
Analysis III
Home Assignment 4

Subhadip Chowdhury

Problem 4.1

For a lattice Λ = αZ ⊕ βZ ⊆ C, let λ = 1
α

where wlog α 6= 0. Then Λ is equivalent to the lattice

generated by {1, β
α
} which is identical to the lattice generated by {1,−β

α
}. Thus Λ is equivalent to the

lattice generated by {1, η} where η =
∣∣β
α

∣∣.
Suppose {1, α} and {1, β} generate two equivalent lattices Λ1 and Λ2 i.e. there exists λ ∈ C∗ such

that λΛ1 = Λ2. Hence {λ, αλ} and {1, β} are two different basis for the same free Z-module, and so
there are a, b, c, d ∈ Z such that

λ

(
1
α

)
=

(
a b
c d

)(
1
β

)
= A

(
1
β

)
and det(A) = ±1 since A−1 is also an integer matrix. Since a, b, c, d ∈ Z and the conjugation automor-
phism fixes Z, we have (

λ λ

λα λα

)
=

(
a b
c d

)(
1 1

β β

)
Taking determinants we have

|λ|2(α− α) = det(A)(β − β)

Since α, β ∈ H, we get that (α−α)

(β−β is positive. Hence we must have det(A) = +1. Then from the first

equality, we have

c+ dβ = α(a+ bβ)⇒ α =
c+ dβ

a+ bβ
⇒ β =

−aα + c

bα− d
with (−a)(−d)− bc = detA = 1. Conversely, if {1, η1} is a basis generating a lattice Λ; and we can find
integers a, b, c, d with ad− bc = 1 then,

η2 =
aη1 + b

cη1 + d
⇒
(
a b
c d

)(
η1

1

)
= (cη1 + d)

(
η2

1

)
and hence (η1, 1) and ((cη1 +d)η2, (cη1 +d) form the same lattice. Hence (η1, 1) and (η2, 1) are equivalent.

By the above paragraphs it is evident that each equivalent class of lattices has one with a basis of the
form {1, η} with η ∈ H and {1, η1}, {1, η2} are equivalent iff η1 and η2 are PSL(2,Z) conjugate. Hence
there is exactly one representative from each equivalence class of lattices in the fundamental domain of
PSL(2,Z) on H. Hence there is a unique η ∈ R such that {1, η} is equivalent to Λ.
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We calculated that the torsion elements of PSL(2,Z) are Id and the conjugates of S and ST where

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
. Thus ST =

(
0 −1
1 1

)
. So the elliptic torsion elements are conjugates

of S and ST . The fixed point of S in R is given by

Sz = z ⇒ 1

−z
= z ⇒ z = i

and the fixed point of ST in R is given by

STz = z ⇒ −1

z + 1
= z ⇒ z2 + z + 1 = 0⇒ z = eiπ/3

The first lattice is the lattice generated by {1, i} i.e. the integer lattice in C. The second one
corresponds to the lattice generated by {1, eiπ3 }.

Problem 4.2

We will use Einstein Summation notation throughout. By definition for a Euclidean metric g, we have
g(∇f,X) = df(X) = X(f) for any X ∈ Γ(TM). Thus in local coordinates we get

∇f = gij∂id∂j

Similarly the divergence is defined by

(div(X))ν = d(iXν)

where ν =
√
| det g|dx1 . . . dxn is the volume form. Then for X = X i∂i, we have

(divX)
√
| det g|dx1 . . . dxn = d

(
iXi∂i

√
| det g|dx1 . . . dxn

)
= d

(
X i
√
| det g|(−1)i−1dx1 . . . d̂xi . . . dxn

)
= ∂i(X

i
√
| det g|)dx1 . . . dxn

Thus

div(X) =
1√
| det g|

∂i(X
i
√
| det g|)

And consequently,

∆f = div(∇f) = div(gij∂if∂j)

=
1√
| det g|

∂i

(√
| det g|gij∂if

)
i.e.

