞ vector field on M. Let $p \in M$. Then there is a neighborhood $U(p)$ of p in M, some $a > 0$, and a C^∞ function $\gamma : U(p) \times (-a, a) \to M$ such that for all $x \in U(p)$, $\gamma_x(t)$ is the (unique) integral curve of v such that $\gamma_x(0) = x$, where $\gamma_x(t) := \gamma(x, t)$.

A reference for this theorem is Hurewicz’s *Lectures on Ordinary Differential Equations*.

Remark 1. Let γ be an integral curve of a C^∞ vector field. Then it is clear that γ is C^∞, because we have that

$$\gamma'(t) = v(\gamma(t)),$$

so that if γ is C^k, then $v \circ \gamma$ is C^k, hence γ' is C^k, so that γ is C^{k+1}.

Remark 2. Assume that v is a C^1 vector field. The contraction principle shows that $(x, t) \mapsto \gamma_x(t)$ is continuous in (x, t) and defined on some neighborhood $U(p) \times (-a, a)$, as follows:

WLOG, let $p = 0$, and let $M = \Omega$, an open subset of \mathbb{R}^n. Then the space of continuous functions

$$\{ x \in \mathbb{R}^n \mid \|x\| \leq \alpha \} \times [-c, c] \to \{ x \in \mathbb{R}^n \mid \|x\| \leq R \}$$

with the $\| \cdot \|_\infty$ norm is a complete metric space.

Remark 3. Assume that v is a C^2 vector field on Ω, an open subset of \mathbb{R}^n. We want to show that the partial derivatives

$$\frac{\partial}{\partial x_i}(\gamma_x(t))$$

exist. We can simply check that the differential equation defining them is satisfied. Let $v : \Omega \to \mathbb{R}^n$ be a vector field on Ω, and so that for any $x \in \Omega$ we have $v'(x) : \mathbb{R}^n \to \mathbb{R}^n$.

We introduce the (standard) notation $\phi_t(x) = \gamma_x(t)$. Thus, ϕ_t is defined at all $t \in (-a, a)$, and ϕ_t is a function $\phi_t : U(p) \to \Omega$, so that we have $\phi'_t(x) : \mathbb{R}^n \to \mathbb{R}^n$ for any $x \in U(p)$, where $\phi'_t(x)$ is the derivative of $x \mapsto v(\phi_t(x))$.

Let $\vec{v} : M \to \mathbb{R}^n \times M(h)(\mathbb{R})$ be the vector field on $M = \Omega \times \mathbb{R}^n$ defined by

$$\vec{v}(x, S) = (v(x), v'(x)S).$$

We claim that, for any fixed t, the map $x \mapsto (\phi_t(x), \phi'_t(x))$ is an integral curve for \vec{v}.
We have that
\[\frac{d}{dt} \phi_t(x) = v(\phi_t(x)), \]
so that
\[\tilde{v}(\phi_t(x), \phi'_t(x)) = \frac{d}{dt}(\phi_t(x), \phi'_t(x)) = (v(\phi_t(x)), v'(\phi_t(x))\phi'_t(x)). \]

This “reduces” the question to integral curves of \tilde{v} on $\Omega \times M_n(\mathbb{R})$ (\(?\)).

Corollary. Let M be a C^∞ manifold, and let v be a C^∞ vector field on M. For all $x \in M$, we’ve shown that there is a maximal integral curve $\gamma_x : I_x \to M$ such that $\gamma_x(0) = x$. Let
\[D = \{(x,t) \in M \times \mathbb{R} \mid t \in I_x\}, \]
and write $\gamma_x(t) = \gamma(x,t)$ for all $(x,t) \in D$.

1. D is an open subset of $M \times \mathbb{R}$.
2. If $\phi_t(x)$ is defined, then $\phi_s(x)$ is defined for all $0 \leq s \leq t$ (or all $t \leq s \leq 0$).
3. If $\phi_t(x)$ is defined and if $\phi_s(\phi_t(x))$ is defined, then $\phi_{t+s}(x)$ is defined and
\[\phi_{t+s}(x) = \phi_s(\phi_t(x)). \]
4. Assume M is compact. Then the theorem implies that there is an open interval $(-a,a)$ such that $(-a,a) \subset I_x$ for all $x \in M$, so that $D \supseteq M \times (-a,a)$; statement 3 then implies $D = M \times \mathbb{R}$. Furthermore, for a fixed t, the map $x \mapsto \phi_t(x)$ is C^∞ and induces an isomorphism on tangent spaces.

5. Observe that given a vector field v on M, if a constant path $\gamma(t) = p$ is an integral curve of v, then $v(p) = 0$. Conversely, if $v(p) = 0$, then the constant curve to p is an integral curve.

Proof of 3. We know γ_x is defined on $[0,t+\epsilon)$, and that $\gamma_{\phi_t(x)}$ is defined on $[0,s+\epsilon')$. Now define
\[\delta(z) = \begin{cases}
\gamma_x(z) & \text{for all } z \in [0,t], \\
\gamma_{\phi_t(x)}(z-t) & \text{for all } z \in [t,s+\epsilon).
\end{cases} \]

Note that δ is an integral curve of v. \[\square \]

Exercise. Let $\mathbb{R} \xrightarrow{h} \text{Diffeo}(M)$ be a group homomorphism such that the map $M \times \mathbb{R} \to M$ defined by $(x,t) \mapsto h(t)(x)$ is C^∞. Prove that there is a C^∞ vector field v on M such that $h(t) = \phi_t$ for the vector field v. This does not require M to be compact, just that the support of v is compact.

Remark. If v is a vector field on a manifold M and $v(p) \neq 0$, then there is a neighborhood $U(p)$ of p in M and a diffeomorphism $f : U(p) \to \Omega$, where Ω is an open subset of \mathbb{R}^n, such that the vector field v (restricted to $U(p)$) is carried by f to the constant vector field $\frac{\partial}{\partial x_1}$ on Ω.

