Algebra III Home Assignment 4 Subhadip Chowdhury

Problem 11

■ We will denote the quadratic form $q(x, y) = ax^2 + bxy + cy^2$ by the ordered tuple (a, b, c). We are given that d is a negative squarefree integer congruent to 1 mod 4. Since $K = \mathbb{Q}[\sqrt{d}]$, we have

$$\mathcal{O}_K = R = \mathbb{Z} + \frac{1 + \sqrt{d}}{2}\mathbb{Z}$$

Let us define

 \mathcal{F}_d = The set of integral quadratic forms of discriminant d modulo $SL_2(\mathbb{Z})$ -equivalence

and let \mathcal{F}_d^+ denote those elements of \mathcal{F}_d represented by a positive definite quadratic form(i.e. a form (a, b, c) with a > 0, since d < 0).

Define the function $\Phi : \mathcal{F}_d \to Cl(R)$ by

$$\Phi(a, b, c) = a\mathbb{Z} + \frac{b - \sqrt{d}}{2}\mathbb{Z}$$

and define $\Psi: Cl(R) \to \mathcal{F}_d$ by

$$\Psi(\mathfrak{a}) = \frac{N(\alpha x + \beta y)}{N(\mathfrak{a})}$$

where $\{\alpha, \beta\}$ is a \mathbb{Z} -basis of \mathfrak{a} such that

$$\frac{\alpha\beta' - \beta\alpha'}{\sqrt{d}} > 0 \tag{(\star)}$$

Here α' denotes the Galois conjugate of α in K.

We claim that Φ and Ψ are well defined and induce bijections from \mathcal{F}_d^+ to Cl(R).

• To check Φ is well defined: First of all we check that if $b^2 - 4ac = d \equiv 1 \mod 4$, then b is odd, so

$$\frac{b-\sqrt{d}}{2} \in \mathbb{Z} + \frac{1+\sqrt{d}}{2}\mathbb{Z} = \mathcal{O}_K$$

Now if $\begin{pmatrix} A & B \\ U & V \end{pmatrix}$, an element of $SL_2(\mathbb{Z})$ acts on (a, b, c) then the quantity $\tau = \frac{-b+\sqrt{d}}{2a}$ becomes

$$\tau' = \frac{V\tau - B}{-U\tau + A}$$

and a becomes

$$a' = aN(-U\tau + A)$$

Now in Cl(R),

$$a'(\mathbb{Z} + (-\tau')\mathbb{Z}) = \frac{aN(-U\tau + A)}{-U\tau + A}(\mathbb{Z} + (-\tau)\mathbb{Z}) = a(\mathbb{Z} + (-\tau)\mathbb{Z})$$

since $\frac{aN(-U\tau+A)}{-U\tau+A} \in K^{\times}$. Thus Φ is well defined.

• To check Ψ is well defined: Say a basis $\{\alpha, \beta\}$ of I, an ideal of R is correctly ordered if (\star) is satisfied. We prove the following lemma:

Lemma 1: Any two *correctly ordered* bases of an ideal I are equivalent by an element in $SL_2(\mathbb{Z})$, and conversely.

Proof: Suppose $\{\alpha, \beta\}$ and $\{\gamma, \delta\}$ are two *correctly ordered* bases for an ideal *I*. Because these are two different basis for the same free \mathbb{Z} -module, there are $a, b, c, d \in \mathbb{Z}$ such that

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \gamma \\ \delta \end{pmatrix} = A \begin{pmatrix} \gamma \\ \delta \end{pmatrix}$$

and $det(A) = \pm 1$. Since $a, b, c, d \in \mathbb{Z}$ and the conjugation automorphism fixes \mathbb{Z} , we have

$$\begin{pmatrix} \alpha & \alpha' \\ \beta & \beta' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \gamma & \gamma' \\ \delta & \delta' \end{pmatrix}$$

Taking determinants we have

$$\alpha\beta' - \beta\alpha' = \det(A)(\gamma\delta' - \delta\gamma') \tag{\dagger}$$

Since $\{\alpha, \beta\}$ and $\{\gamma, \delta\}$ are correctly oriented, we must have $\det(A) = +1$. So $A \in SL_2(\mathbb{Z})$.

Conversely, if $A \in SL_2(\mathbb{Z})$ and $\{\gamma, \delta\}$ is a correctly oriented basis then,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \gamma & \gamma' \\ \delta & \delta' \end{pmatrix} = \begin{pmatrix} \alpha & \alpha' \\ \beta & \beta' \end{pmatrix}$$

and by (\dagger) , $\{\alpha, \beta\}$ is also correctly oriented.