∆ =
1√
| det g|

∂i

(√
| det g|gij∂i

)
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Now suppose we have two metrics g1 = ρg2 as in the problem. Suppose the corresponding Laplacians
are denoted by ∆1 and ∆2. Let dimM = d. Then we can compute

∆1 =
1√

ρd| det g2|
∂i

(√
ρd| det g2|ρ−1gij2 ∂j

)
=

ρ−d/2√
| det g2|

∂i

(
ρ
d
2
−1
√
| det g2|gij2 ∂j

)
=

ρ−d/2√
| det g2|

(
d

2
− 1

)
ρ
d
2
−2 ∂ρ

∂xi

(√
| det g2|gij2 ∂j

)
+

ρ−d/2√
| det g2|

ρ
d
2
−1
(√
| det g2|gij2 ∂j

)
=

1

ρ
∆2 +

ρ−1√
| det g2|

(
d

2
− 1

)
∂ρ

∂xi

(√
| det g2|gij2 ∂j

)
Thus in the case M is a surface we have d = 2, hence

∆1 =
1

ρ
∆2

If dim(M) = d > 2, then clearly the two Laplacians are not proportional unless the second term is zero.
�� Note that ∂ = 1

2
(∂x − i∂y) and ∂ = 1

2
(∂x + i∂y). Hence ∂∂ = 1

4
(∂xx + ∂yy). On the other hand

note that being harmonic is a local property and it is invariant under a conformal map as proved in first
part. Since the metric on ϕ is defined to be the pullback of the Euclidean metric on C via conformal
maps ϕ, we get that ∆f = 0 iff ∆(f ◦ ϕ−1) = 0 for every chart ϕ. But for a metric on X of constant

curvature we may consider g = Id so that ∆ = 1√
| det g|

∂i

(√
| det g|gij∂i

)
= ∂ii. Thus

∆f = 0⇔ ∆(f ◦ ϕ−1) = (∂xx + ∂yy)(f ◦ ϕ−1) = 0⇔ 1

4
(∂xx + ∂yy)(f ◦ ϕ−1) = 0⇔ ∂∂(f ◦ ϕ−1) = 0

Problem 4.3

Given a compact hyperbolic surface X, let I(X) be the group of isometries of X. We want to show that
I(X) is finite.

First we prove that I(X) is compact metric space where the metric is the usual one, defined as

d(f, g) = sup
x∈X

d(f(x), g(x)

for isometries f, g ∈ I(X). Let fn be a sequence of isometries in I(X). Since X is compact, it is separable
and hence by a diagonal argument, we can find a convergent subsequence {fni}i∈N. Suppose fni converge
to f . We want to show that f ∈ I(X). Since for each i > 0, d(fni(x), fni(y)) = d(x, y); taking limit as i
tends to ∞ we get d(f(x), f(y)) = d(x, y). Thus f is distance preserving. Now considering the sequence
of isometries {f−1

ni
} we find that they have a further subsequence converging to a some g which is also

distance preserving. Now for any point x ∈ X, considering a small enough ball around f(x), we can
easily see that f−1

ni
(f(x))→ x⇒ g(f(x)) = x. Thus g = f−1. So f is a surjective distance preserving

map on X proving that it is an isometry. Thus I(X) is compact.
Next we want to show that I(X) is discrete. Given f ∈ I(X), suppose we have a converging sequence

{gn} in I(X) such that gn → f uniformly. Recall that for smooth maps f, g from a compact smooth
manifold Z to a compact manifold Y , there exists δY such that dY (f, g) < δY implies f is smoothly
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homotopic to g. Thus in our case we know that there exists δX such that for sufficiently large n,
dX(gn, f) < δX , and hence there exists N such that gn is smoothly homotopic to f for all n > N .

Fix any such gn homotopic to f via H(s, t) so that H(0, t) = gn(t) and H(1, t) = f(t). Since H is
smooth, the length of the path γt0 = H(s, t0) : [0, 1] → X is a smooth function of t0 ∈ X. Since X is
compact, this implies max

t∈X
{length(γt)} is bounded above.