Proof of Remark. Let’s say that Z is a slice of M when $T_pZ \oplus \mathbb{R}v(p) = T_pM$. The hypotheses of the inverse function theorem hold at $(p,0)$, so that we can find coordinates in which the map from $Z \times (-\epsilon, \epsilon) \to M$ defined by $\phi_t(z) = \gamma(z)$ sends the vector field v to a constant vector field, such as for example $\frac{\partial}{\partial x_1}$. \[\square \]

Next time, we’ll start with Lie brackets. It’s motivated from two points of view; maybe 100 in fact.
Lecture 2 (2013-02-18)

Though it’ll seem like we’re leaving integral curves, we’ll return to them in the middle of the lecture.

Recall that given a C^∞ manifold M, a point $p \in M$, and a tangent vector $v \in T_p M$, there is an \mathbb{R}-linear functional $v : C^\infty(M) \rightarrow \mathbb{R}$, sending a C^∞ function $f : M \rightarrow \mathbb{R}$ to $v(f) \in \mathbb{R}$. It satisfies the Leibniz rule,

$$v(fg) = f(p)v(g) + g(p)v(f).$$

This is a generalization of the notion of directional derivative in Euclidean space.

Now let v be a vector field on M. Let $R = C^\infty(M)$. Now we have an \mathbb{R}-linear map $v : R \rightarrow R$, defined by $v(f)(p) = v(p)(f)$ for all $p \in M$. For example, if $M = \mathbb{R}^n$ and $v = (a_1, \ldots, a_n) = \sum_{i=1}^n a_i \frac{\partial}{\partial x_i}$, we have that

$$v(f) = \sum_{i=1}^n a_i \frac{\partial f}{\partial x_i}.$$

For any ring S, a function $D : S \rightarrow S$ is a derivation when $D(fg) = D(f) \cdot g + f \cdot D(g)$. Very often, we are given a subring $T \subset S$ contained in the center of S, that we require to satisfy $D(t) = 0$ for all $t \in T$. Note that the map $v : R \rightarrow R$ sending $f \mapsto v(f)$ is a derivation, and $v(\text{any constant function}) = 0$ (observe that we can \mathbb{R} is a subring of R).

The following is an easy lemma.

Lemma. If $D_1, D_2 : R \rightarrow R$ are derivations, then $(D_1 \circ D_2) - (D_2 \circ D_1)$ is also a derivation.

In particular, if v, w are C^∞ vector fields on M, U is an open subset of M, and $C^\infty(U)$ is the ring of C^∞ functions on U, the map $f \mapsto v(w(f)) - w(v(f))$ is a derivation of $C^\infty(U)$. If we fix a point $p \in M$, we can consider neighborhoods U of $p \in M$, and the map

$$f \mapsto (v(w(f)) - w(v(f))(p)$$

induces an \mathbb{R}-linear map on germs $C^\infty_{M,p} \rightarrow \mathbb{R}$. Being a derivation, this is equal to $h(p)(f)$ for a unique $h(p) \in T_p M$. It is true (though we won’t check) that $p \mapsto h(p)$ is a C^∞ vector field on M, and we define the Lie bracket of v and w to be this h. We write $h = [v, w]$. Thus,

$$[v, w](f) = v(w(f)) - w(v(f))$$

for all C^∞ maps $f : U \rightarrow \mathbb{R}$.

Lemma. Let Ω be an open subset of \mathbb{R}^n, and let v, w be C^∞ vector fields on Ω. Then

$$[v, w] = D_v w - D_w v,$$

where

$$(D_v w)(x) = \frac{d}{dt} w(x + tv) \bigg|_{t=0}.$$

Proposition. The \mathbb{R}-vector space of C^∞ vector fields on M, together with the bracket, satisfies the axioms of a Lie algebra:

1. $[v, w] = -[w, v]$ for all C^∞ vector fields v and w.
2. $[v_1, [v_2, v_3]] + [v_2, [v_3, v_1]] + [v_3, [v_1, v_2]] = 0$ for all C^∞ vector fields v_1, v_2, v_3.
3. $[tv, w] = t[v, w]$ for all $t \in \mathbb{R}$.
Definition. Let M and N be C^∞ manifolds, and let $\phi : M \to N$ be a C^∞ map. Given vector fields v on M and w on N, we say that v and w are ϕ-related if for all $x \in M$,\[
abla \phi(x)v(x) = w(\phi(x)).\]

Lemma 1. Given vector fields v on M and w on N, they are ϕ-related if and only if $\phi(\gamma)$ is an integral curve of w for any integral curve γ of v.

Proof. Assume that v and w are ϕ-related. Let $\gamma : (a, b) \to M$ be an integral curve for v, so that for all $t \in (a, b)$, we have\[
abla \gamma(t) = v(\gamma(t)).\]
Let $\delta = \phi \circ \gamma$. Then\[
abla \delta(t) = \nabla \phi(\gamma(t))\nabla \gamma(t) = w(\phi(t)).\]
Everything is reversible, so we are done. \hfill \Box

Last time, I mentioned that if a vector field is non-zero at a point, then in some neighborhood it looks like $\frac{\partial}{\partial x^i}$. There is a proof of this in Warner’s book on page 40.

Example. Let w be a vector field on N and suppose that $w(p) \neq 0$. Then there is a chart centered at p such that w is transformed to $\frac{\partial}{\partial x^i}$.

