
Algebra III
Home Assignment 4

Subhadip Chowdhury

Problem 11

� We will denote the quadratic form q(x, y) = ax2 + bxy + cy2 by the ordered tuple (a, b, c). We are
given that d is a negative squarefree integer congruent to 1 mod 4. Since K = Q[

√
d], we have

OK = R = Z +
1 +
√
d

2
Z

Let us define

Fd = The set of integral quadratic forms of discriminant d modulo SL2(Z)-equivalence

and let F+
d denote those elements of Fd represented by a positive definite quadratic form(i.e. a form

(a, b, c) with a > 0, since d < 0).

Define the function Φ : Fd → Cl(R) by

Φ(a, b, c) = aZ +
b−
√
d

2
Z

and define Ψ : Cl(R)→ Fd by

Ψ(a) =
N(αx+ βy)

N(a)

where {α, β} is a Z−basis of a such that

αβ′ − βα′√
d

> 0 (?)

Here α′ denotes the Galois conjugate of α in K.

We claim that Φ and Ψ are well defined and induce bijections from F+
d to Cl(R).
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� To check Φ is well defined: First of all we check that if b2 − 4ac = d ≡ 1 mod 4, then b is odd,
so

b−
√
d

2
∈ Z +

1 +
√
d

2
Z = OK

Now if

(
A B
U V

)
, an element of SL2(Z) acts on (a, b, c) then the quantity τ = −b+

√
d

2a
becomes

τ ′ =
V τ −B
−Uτ + A

and a becomes
a′ = aN(−Uτ + A)

Now in Cl(R),

a′(Z + (−τ ′)Z) =
aN(−Uτ + A)

−Uτ + A
(Z + (−τ)Z) = a(Z + (−τ)Z)

since aN(−Uτ+A)
−Uτ+A ∈ K×. Thus Φ is well defined.

� To check Ψ is well defined: Say a basis {α, β} of I, an ideal of R is correctly ordered if (?) is
satisfied. We prove the following lemma:

Lemma 1: Any two correctly ordered bases of an ideal I are equivalent by an element in SL2(Z), and
conversely.

Proof: Suppose {α, β} and {γ, δ} are two correctly ordered bases for an ideal I. Because these are
two different basis for the same free Z-module, there are a, b, c, d ∈ Z such that(

α
β

)
=

(
a b
c d

)(
γ
δ

)
= A

(
γ
δ

)
and det(A) = ±1. Since a, b, c, d ∈ Z and the conjugation automorphism fixes Z, we have(

α α′

β β′

)
=

(
a b
c d

)(
γ γ′

δ δ′

)
Taking determinants we have

αβ′ − βα′ = det(A)(γδ′ − δγ′) (†)
Since {α, β} and {γ, δ} are correctly oriented, we must have det(A) = +1. So A ∈ SL2(Z).

Conversely, if A ∈ SL2(Z) and {γ, δ} is a correctly oriented basis then,(
a b
c d

)(
γ γ′

δ δ′

)
=

(
α α′

β β′

)
and by (†), {α, β} is also correctly oriented. �

Lemma 2: Let a be an ideal of OK and Let {α, β} be a basis of a. Since d ≡ 1 mod 4, the absolute
discriminant of K is d. Then

det

(
α α′

β β′

)2

= dN(a)2
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Proof: Let {γ, δ} be a basis for OK . Since α and β can be written as a Z−linear combination of γ
and δ there is a 2× 2 matrix A such that

A

(
γ
δ

)
=

(
α
β

)
We have

det

(
α α′

β β′

)2

= det

(
A

(
γ γ′

δ δ′

))2

= det(A)2d = N(a)2.d

�

We next prove that Ψ(a) ∈ F+
d . Let {α, β} be a correctly ordered basis of a and

N(αx+ βy) = (αx+ βy)(α′x+ β′y)

= αα′x2 + (αβ′ + βα′)xy + ββ′y2

= Ax2 +Bxy + Cy2

The coefficients A,B,C are integers since they are norms and traces. We claim that in fact A,B,C ∈
(N(a)). Note that if α ∈ a, then N(α) ∈ (N(a)). Thus A = N(α) ∈ (N(a)). Similarly C = N(β) ∈
(N(a)) and (N(α+β)−N(α−β)) ∈ (N(a))⇒ B ∈ (N(a)). LetA = aN(a), B = bN(a), C = cN(a). Since
A,N(a) are both in Z and R = OK , we see that a ∈ Z. Likewise b, c ∈ Z. Thus Ψ(a) = ax2 + bxy + cz2

has coefficients in Z. Now

b2 − 4ac =
B2 − 4AC

N(a)2
=

(αβ′ − βα′)2

N(a)2
= d

Thus Ψ(a) ∈ F+
d .