We know that X is a hyperbolic space; hence D is a covering space. We choose lifts g̃n, f̃ of gn and f
and lift the homotopy H to a homotopy H̃ of g̃n and f̃ . Then clearly the length of H̃(s, .) is same as
length of H(s, .) and hence dD(g̃n, f̃) is bounded above as well.
Thus we have two isometries g̃n, f̃ of D which are bounded distance apart. Consider a sequence of points
{xi} in D converging to a pint x on the boundary. Then since d(g̃n(xi), f̃(xi)) is bounded (independent
of xi), taking limit we find that d(g̃n(x), f̃(x)) is bounded. But hyperbolic distance between any two
points on the boundary is infinite unless they are identical. Thus g̃n and f̃ are equal on the boundary of
D. Since any isometry of D can be specified by its action on the boundary (in particular by the fixed
points, which determine the axis of isometry) , we get that gn ≡ f for large enough n. Thus we have
proved that f has a neighbourhood in I(X) such that it does not contain any other point from I(X), i.e
I(X) is discrete.

Thus I(X) is compact and discrete; and hence finite.

Problem 4.4

4.9

(a) Given any element g =

(
a b
b a

)
∈ G, we have aa − bb = 1, hence G ⊆ SL(2,C). Also it

is obvious that for g, h ∈ G, gh−1 ∈ G. Hence G is a subgroup of SL(2,C). Now we define a map
T : G→ Aut(D) by

Tg =
az + b

bz + a
=

a2z + ab

|a|2 + baz
=

a2

|a|2
z + b

a

1 + b
a
z

Hence Tg is a rotaion composed with a fractional linear transformation of the form z−w
1−wz where |w| =

|b/a| < 1. Hence Tg ∈ Aut(D).
So to prove that G/± Id ∼= Aut(D), all it remains is to check that any automorphism ϕ ∈ Aut(D) arises
via T upto the sign of a, b. Let

ϕ−1(0) = − b
a

where |a|2 − |b|2 = 1

Note that a, b can be uniquely defined this way upto the sign of b/a. Then

T

(
a b
b a

)
=

a2

|a|2
ϕ

Since a2

|a|2 is also in Aut(D), we are done.
The second method is just mechanical verification , so we skip it.
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(b) We give S2 ∼= C∞ the metric defined in problem 1.4. Then a conformal homeomorphism T
of S2 is a rigid motion iff it preserves the metric i.e. d(z, w) = d(Tz, Tw). In other words,

2|z − w|√
(1 + |z|2)(1 + |w|2)

=
2|Tz − Tw|√

(1 + |Tz|2)(1 + |Tw|2)

Taking w → z, we then have
1 + |Tz|2 = (1 + |z|2)|T ′z|

Putting Tz = az+b
cz+d

we get

|cz + d|2 + |az + b|2 = (1 + |z|2)|ad− bc|

⇒ cd+ ab = 0, |c|2 + |a|2 = |ad− bc| = |d|2 + |b|2 = 1⇒ a = d, c = −b

as required.

(c) Recall that we proved in Algebra-I home assignments the homomorphism

Q : SU(2)→ SO(3)

sending
TA → Φ−1 ◦ TA ◦ Φ

where TA is the linear transformation associated to A and Φ is the stereographic projection; is an onto
map with kernel given by ±Id. Hence we further have

G ∼= SU(2) ∼= SO(3)/± I

We also proved that the unit quarternion cos θ + sin θ(x1i + x2j + x3k) where x2
1 + x2

2 + x2
3 = 1 is a

rotaion of R3 around the axis (x1, x2, x3) by angle 2θ; when R3 is thought to be spanned by i, j, k.

3.3

(a) Suppose we choose k such that the real valued harmonic function ũ(z) = u(z)− k log |z| has
a harmonic conjugate on A. Indeed if v is a harmonic conjugate of A then

∇v = (−ũy, ũx) =

(
−uy + k

y

x2 + y2
, ux − k

x

x2 + y2

)
Then ∆v = 0 implies by Green’s theorem,

0 =

∫∫
|z|≤r

(ũyy + ũxx)dxdy = −k
∮
|z|=r

(
− y

x2 + y2
dx+

x

x2 + y2
dy

)
+

∮
|z|=r

(−uydx+ uxdy)

= − k
r2

∫ 2π

0

r2dθ +

∮
|z|=r

(−uydx+ uxdy)