Proof. Let Z be a codimension 1 closed submanifold of N containing p, and suppose that it is transverse, i.e. that $T_p Z \oplus \mathbb{R}^w(p) = T_p N$. Let $\delta_y(t)$ be an integral curve of w with initial value y, i.e. $\delta_y(0) = y$. Let $M = Z \times (-c, c)$, and let $\phi : M \to N$ be the map defined by\[
\phi(z, t) = \delta_z(t).
\]
This is a diffeomorphism in a neighborhood of $Z \times \{0\}$ by the inverse function theorem, and the curves $t \mapsto (z, t)$ on M are sent by ϕ to the curves $\delta_z(t)$ on N, which are integral curves of w. Thus, $t \mapsto (z, t)$ is an integral curve for $\frac{\partial}{\partial x^i}$.

Lemma 2. Let M and N be C^∞ manifolds, and let $\phi : M \to N$ be C^∞.

(a) If v on M and w on N are ϕ-related, then $v(\phi^* f) = \phi^* w(f)$ for any C^∞ map $f : N \to \mathbb{R}$; this is just a restatement of the definition.

(b) If v_1 is ϕ-related to w_1 and v_2 is ϕ-related to w_2, then $[v_1, v_2]$ and $[w_1, w_2]$ are ϕ-related.

Proof of (b). We have\[
\phi(\phi^*(f)) = \phi^*(\phi^*(w_2(f))) = \phi^*(w_2(f))).\]
Now interchange and subtract. \hfill \Box

Remark. This has an important consequence. If M is a locally closed submanifold of N, $\phi : M \to N$ is the inclusion, and w is a vector field on N, then to say that there is some v on M that is ϕ-related to w is equivalent to saying that $w(x) \in T_x M$ for all $x \in M$ (because $w(x) = v(x)$). Thus, Lemma 2 is saying something about vector fields that are tangent to submanifolds; if w_1 and w_2 are vector fields on N such that $w_1(x), w_2(x)$ belong to $T_x M$ for all $x \in M$, then $[w_1, w_2]$ has the same property.

Definition. Let M be a C^∞ manifold, and let W be a C^∞ subbundle of TM of rank r. A locally closed submanifold A of M is a leaf if for all $x \in A$, $T_x A = W(x)$.
Suppose that there is a leaf of W through every point of M. If w_1, w_2 are C^∞ sections of W, then $[w_1, w_2]$ is necessarily also a section of W; we can see this easily as follows. Let $p \in M$ and let Z be a leaf through p. Because Z is a leaf, w_1 and w_2 are tangential to Z, so $[w_1, w_2]$ is tangential to Z, i.e. $[w_1, w_2](p) \in T_p Z = W(p)$ for all $p \in M$.

Definition. A C^∞ subbundle W of TM is said to be involutive (alternatively, integrable) if for all C^∞ sections w_1, w_2 of W, $[w_1, w_2]$ is also a section of W.

We have already proven one piece of the following theorem:

Theorem (Frobenius). Let W be a subbundle of TM. The following are equivalent:

1. W is involutive.
2. There is a leaf of W through every point.
3. For all $p \in M$, there is a diffeomorphism h from a neighborhood of p to $U_1 \times U_2$, where U_i is an open subset of \mathbb{R}^{n_i} for $i = 1, 2$, such that $h(W)$ is the constant $\mathbb{R}^{n_1} \times \{0\}$ bundle on $U_1 \times U_2$.

Proof. It is clear that $3 \implies 2$, and we have already proven that $2 \implies 1$, so it remains to prove that $1 \implies 3$. This proof is taken from Narasimhan (the proof is originally due to Volterra).

Step 1. Let W be an involutive subbundle of rank r. Then in a neighborhood of any $p \in M$, we can find vector fields w_1, \ldots, w_r which are a frame for W, i.e. $w_1(x), \ldots, w_r(x)$ are a basis for $W(x)$ for all x in the neighborhood, and such that $[w_i, w_j] = 0$ for all i, j.

Let me make a linear algebra observation: given a vector space $V = V_1 \oplus V_2$, subspaces $W \subset V$ such that the projection to V_1 is an isomorphism, i.e.

$$
\begin{array}{ccc}
V & \xrightarrow{p_1} & V_1 \\
\cong & & \\
W & \xrightarrow{} & V_1
\end{array}
$$

can be identified with graphs of linear transformations $S : V_1 \to V_2$.

Now write $\mathbb{R}^N = V_1 \times V_2$, where $N = \dim(M)$, where V_1 and V_2 have been chosen such that $p_1|_{W(p)} : W(p) \to V_1$ is an isomorphism (p is the projection $\mathbb{R}^N \to V_1$), so that $W(x) \cong V_1$ for all x in some neighborhood of p. Thus, for each x, we get $S(x) : V_1 \to V_2$, and

$$
W(x) = \{(v_1, S(x)v_1) \mid v_1 \in V_1\}.
$$

Let $\Omega \subset V_1 \times V_2 = \mathbb{R}^N$ be open. WLOG we have $V_1 = \mathbb{R}^r$, where e_1, \ldots, e_r are the standard basis of \mathbb{R}^r. We have $S(x)e_i = u_i(x)$, where $u_i : \Omega \to V_2$ is some C^∞ function. Thus $W(x)$ is the linear space of the $e_i + u_i$. For any i, j, we have that $[e_i + u_i, e_j + u_j]$ is a section of W, and using the formula

$$
[\alpha, \beta] = D_\alpha \beta - D_\beta \alpha
$$

on Euclidean space, we have that $[e_i + u_i + e_j + u_j]$ is a section of V_2 (i.e. a function $\Omega \to V_2$); but it also has to be a section of W, so it has to be 0 since $V_2 \cap W(x) = 0$ for all $x \in \Omega$.

We’ll finish the proof of this with Step 2 next time.
Lecture 3 (2013-02-20)

Everything we’re talking about today will be C^∞.