Note that by lemma 1, Ψ is independent of the choice of basis for a Choosing a different basis amounts

to changing the basis from

(
α
β

)
to

(
γ
δ

)
obtained by multiplying

(
α
β

)
by an element A =

(
a b
c d

)
of

SL2(Z); so that
N((aα + bβ)x+ (cα + dβ)y) = N(α(ax+ cy) + β(bx+ dy)

and hence the new quadratic form is a SL2(Z) conjugate of the old quadratic form. So in F+
d , they are

equal.

Thus Ψ does not depend on the choice of basis. Also if a and b are in the same equivalence class.
Then there exists µ, λ ∈ OK such that

µa = λb and N(µλ) > 0

Then {γ, δ} forms a basis of b where µα = λγ and µβ = λδ. Also µµ′N(a) = N(µa) = N(λb) = λλ′N(b).
Hence the ratio of N(γx+ δy) and N(b) is equal to Ψ(a). Thus Ψ is constant on the equivalence class of
a. Thus we have proved that Ψ is well defined.
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� To show Φ and Ψ are inverse maps: Suppose we have a quadratic form (a, b, c) with b2−4ac = d.
We want to show that

Ψ ◦ Φ(a, b, c) = (a, b, c) in F+
d

Now it is easy to check that {a, b−
√
d

2
} is correctly ordered if a > 0. Then by definition,

Ψ

(
aZ +

b−
√
d

2
Z

)
=

N(ax+ b−
√
d

2
y)

N
(
aZ + b−

√
d

2
Z
)

=
a2x2 + abxy + b2−d

4
y2

(a
√
d)/
√
d

[We used Lemma 2]

= ax2 + bxy + cy2

Thus
Ψ ◦ Φ = IdF+

d

Next suppose we have a fractional ideal a. Then if {α, β} is a correctly ordered basis for a then as
shown above Ψ(a) = ax2 + bxy + cy2 with b2 − 4ac = d and a = A/N(a) etc. So

Φ(a, b, c) =
αα′

N(a)
Z +

(αβ′ + βα′)/N(a)−
√
d

2
Z

=
√
d

αα′

αβ′ − βα′
Z +
√
d

αβ′+βα′

αβ′−βα′ − 1

2
Z

=
√
d

αα′

αβ′ − βα′
Z +
√
d

βα′

αβ′ − βα′
Z

Hence
(αβ′ − βα′)Φ(a, b, c) = (

√
dα′)a

Hence we can find suitable µ, λ ∈ OK such that µΦ(a, b, c) = λa. So in Cl(R), Φ(a, b, c) = a implying

Φ ◦Ψ = IdCl(R)

Thus we have proved that Φ and Ψ are well defined and induce bijections from F+
d to Cl(R).

�� We have to prove two things. First, that every SL2(Z)−equivalence class of positive definite
quadratic form of discriminant d < 0 contains at least one reduced form, and second that this reduced
form is the only one in the equivalence class.

We first prove that there is a reduced form in every class. Let C be an equivalence class of positive
definite quadratic forms of discriminant d. Let (a, b, c) be an element of C such that a is minimal
(amongst elements of C). Note that for any such form we have c ≥ a, since (a, b, c) is equivalent to

(c,−b, a) using the matrix

(
0 −1
1 0

)
∈ SL2(Z). Applying the element

(
1 k
0 1

)
∈ SL2(Z) to (a, b, c) for

a suitably chosen integer k (precisely, k = b(a − b)/2ac) results in a form (a′, b′, c′) with a′ = a and
b′ ∈ (−a′, a′]. Since a′ = a is minimal, we have just as above that a′ ≤ c′, hence (a′, b′, c′) is reduced
except in the case when a′ = c′ and b′ < 0. In that case, changing (a′, b′, c′) to (c′′, b′′, a′′) = (c′,−b′, a′)
results in an equivalent form with b′′ > 0, so that (c′′, b′′, a′′) is reduced.
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Next suppose (a, b, c) is a reduced form. We will now establish that (a, b, c) is the only reduced form in
its equivalence class. First, we check that a is minimal amongst all forms equivalent to (a, b, c). Indeed,
every other a′ has the form a′ = ap2 + bpr + cr2 with (p, r) = 1. The identities

ap2 + bpr + cr2 = ap2
(

1 +
br

ap

)
= ap2 + cr2

(
1 +

bp

cr

)
then impll our claim since |b| ≤ a ≤ c(using first identity if r/p < 1 and the second otherwise). Thus any
other reduced form (a′, b′, c′) equivalent to (a, b, c) ahs a = a′. But the same identity implies that the only

forms equivalent to (a, b, c) with a′ = a are obtained by applying a transformation of the form