⇒ k =
1

2π

∮
|z|=r

(−uydx+ uxdy)
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So for this choice of k ∈ R we can find an analytic function f ∈ H(A), such that

u(z)− k log |z| = <(f(z)) ∀z ∈ A

�� We have from above equation,∫ 2π

0

u(reiθ)dθ − k
∫ 2π

0

log |r|dθ = <
(∫ 2π

0

f(reiθ)dθ

)

⇒
∫ 2π

0

u(reiθ)dθ − 2kπ log(r) = <

 ∫
|z|=r

f(z)
1

iz
dz



⇒
∫ 2π

0

u(reiθ)dθ − k log r = <

 1

2πi

∫
|z|=r

f(z)

z
dz


which is independent of r by Cauchy integral formula. Hence taking r → 0, we find that LHS is bounded
iff k = 0. Then putting

u(0) =
1

2π

∫ 2π

0

u(reiθ)dθ

we see that the mean value theorem is satisfied and thus u extends to a harmonic function on |z| < r2.

(b) By part (a), around each point w ∈ Ω there is a small enough neighbourhood Uw ⊆ Ω such
that u(z)− log |z − z0| is harmonic and bounded on Uw and hence we can find a holomorphic function
fw ∈ H(Uw) such that

u(z)− log |z − z0| − 0 log |z| = u(z)− log |z − z0| = <(fw(z))

for z ∈ Uw. Note that if Uw1 ∩ Uw2 6= ∅, then by monodromy theorem, fw1 ≡ fw2 . Since Ω is simply
connected, we can thus find a single holomorphic function g ∈ H(Ω) such that

u(z)− log |z − z0| = <(g(z))

Define f(z) = (z − z0)eg(z). Then note that

log(|f(z)|) = log |z − z0|+ log |e<(g(z))ei=(g(z))| = log |z − z0|+ <(g(z)) = u(z)

Observe that by definition f is clearly one-one on some disk around z0. Thus all the conditions required
are satisfied by this choice of f .

3.4

(a) Since w =constant implies v =constant, v can thought of as a function of w. Let v = ϕ(w).
Then

0 = ∆(v) = ϕ′′(w)‖∇w‖2 ⇒ ϕ′′(w) = 0⇒ v = ϕ(w) = aw + b

for some a, b ∈ C. Here a 6= 0 since ∇v 6= 0.
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(b) Suppose u′ is the harmonic conjugate of u in a simply connected disc around z0 in Ω. Then
by Cauchy Riemann equations, we know that the level curves of u and u′ are perpendicular to each
other. WLOG we may assume u′(z0) = 0. Now again by Cauchy Riemann equations we know that

∇u 6= 0⇔ ∇u′ 6= 0

Hence we get that the level curves of v and u′ coincide and both are non-degenerate. Hence by part (a),
we can find a, b ∈ C, a 6= 0 such that

v = au′ + b⇒ v(z0) = b⇒ v(z) = au′(z) + v(z0)

Since ‖∇u(z0)‖ = ‖∇u′(z0)‖, taking gradient on both sides we get, ‖∇v(z0)‖ = |a|‖∇u(z0)‖ ⇒ a = ±1.
Hence v = ±u′ + b implying u± iv is harmonic in Ω.

3.5

(i) Suppose u(z) > M for some z ∈ Ω. Thus L = sup
Ω
u is obtained in Ω. Note that clearly for all

z ∈ ∂Ω, u(z) ≤M < L⇒ sup
Ω
u is achieved in Ω◦. Suppose z0 ∈ Ω◦ is such that u(z0) = L. There exists

ε > 0 such that B(z0, ε) ⊆ Ω. Then considering the boundary of B(z0, ε) we get by SMVP,

L = u(z0) ≤ 1

2π

∫ 2π

0

u(z0 + εeiθ)dθ ≤ L

Hence equality holds everywhere and so u ≡ L on B(z0, ε). Thus the set U = {z ∈ Ω : u(z) = L} is open.
On the other hand clearly by definition the set is closed since u is continuous. Hence U = Ω implying
that

sup
ζ∈∂Ω

lim sup
z→ζ,z∈Ω

u(z) = L > M

which is a contradiction. Hence u(z) ≤M for all z ∈ Ω.
Note that if equality occurs i.e. for some z ∈ Ω, u(z) = M , then also by the same argument as above

u must be locally constant and hence by connectedness it is globally constant.