To finish the proof of the Frobenius theorem from last time, it remains to show the following result:

Lemma 1. If w_1, \ldots, w_r are linearly independent, commuting vector fields (commuting in the sense that their pairwise Lie brackets are 0), then there is a chart centered at any given point where the w_i are transformed to the coordinate vector fields $\frac{\partial}{\partial x_i}$ for $i = 1, \ldots, r$.

Remark. Let v and w be vector fields on M. Let ϕ_t and ψ_s denote the one-parameter groups for v and w respectively (i.e. the flows). Then for all $p \in M$, there is some neighborhood $U(p)$ of p and $(-\epsilon, \epsilon)$ such that $\phi_t(\psi_s(x))$ and $\psi_s(\phi_t(x))$ are defined for all $x \in U(p)$ and $t, s \in (-\epsilon, \epsilon)$.

Lemma 2. With notation as above, if $[v, w] = 0$, then $\phi_t(\psi_s(x)) = \psi_s(\phi_t(x))$ for any $x \in U(p)$ and $s, t \in (-\epsilon, \epsilon)$.

Proof that Lemma 2 \implies Lemma 1. Let’s assume the result of Lemma 2 in the case that $v(p) \neq 0$. Let ϕ_i denote the one-parameter groups with respect to w_i for each $i = 1, \ldots, r$. Let $p \in M$, and select a locally closed C^∞ submanifold $Z \subset M$ with $p \in Z$ such that $T_p Z \oplus \mathbb{R} w_1(p) \oplus \cdots \oplus \mathbb{R} w_r(p) = T_p M$. Note that by assuming this is true at p, we can assume this is true in a neighborhood of p.

Let $h : (-\epsilon, \epsilon)^r \times (Z \cap U(p)) \to M$ be defined by

$$h(x_1, \ldots, x_r, z) = \phi_{x_1}^1 \phi_{x_2}^2 \cdots \phi_{x_r}^r(z).$$

We see that h induces an isomorphism from the tangent space at $(0, \ldots, 0, z)$ to $T_z M$ for all $z \in Z \cap U(p)$. Note that $h(t, x_2, \ldots, x_r, z)$ is an integral curve for w_1, so that $h'(z) \frac{\partial}{\partial x_1} = w(h(z))$ for all z in the domain of h (this is not a z in the sense of “I didn’t get down what was on the board”, but rather “?” itself what was written on the board). This is

$$\phi_{x_2}^2 \phi_{x_1}^1 \cdots,$$

and thus we see that $h'(z) \frac{\partial}{\partial x_1} = w_2(h(z))$, etc. (not sure I understand this part). \qed

Proof of Lemma 2. We have that $w_1(p) \neq 0$, so (as we have shown earlier) we can assume WLOG that $w = \frac{\partial}{\partial x_1}$. For any vector $v = \sum a_i \frac{\partial}{\partial x_i}$, we have that

$$[w, v] = \sum \frac{\partial a_i}{\partial x_1} \cdot \frac{\partial}{\partial x_i}.$$

By assumption, this is zero, so the a_i’s are (in some neighborhood) functions of (x_2, \ldots, x_n). Because the statement is local, we can assume that we are working on $(-\epsilon, \epsilon) \times \Omega$ for an open subset $\Omega \subset \mathbb{R}^{n-1}$. Let $c \in (-\frac{\epsilon}{2}, \frac{\epsilon}{2})$. Let $h_c : (-\frac{\epsilon}{2}, \frac{\epsilon}{2}) \to (-\epsilon, \epsilon) \times \Omega$ be defined by

$$h_c(x_1, x_2, \ldots) = (x_1 + c, x_2, \ldots).$$

Then v and $v|_{(-\frac{\epsilon}{2}, \frac{\epsilon}{2})}$ are h_c-related.

Therefore, if δ is an integral curve of v, then $h_c \circ \delta$ is also an integral curve. Let ϕ_t denote the one-parameter group associated to v. Then we have that

$$h_c \circ \phi_t = \phi_t \circ h_c.$$

But $h_c = \psi_c$ where ψ_c is the one-parameter group associated to w. \qed
Theorem (Thom’s ambient isotopy lemma). Let \(I = [0, 1] \), let \(A \) and \(B \) be \(C^\infty \) manifolds where \(A \) is compact, and let \(F : A \times I \to B \) be a \(C^\infty \) map. Let \(f_t : A \to B \) be defined by \(f_t(a) = F(a, t) \) for all \(a \in A \) and \(t \in [0, 1] \). If \(f_t \) is an embedding for all \(t \in I \), then there is a \(C^\infty \) map \(G : B \times I \to B \) such that \(g_t \) is a diffeomorphism for all \(t \in I \), and \(f_t = g_t \circ f_0 \) for all \(t \in I \), where \(g_t(b) = G(b, t) \).

Recall that if \(A \) is an arbitrary subset of a \(C^\infty \) manifold \(M \), then given a map \(f : A \to \mathbb{R} \), we say that it is \(C^\infty \) map when there exist open sets \(U_\lambda \subset M \) for all \(\lambda \in \Lambda \) such that \(f|_{A \cap U_\lambda} = f_\lambda|_{A \cap U_\lambda} \) and \(W := \bigcup U_\lambda \) contains \(A \). Then \(\{U_\lambda\}_{\lambda \in \Lambda} \) is an open cover of \(W \), so there is a partition of unity subordinate to this cover. Let \(\varphi : W \to \mathbb{R} \) be subordinate to \(U_\lambda \).