(
1 k
0 1

)
(corresponding to p = 1, r = 0). Thus b′ = b+ 2ak for some k. Since a = a′, we have b, b′ ∈ (−a, a], so
k = 0. Finally

c′ =
(b′)2 − d

4a
=
b2 − d

4a
= c

So (a, b, c) = (a′, b′, c′).

��� The class number hd = Cl(R) for d ≡ 1 mod 4 and d < 0 is equal to the number of equivalence
classes of positive definite quadratic forms of discriminant d which is same as the number of reduced
positive definite quadratic form of discriminant d. Note that if a form (a, b, c) is reduced then 0 ≤ |b| ≤
a ≤ c.Then d = b2 − 4ac implies

b2 ≤ a2 ≤ ac⇒ d ≤ −3ac⇒ 3ac ≤ −d

� For d = −3, 3ac ≤ 3⇒ ac ≤ 1⇒ ac = 1 = a = c⇒ b2 = 1⇒ b = 1 since a = c⇒ b ≥ 0. Thus
there is only one possibility implying hd = 1.

� For d = −7, 3ac ≤ 7⇒ ac ≤ 2⇒ ac = 1, 2. If ac = 1, then a = c = 1 and b2 = −3, not possible.
Hence ac = 2. Then b2 = 1⇒ b = 1. Thus |b| ≤ a ≤ c⇒ (a, b, c) = (1, 1, 2). So again hd = 1.

� For d = −11, 3ac ≤ 11 ⇒ ac = 1, 2, 3. If ac = 1, 2, b2 = −7,−3, not possible. If ac = 3,
b2 = 1⇒ b = 1⇒ (a, b, c) = (1, 1, 3). So hd = 1.

� For d = −15, 3ac ≤ 15 ⇒ ac = 1, 2, 3, 4, 5. If ac = 1, 2, 3 we get b2 < 0, not possible. If ac = 4,
b2 = 1⇒ (a, b, c) = (1, 1, 4) or (2, 1, 2). If ac = 5, b2 = 5, not possible. Thus hd = 2.

� For d = −19, 3ac ≤ 19 ⇒ ac = 1, 2, 3, 4, 5, 6. If ac = 1, 2, 3, 4, we have b2 < 0. For ac = 5,
b2 = 1⇒ (a, b, c) = (1, 1, 5). For ac = 6, b2 = 5, not possible. thus hd = 1.

Problem 12

For a commutative ring A and a ring extension B of A which is a finite free A-module:

B = Av1 ⊕ Av2 ⊕ . . .⊕ Avn

We write
discA(B) = discA(v1, . . . , vn) = det(TrB/A(vivj)) ∈ A
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In particular, the absolute discriminant of L is then discZ(OL). Note that given a number field L, there
is a place ν of L over p which is ramified is equivalent to the fact that the prime ideal factorization

(p) = pOL = pe11 · · · pegg . . . (1)

has some ei greater than 1. Now by Chinese remainder theorem and by (1),

OL/(p) ∼= OL/pe11 × . . .×OL/pegg (2)

If some ei is greater than 1, then the quotient ring OL/peii has a nonzero nilpotent element, so the
product ring (2) has a nonzero nilpotent element. If each ei equals 1, then OL/(p) is a product of finite
fields, and hence has no nonzero nilpotent elements. Thus p ramifies in L iff OL/(p) has a nonzero
nilpotent element.

Let degree of L over Q be n. Then the ring OL is a free rank-n free Z-module, say

OL =
n⊕
i=1

Zωi

Reducing both sides modulo p,

OL/(p) =
n⊕
i=1

(Z/pZ)ωi

where ωi = ωi mod p So OL/(p) is a ζ/pZ vector space of dimension n. We prove the following lemma:

Lemma 1: Choosing bases appropriately for OL and OL/(p)

discZ(OL) mod p = discZ/pZ(OL/(p))

Proof: Pick a Z-basis ω1, . . . , ωn for OL. Then writing ωi = ωi mod p, we get that ωi forms a Z/pZ
basis of OL/(p). So the multiplication matrix [mx] for any x ∈ OL w.r.t. {ωi} reduces modulo p to the
multiplication matrix [mx] for x on Ok/(p) w.r.t. {ωi}. Therefore,

Tr(OL/(p))/(Z/pZ)(ωiωj) = Tr(mωiωj
) = Tr(mωiωj

) mod p = TrOL/Z(ωiωj) mod p

Taking determinants on both sides gives our result. �

Thus by the lemma we have, p|discZ(OL) if and only if discZ(OL) ≡ 0 mod p if and only if
discZ/pZ(OL/(p)) = 0 in Z/pZ.

