Geom/Top: Homework 4 (due Monday, 10/29/12)

1. Read Farb notes.

2. Read along in Hatcher.

1. Let X be a connected space which is a finite union of polygons $\{P_i\}$ with the property that the intersection of any two polygons is either empty, a common edge, or a common vertex. Let V, E and F denote the total number of vertices, edges, and faces of these polygons (so e.g. a face is precisely the interior of some polygon).
 (a) Prove that $\chi(X) = V - E + F$.
 (b) The space X is called a regular polytope if all the P_i have the same number r of edges, if each edge in X lies in exactly two faces, and if each vertex in X lies in some fixed number s of faces. Prove that there are precisely five regular polytopes homeomorphic to S^2.
 (c) What are the possibilities for r and s when X is homeomorphic to the torus T^2?

2. Let X be any finite, connected Δ-complex. Prove that $f_* : H_0(X) \rightarrow H_0(X)$ is the identity homomorphism for any continuous map $f : X \rightarrow X$.

3. Let Σ_g denote the closed, connected, genus $g \geq 0$ surface.
 (a) For each $g \neq 1$, find a homeomorphism $f : \Sigma_g \rightarrow \Sigma_g$ with no fixed point.
 (b) Prove that for $g \neq 1$ any homeomorphism $f : \Sigma_g \rightarrow \Sigma_g$ has a periodic point, i.e. some power $f^n, n > 0$, has a fixed point.

4. Let G be a path-connected, compact topological group. That is, G is a group and also a compact topological space, such that the maps $G \times G \rightarrow G$ with $(a, b) \mapsto ab$ and $G \rightarrow G$ with $g \mapsto g^{-1}$ are continuous. Assume that G has some Δ-complex structure.
 (a) For any $g \in G$, let $L_g : G \rightarrow G$ be “left translation by g”, i.e. $L_g(h) = gh$. Prove that L_g is homotopic to the identity.
 (b) Conclude that $\chi(G) = 0$.
 (c) Prove that $S^{2n}, n > 0$ cannot be given the structure of a topological group.
 (d) Prove that the only compact surface which is a topological group is the torus; in particular rule out the Klein bottle. [Warning: I am not 100% sure the Klein bottle part can be solved at this point.]

5. Give an example of a finite Δ-complex X and a continuous self-map $f : X \rightarrow X$ such that f has a fixed point but the Lefschetz number $\Lambda(f) = 0$. Thus the converse of the Lefschetz Fixed Point Theorem does not hold.
6. Vector fields \(\{ V_i \} \) on \(S^n \) are **linearly independent** if for each \(z \in S^n \) the vectors \(\{ V_i(z) \} \) are linearly independent in the vector space \(TS^n \).

(a) Recall that in class we found a nonvanishing vector field on \(S^{2n+1} \). Adapt this construction to give \(3 \) linearly independent nonvanishing vector fields on \(S^{4n+3} \).

(b) Construct \(7 \) linearly independent vector fields on \(S^7 \).

(c) Generalize these constructions to produce the maximal number of possible linearly independent vector fields on \(S^n \) for each \(n \), where the upper bound is given by Adams's Theorem.

7. Think of \(S^n \) as the set of unit vectors \(v \) in \(\mathbb{R}^{n+1} \). Consider the question: when does there exist a continuous map \(f : S^m \to S^n \) satisfying \(f(-v) = -f(v) \), that is, preserving the property of points being antipodal to each other. Note that when \(m < n \) this is trivial: just let \(f : S^m \to S^n \) be a standard inclusion.

Theorem (Borsuk-Ulam): When \(m > n \) there does not exist any continuous map \(f : S^m \to S^n \) satisfying \(f(-v) = -f(v) \) for all \(v \in S^m \). Assume for now this theorem.

(a) Prove that any continuous map \(f : S^n \to \mathbb{R}^n \) there exists \(v \in S^n \) with \(f(v) = f(-v) \). This statement is the more frequently stated "Borsuk-Ulam Theorem". Deduce that \(S^n \) does not embed in \(\mathbb{R}^n \).

(b) Use (a) to prove invariance of dimension: \(\mathbb{R}^m \approx \mathbb{R}^n \) implies \(m = n \).

(c) Prove the following: Let \(\{ X_1, \ldots, X_{n+1} \} \) be a covering of \(S^n, n > 0 \) by closed sets. Then some \(X_i \) contains a pair of antipodal points. [Hint: Consider the map \(f : S^n \to \mathbb{R}^n \) given by

\[
f(v) = (d(v, X_1), \ldots, d(v, X_n))
\]

where \(d(v, X_i) \) denotes the closest distance in \(S^n \) from \(v \) to some any point in the set \(X_i \).]

8. Recall the Fundamental Theorem of Algebra: Every polynomial \(P(x) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0 \) with \(a_i \in \mathbb{C} \) has a zero in \(\mathbb{C} \). Prove this theorem as follows: Let \(S_r \) denote the circle of radius \(r \) in \(\mathbb{C} \). Suppose \(P \) has no zero inside \(S_r \). Then we can think of the restriction \(f = P|_{S_r} \) of \(P \) to \(S_r \) as a continuous map \(f : S_r \to \mathbb{C} - \{0\} \).

(a) Prove that \(f_* : H_1(S_r) \to H_1(\mathbb{C} - \{0\}) \) is trivial.

(b) Prove that for \(r \) sufficiently large, \(f \) is homotopic to to the map \(z \mapsto z^n \). [Hint: Let \(F_t(z) = z^n + t(a_{n-1}z^{n-1} + \cdots + a_0) \).]

(c) Derive a contradiction.

Extra Credit Problems
1. Let X be any finite Δ-complex with $\chi(X) \neq 0$. Prove that any homeomorphism $f : X \to X$ has a periodic point, i.e. some power $f^n, n > 0$, has a fixed point.

2. Prove that if M is a closed manifold that admits a nonvanishing vector field, then $\chi(M) = 0$.