Consider \(\varphi_{\lambda|_{U_\lambda}} \circ f_\lambda : U_\lambda \to \mathbb{R} \), which has support contained in \(U_\lambda \), and extends by zero to a \(C^\infty \) function on \(W \) denoted by \(\varphi f_\lambda \). If we then define \(\tilde{f} = \sum_{\lambda \in \Lambda} \varphi f_\lambda \), then \(\tilde{f} \) is a \(C^\infty \) function defined on \(W \) that extends \(f \). More generally, if we have a \(C^\infty \) bundle

\[
\begin{array}{ccc}
V & \longrightarrow & W \\
\downarrow & & \downarrow \\
A & \longrightarrow & M
\end{array}
\]

where \(A \) is arbitrary, then what we’ve shown is that it extends to a \(C^\infty \) section on an open \(W \supset A \).

A variant of this result is that if \(A \) is a closed set, then note that \(\{U_\lambda \mid \lambda \in \Lambda\} \cup \{M - A\} \) is also an open cover, so we can create a partition of unity \(\{\varphi_\lambda \mid \lambda \in \Lambda\} \cup \{\varphi_0\} \). If we define \(f_0 : (M - A) \to \mathbb{R} \) to be zero, then let

\[
\tilde{f} = \sum_{\lambda} \varphi f_\lambda + \varphi_0 f_0.
\]

Once again, \(\tilde{f} : M \to \mathbb{R} \) and \(\tilde{f}|_A = f \). Finally, if \(A \) is compact, then we see that \(\tilde{f} \) can be chosen to have compact support.

Proof of Thom’s lemma. WLOG, we can assume that \(B \subset \mathbb{R}^N \), so that \(F : A \times I \to B \) can be extended to a \(C^\infty \) map \(F : A \times (-\epsilon, 1+\epsilon) \to B \). This is because we can extend to a map \(A \times \mathbb{R} \to \mathbb{R}^N \), and letting \(U \) be a tubular neighborhood around \(B \) in \(\mathbb{R}^N \), we can find an open neighborhood \(V \) around \(A \times I \) in \(A \times \mathbb{R} \) that maps into \(U \), and because \(A \) is compact we can take \(V \) to be of the form \(A \times (-\epsilon, 1+\epsilon) \), and then we can use the retraction from \(U \) to \(B \) to map everything into \(B \).

\[
\begin{array}{ccc}
A \times I & \subset & V \\
\downarrow & & \downarrow \\
B & \subset & U \\
\downarrow & & \downarrow \\
\subset & & \subset \\
A \times \mathbb{R} & \subset & \mathbb{R}^N
\end{array}
\]

Because \(A \) is compact, we can assume that \(f_t \) is an embedding for all \(t \in (-\epsilon, 1+\epsilon) \). Define \(\tilde{F} : A \times (-\epsilon, 1+\epsilon) \to B \times (-\epsilon, 1+\epsilon) \) to be the map sending \((a, t) \mapsto (F(a, t), t) \). Then \(\tilde{F} \) sends \((0, \frac{d}{dt}) \) to a vector field \((w, \frac{d}{dt}) \). Let \(C = \tilde{F}(A \times (-\epsilon, 1+\epsilon)) \).

We have that \(C \hookrightarrow B \times (-\epsilon, 1+\epsilon) \) is closed and a section \(w \) of \(p_1^*TB|C \), where \(p_1 : B \times (-\epsilon, 1+\epsilon) \to B \). There exists a global \(C^\infty \) section \(\tilde{w} \) that extends \(w \). Consider \(v = (\tilde{w}, \frac{d}{dt}) \), which is a vector field on \(B \times (-\epsilon, 1+\epsilon) \). Let \(\phi_t \) be the flow associated to \(v \).

Fact 1: We know that for all \(a \in A \), the map \(t \mapsto (f_t(a), t) \) is an integral curve.

Fact 2: We may assume that \(\text{supp}(\tilde{w}) \overset{p_2}{\to} (-\epsilon, 1+\epsilon) \) is proper. This implies that for all \(z \in (-\epsilon, 1+\epsilon) \), the flow \(\phi_t(B \times z) \) is defined for all \(t \) with \(|t| < \delta \), say. In particular, \(\phi_t(B \times z) \) is defined
for all $z \in I$ and for all t with $|t| < \delta$.

Fact 3: We have that $\phi_t(B \times z) \subset B \times \{z + t\}$, from which it follows that for all $0 \leq z \leq 1$, ϕ_t is defined on $B \times z$ for all $-z \leq t \leq 1 - z$.

From these facts, we have that $\phi_t|_{B \times 0} \sim B \times t$ is a diffeomorphism for all $0 \leq t \leq 1$. Now define $g_t = \phi_t$ and we are done. \qed
Lecture 6 (2013-02-27)

Let M be a C^∞ manifold and v a C^∞ vector field on M. Let $\phi_t(x) = \gamma_x(t)$ be the integral curve for v with $\gamma_x(0) = x$. Let ω be any object attached to the manifold, such as for example a section of $TM^{\otimes m} \otimes T^*M^{\otimes n}$. Then the Lie derivative of ω with respect to v makes sense:

$$L_v \omega = \frac{d}{dt} \phi^*_t \omega \bigg|_{t=0}$$

In particular, $L_v w$ is defined when w is a vector field.

Proposition. For all vector fields v, w on M, we have $L_v w = [v, w]$.

Lemma (Leibniz rule for sections of bundles). Let v be a vector field.