In (2), each factor OL/peii is a Z/pZ vector space since p ∈ peii . So we can write

discZ/pZ(OL/(p)) =

g∏
i=1

discZ/pZ(OL/peii )

Therefore we need to show that for any prime p and prime-power ideal pe such that pe|(p) we have

discZ/pZ(OL/pe) = 0 ∈ Z/pZ⇐⇒ e > 1
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� Suppose e > 1. Then any x ∈ p − pe is a nonzero nilpotent element in OL/pe. Extend x to a
Z/pZ-basis of OL/pe, say {x = x1, x2, . . . , xn}. Let us denote Tr(OL/pe)/(Z/pZ) by Tr. The first column of
the matrix [Tr(xixj)] contains the numbers Tr(xix). We claim that these traces are all 0. Indeed all the
xix are nilpotent. Hence the linear transformation mxix on OL/pe is nilpotent. Thus all the eigenvalues
are zero. Hence Tr(xix) = 0. Since one column of [Tr(xixj)] is zero, the determinant is zero as well.
Hence discZ/pZ(OL/pe) = 0.

� Suppose e = 1. Then OL/pe = OL/p is a finite field of characteristic p. Suppose, on contrary to
what we have to prove, discZ/pZ(OL/p) = 0. Note that this condition is independent of the basis. Since
OL/p is a field, this means the function Tr : OL/p → Z/pZ is identically zero. On the other hand
Z/pZ is a finite field, hence OL/p is separable. Let #(OL/p) = pr. Then for any element t ∈ OL/p, the
conjugates of t under different embeddings of OL/p ∼= Fpr in closure of Z/pZ ∼= Fp are given by images
of t under powers of the Frobenius automorphism. Thus

Tr(t) = t+ tp + tp
2

+ . . .+ tp
r−1

Since this polynomial has degree less than the size of OL/p, it cannot be identically zero on all of OL/p.
Contradiction!!

Problem 13

We will prove that there are only finitely many fields K/Q of degree n and discriminant d. Note that the
discriminant of the field extension K(

√
−1)/Q differs from the discriminant of K/Q only by a constant

factor. So it is enough to prove that there exists only finitely many fields K/Q of degree n containing√
−1 with a given discriminant d. Such a field K has only complex embeddings; σ : K → C, total

n = 2r embeddings. Choose any one of them,τ . Consider the convex, centrally symmetric open subset of
Cn given by

U =
{

(zσ) ∈ Cn
∣∣∣|=(zτ )| < C

√
d,<(zτ ) < 1, |zσ| < 1 for σ 6= τ, τ

}
where C is an arbitrarily big constant which depends only on n. For a convenient choice of C, the
volume of U will satisfy

vol(U) > 2n
√
d = 2nvol(OK)

where vol(OK) is the volume of a fundamental mesh of the lattice obtained by embedding OK in Cn. By
Minkowski’s lattice point theorem, we can then find an α ∈ OK , α 6= 0, such that

|=(τα)| < C
√
d, |<(τα)| < 1, |σα| < 1 ∀σ 6= τ, τ (?)

Note that NK/Q(α) =
∏

σ |σ(α)| ≥ 1 implies |τ(α)| > 1; thus =(τ(α)) 6= 0 so that the conjugates τ(α)
and τ(α) of α have to be distinct. Since |σ(α)| < 1 for σ 6= τ, τ , we have τ(α) 6= σ(α) for all σ 6= τ . This
implies K = Q(α), because if Q(α) ( K then the restriction τ |Q(α) would admit an extension σ different
from τ , contradicting τ(α) 6= σ(α).

Since the conjugates σ(α) of α are subject to condition (?), which only depends on d and n, the
coefficients of the minimal polynomial of α are bounded once d and n are fixed. Thus every field K/Q of
degree n and discriminant d is generated by one of the finitely many lattice points α in the bounded
region U . Therefore there are only finitely many fields with given degree and discriminant. Hence there
are only finitely many number fields of degree less than r and discriminant less than d for given integers
d, r ∈ N.
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