(ii) Note that u−h ∈ sh(K) since h satisfies MVP. Hence applying part (i) to u−h we find that

sup
z∈∂K

(u− h)(z) ≤ 0⇒ u− h ≤ 0∀z ∈ K

Also by part (i), equality at any point in K implies equality at all points in K.

(iii) ui ∈ sh(Ω)⇒ ui satisfies SMVP ⇒

max(u1, . . . , uN)(z0) ≤ 1

2π

∫ 2π

0

un(z0 + reiθ)dθ ≤ 1

2π

∫ 2π

0

max(u1, . . . , uN)(z0 + reiθ)dθ

where max(u1(z0), . . . , uN(z0)) = un(z0). Since max(u1, . . . , uN) is also continuous, it is subharmonic.
The proof that

∑N
j=1 cjuj is continuous and satisfies SMVP is trivial. Hence

∑N
j=1 cjuj ∈ sh(Ω).
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(iv) By Jensen’s inequality,

1

2π

∫ 2π

0

ϕ ◦ h(z0 + reiθ)dθ ≥ ϕ

(∫ 2π

0

h(z0 + reiθ)dθ

)
= ϕ(h(z0))

since h is harmonic. Hence ϕ ◦ h ∈ sh(Ω).By the same argument applied to v ∈ sh(Ω), we also get
ϕ ◦ v ∈ sh(Ω).

(v) For any point z0 ∈ Ω, consider a small enough disc K = B(z0, ε) of radius ε around z0 in Ω

so that u is bounded on K and take any harmonic h ∈ C(K) with u ≤ h on ∂K. Then

0 ≤ 1

2π

∫ 2π

0

(u− h)(z0 + reiθ)dθ =
1

2π

∫ 2π

0

u(z0 + reiθ)dθ − h(z0)

⇒ u(z0) ≤ h(z0) ≤
∫ 2π

0

u(z0 + reiθ)dθ

So u ∈ sh(Ω).

(vi) Note that by the proof of (i), it is evident that local SMVP implies that the maximum
principle. Hence (ii) follows. Then by (v), we get that u is subharmonic.

(vii) Suppose we have a harmonic function h on the open disc D = {0 ≤ |z| < r2} with h = u
on ∂D. Then by (ii), we have u ≤ h on D. In particular,∫ 2π

0

u(z0 + r1e
iθ)dθ ≤

∫ 2π

0

h(z0 + r1e
iθ)dθ = h(z0) =

∫ 2π

0

h(z0 + r2e
iθ)dθ =

∫ 2π

0

u(z0 + r2e
iθ)dθ

It remains to prove that for any z0 ∈ Ω and 0 < r < dist(z0, ∂Ω) we have∫ 2π

0

u(z0 + reiθ)dθ > −∞

Suppose on the contrary, there is some r = r0 such that the integral is not finite. Then by monotonicity,
for all 0 < r < r0, we have,∫ 2π

0

u(z0 + reiθ)dθ = −∞ ∀ 0 < r < r0 ⇒
∫∫

|z−z0|<r0

u(x, y)dxdy = −∞

Now u ∈ sh(Ω) ⇒ u 6≡ −∞. Note that this implies that given any r > 0 and any z1 ∈ Ω, there is at
least one z ∈ B(z1, r) such that u(z) 6= −∞ since otherwise, by SMVP u(z1) = −∞ and hence u ≡ −∞
on B(z1, r) or in particular on Ω which is not the case. Thus the points {z ∈ Ω : u(z) > −∞} is dense
in Ω. It follows from SMVP that there exists w aritrarily close to z0 such that

−∞ < u(w)

∫ 2π

0

u(w + reiθ)dθ ∀r ∈ (0, dist(w, ∂Ω))