1. $L_v (\omega \wedge \eta) = (L_v \omega) \wedge \eta + \omega \wedge L_v (\eta)$, where ω is a k-form and η is an ℓ-form
2. $L_v i_w \theta = i_{L_v (w)} \theta + i_w L_v \theta$ where w is a vector field, and θ is a k-form
3. $v(\theta(w)) = \theta(L_v(w) + (L_v \theta)(w))$, where θ is a 1-form (this is just a special case of 2)

Proof. Let V_1, V_2, V_3 be vector bundles on M, and let B be a bilinear map

$$
\begin{array}{cc}
V_1 \times_M V_2 & \rightarrow & V_3 \\
B & \downarrow & \\
M & \leftarrow & \\
\end{array}
$$

i.e. $B(x) : V_1(x) \times V_2(x) \rightarrow V_3(x)$ is bilinear for all $x \in M$. Let s^1_t, s^2_t be families of C^∞ sections of V_1 and V_2 respectively, indexed by $t \in (-\epsilon, \epsilon)$. Let p_1 be the projection $p_1 : M \times (-\epsilon, \epsilon) \rightarrow M$, so that each s_t is a section of $p_1^* V_i$. Then

$$
\frac{d}{dt} B(s^1_t, s^2_t) = B \left(\frac{d}{dt} s^1_t, s^2_t \right) + B \left(s^1_t, \frac{d}{dt} s^2_t \right).
$$

How will we apply this - we want to choose $s_t = \phi^*_t(?)$.

Let $V_1 = TM, V_2 = \Lambda^k T^* M, V_3 = \Lambda^{k-1} T^* M$, and let $B(x) : T_x M \times \Lambda^k T^*_x M \rightarrow \Lambda^{k-1} T^*_x M$ be defined by $B(x)(\omega, \theta) = i_{v_x}(\theta)$.

Part 2 is then an application of the Leibniz rule

$$
i_{v_x^*}(\omega \wedge \eta) = i_{v_x^*}(\omega) \wedge \eta + (-1)^{\deg(\omega) \deg(\eta)} \omega \wedge i_{v_x^*}(\eta)
$$

where $v_x^* \in V^*$ and $\omega \in \Lambda^k V$, and 3 is just 2 for $k = 1$.

Given $\theta = df$, where $f : M \rightarrow \mathbb{R}$ is a C^∞ map, then

$$
\theta(w) = (df)(w) = w(f)
$$

That $v(\theta(w)) = v(w(f))$ is just the left side of 3. But

$$
\theta(L_v w) = (L_v w)(f),
$$

hence

$$
L_v(\theta) = L_v(df) = dL_v f = d(v(f)),
$$
hence
\[(L_v \theta)(w) = w(v(f)).\]

Now 3 reads as
\[v(w(f)) = w(v(f)) + (L_v w)(f),\]
i.e.
\[(L_v w)(f) = v(w(f)) - w(v(f)) = [v, w](f)\]
for all \(C^\infty\) maps \(f : M \to \mathbb{R}.\)

Corollary (Special case of Cartan’s formula). Let \(\omega\) be a 1-form, and let \(v_1\) and \(v_2\) be vector fields. Then
\[d\omega(v_1, v_2) = i_{v_1} d\omega(v_2) - i_{v_2} d\omega(v_1) + (L_{v_1} w)(v_2) - (L_{v_2} w)(v_1),\]

\[\text{for } v_1, v_2 \in T_x M.\]

Proof. We have that \(L_v = i_v d + di_v.\) Thus,
\[i_{v_1} d\omega = L_{v_1} \omega - d(i_{v_1} \omega),\]
so that
\[d\omega(v_1, v_2) = i_{v_1} d\omega(v_2) = (L_{v_1} \omega)v_2 - v_2(\omega(v_1))\]
\[= L_{v_1} (\omega(v_2)) - \omega(L_{v_1} v_2) - v_2(\omega(v_1))\]
\[= v_1(\omega(v_2)) - \omega([v_1, v_2]) - v_2(\omega(v_1)).\]

Remark. Note that we can identify \(\Lambda^k T^*_x M\) with \((\Lambda^k T^*_x M)^*\) as follows: given \(\omega \in \Lambda^k T^*_x M\), we define
\[\omega(v_1, v_2, \ldots, v_k) = i_{v_k} i_{v_{k-1}} \cdots i_{v_1} \omega \in \Lambda^k T^*_x M \in \mathbb{R}\]
for \(v_1, \ldots, v_k \in T_x M.\)

Remark. We defined
\[L_v \omega = \left. \frac{d}{dt} \phi_t^* \omega \right|_{t=0}.\]

It is more generally true that
\[\left. \frac{d}{dt} \phi_t^* (\omega) \right|_{t=t_0} = \phi_{t_0}^* (L_v \omega).\]

Note that we haven’t said what kind of thing \(\omega\) is; it only makes sense for certain natural bundles. But this works in particular when \(\omega\) is some vector field \(w\). Then \(\phi_t\) is the flow associated to \(v\); also, let \(\psi_s\) be the flow associated to \(w\). Then
\[[v, w] = 0 \iff L_v(w) = 0 \iff \frac{d}{dt}(\phi_t^* w) = 0 \text{ for all } t \iff \phi_t^* w = w \text{ for all } t.\]

Assume that \([v, w] = 0\), so that \(\phi_t^* w = w\), and thus \(\phi_t\) (integral curve of \(w\)) is an integral curve of \(w\). This is equivalent to saying that \(\phi_t \circ \psi_s = \psi_s \circ \phi_t\). Thus, we have established the following:

Corollary. \([v, w] = 0 \iff \phi_t \circ \psi_s = \psi_s \circ \phi_t\)

Theorem (Ehresmann’s theorem). Let \(f : X \to Y\) be a proper submersion. Then \(f\) is a \(C^\infty\) fiber bundle.

We will give a second proof of this using flows.
Proof. Let \(X \to \mathbb{R}^m \) be an embedding of \(X \) in Euclidean space. Thus, for any \(x \in X \), \(T_x X \) gets an inner product. We have a short exact sequence

\[
0 \to T_x f^{-1}(f(x)) \to T_x X \xrightarrow{f'(x)} T_{f(x)}Y \to 0
\]

where we have used that \(f \) is a submersion. Let \(W(x) = T_x f^{-1}(f(x))^\perp \), so that we get a subbundle \(W \) of \(TX \) such that \(f'(x)(W(x)) = T_{f(x)}Y \).

Assume that \(Y = (-1, 1)^n \subset \mathbb{R}^n \). Then \(\frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n} \) are vector fields on \(Y \), i.e. sections of \(TY \), and so we get corresponding sections \(w_1, \ldots, w_n \) of \(W \) such that \(f'(x)(w_i) = \frac{\partial}{\partial y_i} \) for all \(i \). Note that even though the \(\frac{\partial}{\partial y_i} \) all commute with each other, we need not have that the \(w_i \) all commute with each other.

Let \(\phi_t^i \) denote the flow associated to \(w_i \). One sees that for any compact \(K \subseteq X \), there is an \(\epsilon > 0 \) such that \(\phi_{t_1}^1 \cdots \phi_{t_n}^n(x) \) are defined for all \(x \in K \) and \(t_i \in (-\epsilon, \epsilon) \).

Let \(K = f^{-1}(0) \), which is compact because \(f \) is proper. Then we have a commutative diagram

\[
\begin{array}{ccc}
K \times (-\epsilon, \epsilon)^n & \xrightarrow{h} & X \\
\downarrow{p_2} & & \downarrow{f} \\
(-\epsilon, \epsilon)^n & \longrightarrow & (-1, 1)^n
\end{array}
\]

and \(h \) induces isomorphisms on tangent spaces at \(K \times 0 \), so it must do so in a neighborhood of \(K \times 0 \). Because \(p_2 \) is proper, it follows that by shrinking \(\epsilon \) if necessary, we may assume that \(h \) induces isomorphisms on tangent spaces everywhere, and that \(h \) is one-to-one. Then \(h \) is then a diffeomorphism onto its image \(U \), which is open in \(X \). We want to show that \(U = X \); thus, let \(F = X \setminus U \). Then \(F \) is closed in \(X \), and because \(f \) is proper, we have that \(f(F) \) is a closed set (we’re using Hausdorffness here). Then \(F \cap f^{-1}(0) = \emptyset \), because \(0 \notin f(F) \), and now replace \((-1, 1)^n \) by the complement of \(f(F) \).

We can now state a refinement of Ehresmann’s theorem.

Theorem. Let \(f : X \to Y \) be a proper submersion, and let \(A \subseteq X \) be a closed \(C^\infty \) submanifold. Assume also that \(f|_A : A \to Y \) is a submersion. Then \(f : (X, A) \to Y \) is a fiber-bundle pair.
Lecture 7 (2013-03-01)

Last time, we were discussing the Ehresmann theorem for fiber bundles of pairs. There was just one thing left to prove.

In the notation of the last lecture, we had C^∞ manifolds X and Y, a closed C^∞ submanifold $A \subseteq X$, and a C^∞ map $f : X \to Y$ such that both f and $f|_A$ are submersions. (Note that for the Ehresmann theorem, we would assume properness, but for now we just want to extract the subbundle W which did not need that hypothesis.)

Proposition. There exists a subbundle $W \subset TX$ such that

1. For all $x \in X$, the derivative $f'(x)|_{W(x)} : W(x) \to T_{f(x)}Y$ is an isomorphism.
2. For all $x \in A$, we have $W(x) \subset TA$ (both interpreted as subspaces of T_xX).

This proposition implies the Ehresmann theorem for pairs.

The secret code phrase here is that

$$H^1(\text{any sheaf of modules over the sheaf of } C^\infty \text{ functions}) = 0$$

Proof. For the first step, note that the problem makes sense on any open $U \subset X$, so it will suffice to show that W exists locally, i.e. that for all $x \in X$, there is a neighborhood $U(x)$ where the theorem holds.

If $x \notin A$, then we’re done, so suppose that $x \in A$. WLOG, we can take $X = \mathbb{R}^n$, $A = \{ x \in \mathbb{R}^n \mid x_{m+1} = \cdots = x_n = 0 \}$, and $f : X \to Y$ the map $f(x_1, \ldots, x_n) = (x_1, \ldots, x_r)$ where $r \leq m$. In this case, we can just take W to be the span of $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_r}$.

Now to Step 2; we want to providing an algebraic description of W. This is essential. We can’t add subbundles, but we can add / do other linear things to sections of bundles.

For each $x \in X$, let $s(x)$ be the inverse of the isomorphism described in (i); in other words, we want to demonstrate the existence of a map of bundles $s : f^*TY \to TX$ such that

1. $f'(x) \circ s(x) : T_{f(x)}Y \to T_{f(x)}Y$ is the identity for all $x \in X$
2. For all $x \in A$, we have $s(x)(T_{f(x)}Y) \subseteq T_xA$.

Step 3: Suppose that s_1 and s_2, both maps $f^*TY \to TX$, satisfy conditions (i’) and (ii’). Then $h = s_2 - s_1 : f^*TY \to TX$ satisfies

1. $f'(x) \circ h(x) = 0$ for all $x \in X$
2. $h(x)(T_{f(x)}Y) \subseteq T_xA$ for all $x \in A$.

so that

$$Z = \{ h : f^*TY \to TX \mid (i’’) \text{ and } (ii’’)) \text{ hold} \}$$

is a module over the ring of C^∞ functions on X. Note that this is a characterization; in other words, if s_1 satisfies (i’) and (ii’), then $s_1 + h$ satisfies them if and only if $h \in Z$.