Choose r1 such that B(w, r1) ⊆ B(z0, r0) and r1 < dist(w, ∂Ω). Then we have

−∞ =

∫∫
|z−z0|<r0

u(x, y)dxdy ≥
∫∫

|z−w|<r1

u(x, y)dxdy > −∞

Contradiction!!
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(viii) Suppose u ∈ sh(Ω). Note that by (vii), we have

0 ≤ d

dr

∫ 2π

0

u(z0 + reiθ)dθ =
1

r

∮
|z−z0|=r

du

dr
rdθ =

1

r

∮
|z−z0|=r

du

dn
ds =

1

r

∫∫
|z−z0|≤r

∆udxdy

where the last equality follows from divergence theorem. Since z0 and r are arbitrary, it follows that
∆u ≥ 0. Conversely if ∆u ≥ 0, then

d

dr

∫ 2π

0

u(z0 + reiθ)dθ ≥ 0⇒
∫ 2π

0

u(z0 + reiθ)dθ ≥ lim
r→0+

∫ 2π

0

u(z0 + reiθ)dθ = u(z0)⇒ u ∈ sh(Ω)

(x) Suppose u ∈ C(Ω) satisfies MVP. Then u also satisfies SMVP. Hence u is subharmonic.
Given z0 ∈ Ω, let D = B(z0, r) ⊆ Ω Now consider a harmonic function h such that h = u on ∂D. Then
by MVP we get u(z0) = h(z0). But then by the equality condition of (ii), we have u = h on D. Thus u
is harmonic.

Suppose un → u uniformly on compact subsetes of Ω. Take any point z0 ∈ Ω and let D = B(z0, r) ⊆ Ω.
Then given ε > 0, there exists N ∈ N such that −ε < u(z)− un(z) < ε for all z ∈ D. Then we have∫ 2π

0

u(z0 + reiθ)dθ ≤ ε+

∫ 2π

0

un(z0 + reiθ)dθ = ε+ un(z0)

Taking limit we have, ∫ 2π

0

u(z0 + reiθ)dθ ≤ ε+ u(z0)

Similarly considering −un → −u we get∫ 2π

0

u(z0 + reiθ)dθ ≥ −ε+ u(z0)

Combining both inequalities and taking ε→ 0, we get u satisfies MVP. Then by above, we get that u is
harmonic.

Problem 4.5

Recall that for the Weierstrass function ℘ doubly periodic with respect to a lattice Λ, ℘ is naturally
defined on the complex torus T = C/Λ. This torus may be embedded in the complex projective plane by
means of the map

z 7→ (1, ℘(z), ℘′(z))

. We know there are constants g2, g3 such that

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

Note that this relation is in the form of an elliptic curve. Thus we get an elliptic curve corresponding to
a complex torus. Note that above map is a group isomorphism, carrying the natural group structure of
the torus into the projective plane. It is also an isomorphism of Riemann surfaces, so topologically, a
given elliptic curve looks like a torus.
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If the lattice Λ is related by multiplication by a non-zero complex number c to a lattice cΛ , then the
corresponding curves are isomorphic since scaling does not change the curve. Thus we get a bijection
between

Lattices/Equivalence defined in Problem 1 ↔ Elliptic curves/Isomorphism class

We also proved that there is an isomorphism between

Lattices/Equivalence defined in Problem 1 ↔ H/PSL(2,Z)

Thus we have an isomorphism

Elliptic curves/Isomorphism class↔ H/PSL(2,Z)

Now recall that given any lattice Λ there is η ∈ H such that {1, η} generates a lattice in the same
equivalence class. We define the meromorphic function j : H→ C which is invariant under action of
PSL(2,Z) by

j(τ) = 1728
g3

2

∆

where the modular discriminant ∆ is
∆ = g3

2 − 27g2
3

where g2, g3 correspond to Λ via ℘. The function defined above is called the j−invariant. It can be
shown that The function j(τ) when restricted to the fundamental region of PSL(2,Z) takes on every
value in the complex numbers exactly once. Thus using the bijection of the fundamental region and
Elliptic curves/Isomorphism class, we find that the j−invariant gives a bijection between isomorphism
classes of elliptic curves over C and the complex numbers.
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