As a corollary of Step 3, we see that if s_1, \ldots, s_m are as in Step 2, and $\varphi_1, \ldots, \varphi_m : W \to \mathbb{R}$ are a C^∞ partition of unity (so that $\sum \varphi_i = 1$), then $\sum \varphi_i s_i$ also satisfies the conditions of step 2, because

$$\sum_{i \in Z} \varphi_i s_i = \sum_{i=1}^m \varphi_i (s_i - s_1) + \left(\sum_{i=1}^m \varphi_i \right) s_1.$$

Last edited 2013-03-01

Math 318 - Geometry/Topology 2

Page 14

Lecture 7
Now we come to the proof of the proposition itself. Let \(\{U_\lambda\}_{\lambda \in \Lambda} \) be an open cover equipped with \(s_\lambda : f^*TY|_{U_\lambda} \rightarrow TX|_{U_\lambda} \) all satisfying (i') and (ii'). There is a partition of unity \(\varphi_\lambda \) subordinate to \(U_\lambda \); then \(\varphi_\lambda s_\lambda \) (originally defined only on \(U_\lambda \)) can be extended by 0 to a \(C^\infty \) map \(\varphi_\lambda s_\lambda : f^*TY \rightarrow TX \).

Now let \(s = \sum \varphi_\lambda s_\lambda : f^*TY \rightarrow TX \); the corollary above implies that \(s \) satisfies (i') and (ii').

Existence of inner products on vector bundles

Given a \(C^\infty \) vector bundle \(f : V \rightarrow M \), we want to construct a map \(B : V \times_M V \rightarrow \mathbb{R} \) such that \(B : V(x) \times V(x) \rightarrow \mathbb{R} \) is a positive definite, symmetric, bilinear form.

If \(W \) is a vector space, and \(B : W \times W \rightarrow \mathbb{R} \) is symmetric and bilinear, we say that \(B \) is positive semi-definite if \(B(w,w) \geq 0 \) for all \(w \in W \), and positive definite if it is positive semi-definite and \(B(w,w) = 0 \) implies \(w = 0 \).

Proof. Step 1. Assume that \(V|_U \) is a trivial bundle, i.e. there exist sections \(s_1, \ldots, s_k \) of \(V|_U \) such that \(s_1(x), \ldots, s_k(x) \) form a basis for \(V(x) \) for all \(x \in U \).

Define \(B_U(s_i(x), s_j(x)) = \delta_{ij}(x) \). Given an open cover \(\mathcal{U} \), and a partition of unity \(\varphi_U \) subordinate to \(\mathcal{U} \), then \(\sum \varphi_U B_U \) is a symmetric bilinear positive semi-definite form. But for any \(x \in X \), if \(v \in V(x) \) is non-zero, then there is some \(U \) such that \(\varphi_U(x) > 0 \), so that \(x \in U \) and moreover \(B_U(v,v) > 0 \), hence \(B(v,v) \geq \varphi_U(x)B_U(v,v) > 0 \). Thus, this is in fact positive definite.

Existence of connections on a vector bundle

A good reference for this is Milnor’s *Morse Theory*.

Let \(p : V \rightarrow M \) be a \(C^\infty \) vector bundle. A connection is essentially a way of taking a derivative of a section \(s \) of a vector bundle \(v \) with respect to a vector field on \(M \).

Suppose that \(x \in U \) and that \(V|_U \) is trivial, and that \(s_1, \ldots, s_k \) are sections of \(V|_U \) that give a basis for \(V(x) \) for each \(x \in U \). For any \(v \in T_xM \), we define

\[
v \left(\sum f_i s_i \right) = \sum v(f_i) s_i.
\]

A connection, or a covariant derivative, \(\nabla \) on \(V \) is a map taking in a vector field \(v \) on \(M \), and a section \(s \) of \(V \), and outputting \(\nabla_v s \), another section of \(V \). We also require that a connection satisfy certain properties: for any \(C^\infty \) map \(f : M \rightarrow \mathbb{R} \),

1. \(\nabla_v (s_1 + s_2) = \nabla_v (s_1) + \nabla_v (s_2) \)
2. \(\nabla_v (fs) = v(f) s + f \nabla_v (s) \) (this is the Leibniz rule)
3. \(\nabla_{fv}(s) = f \nabla_v (s) \)

We could have stated this definition sheaf-theoretically, which is after all necessary to do it on analytic manifolds, but for \(C^\infty \) manifolds, they are equivalent.

We want to show that any \(C^\infty \) vector bundle \(V \rightarrow M \) has a connection.

The argument is the same as we’ve been doing. Step 1 is to show that they exist locally (this is just the trivial connection). Step 2 is to take two connections \(\nabla^1, \nabla^2 \) and define \(h \) via \(\nabla^2 = \nabla^1 + h \), i.e. \(\nabla^2_v(s) = \nabla^1_v(s) + h_v(s) \) for all sections \(s \), and note that \(h \) satisfies three properties: \(h \) is additive in \(s

\[
h_v(fs) = fh_v(s) \]
for all C^∞ functions f, and $h_{fv}(s) = fh_v(s)$.

Then, if ∇^1 is a connection and $\nabla^2 = \nabla^1 + h$, then ∇^2 is a connection if and only if h satisfies the above three properties. The collection of all such h can be thought of being comprised of precisely the sections of $\text{Hom}(TM, \text{End}(V))$, which is a module over C^∞ functions $M \to \mathbb{R}$.

We then conclude by using a partition of unity and noting that $\sum \varphi_U \nabla_U$ gives a connection.

Let’s examine connections in a basic case; let M be an open interval (a, b). By the properties of a connection, all we have to look at is $\nabla_{\frac{d}{ds}}(s)$. In particular, what is

$$\{\text{sections } s : M \to V \mid \nabla_{\frac{d}{ds}}(s) = 0\} \ ?$$

We know that V is trivial because we’re working on an interval; choose a specific trivialization, so that we will think of sections as maps $s : (a, b) \to \mathbb{R}^k$. Define vectors of C^∞ functions m_i by

$$\nabla_{\frac{d}{ds}}(e_i) = m_i,$$

where

$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix},$$

the 1 being in the ith position. Then