Lemma 2: Let \mathfrak{a} be an ideal of \mathcal{O}_K and Let $\{\alpha, \beta\}$ be a basis of \mathfrak{a} . Since $d \equiv 1 \mod 4$, the absolute discriminant of K is d. Then

$$\det \begin{pmatrix} \alpha & \alpha' \\ \beta & \beta' \end{pmatrix}^2 = dN(\mathfrak{a})^2$$

Proof: Let $\{\gamma, \delta\}$ be a basis for \mathcal{O}_K . Since α and β can be written as a \mathbb{Z} -linear combination of γ and δ there is a 2 × 2 matrix A such that

$$A\begin{pmatrix}\gamma\\\delta\end{pmatrix} = \begin{pmatrix}\alpha\\\beta\end{pmatrix}$$

We have

$$\det \begin{pmatrix} \alpha & \alpha' \\ \beta & \beta' \end{pmatrix}^2 = \det \left(A \begin{pmatrix} \gamma & \gamma' \\ \delta & \delta' \end{pmatrix} \right)^2 = \det(A)^2 d = N(\mathfrak{a})^2 . d$$

We next prove that $\Psi(\mathfrak{a}) \in \mathcal{F}_d^+$. Let $\{\alpha, \beta\}$ be a correctly ordered basis of \mathfrak{a} and

$$N(\alpha x + \beta y) = (\alpha x + \beta y)(\alpha' x + \beta' y)$$

= $\alpha \alpha' x^2 + (\alpha \beta' + \beta \alpha') xy + \beta \beta' y^2$
= $Ax^2 + Bxy + Cy^2$

The coefficients A, B, C are integers since they are norms and traces. We claim that in fact $A, B, C \in (N(\mathfrak{a}))$. Note that if $\alpha \in \mathfrak{a}$, then $N(\alpha) \in (N(\mathfrak{a}))$. Thus $A = N(\alpha) \in (N(\mathfrak{a}))$. Similarly $C = N(\beta) \in (N(\mathfrak{a}))$ and $(N(\alpha+\beta)-N(\alpha-\beta)) \in (N(\mathfrak{a})) \Rightarrow B \in (N(\mathfrak{a}))$. Let $A = aN(\mathfrak{a}), B = bN(\mathfrak{a}), C = cN(\mathfrak{a})$. Since $A, N(\mathfrak{a})$ are both in \mathbb{Z} and $R = \mathcal{O}_K$, we see that $a \in \mathbb{Z}$. Likewise $b, c \in \mathbb{Z}$. Thus $\Psi(\mathfrak{a}) = ax^2 + bxy + cz^2$ has coefficients in \mathbb{Z} . Now

$$b^2 - 4ac = \frac{B^2 - 4AC}{N(\mathfrak{a})^2} = \frac{(\alpha\beta' - \beta\alpha')^2}{N(\mathfrak{a})^2} = d$$

Thus $\Psi(\mathfrak{a}) \in \mathcal{F}_d^+$.

Note that by lemma 1, Ψ is independent of the choice of basis for **a** Choosing a different basis amounts to changing the basis from $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ to $\begin{pmatrix} \gamma \\ \delta \end{pmatrix}$ obtained by multiplying $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ by an element $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of $SL_2(\mathbb{Z})$; so that

$$N((a\alpha + b\beta)x + (c\alpha + d\beta)y) = N(\alpha(ax + cy) + \beta(bx + dy))$$

and hence the new quadratic form is a $SL_2(\mathbb{Z})$ conjugate of the old quadratic form. So in \mathcal{F}_d^+ , they are equal.

Thus Ψ does not depend on the choice of basis. Also if \mathfrak{a} and \mathfrak{b} are in the same equivalence class. Then there exists $\mu, \lambda \in \mathcal{O}_K$ such that

$$\mu \mathfrak{a} = \lambda \mathfrak{b} \text{ and } N(\mu \lambda) > 0$$

Then $\{\gamma, \delta\}$ forms a basis of \mathfrak{b} where $\mu \alpha = \lambda \gamma$ and $\mu \beta = \lambda \delta$. Also $\mu \mu' N(\mathfrak{a}) = N(\mu \mathfrak{a}) = N(\lambda \mathfrak{b}) = \lambda \lambda' N(\mathfrak{b})$. Hence the ratio of $N(\gamma x + \delta y)$ and $N(\mathfrak{b})$ is equal to $\Psi(\mathfrak{a})$. Thus Ψ is constant on the equivalence class of \mathfrak{a} . Thus we have proved that Ψ is well defined. • To show Φ and Ψ are inverse maps: Suppose we have a quadratic form (a, b, c) with $b^2 - 4ac = d$. We want to show that

$$\Psi \circ \Phi(a, b, c) = (a, b, c) \text{ in } \mathcal{F}_d^+$$

Now it is easy to check that $\{a, \frac{b-\sqrt{d}}{2}\}$ is correctly ordered if a > 0. Then by definition,

$$\Psi\left(a\mathbb{Z} + \frac{b - \sqrt{d}}{2}\mathbb{Z}\right) = \frac{N(ax + \frac{b - \sqrt{d}}{2}y)}{N\left(a\mathbb{Z} + \frac{b - \sqrt{d}}{2}\mathbb{Z}\right)}$$
$$= \frac{a^2x^2 + abxy + \frac{b^2 - d}{4}y^2}{(a\sqrt{d})/\sqrt{d}} \qquad [\text{We used Lemma 2}]$$
$$= ax^2 + bxy + cy^2$$

Thus

 $\Psi \circ \Phi = Id_{\mathcal{F}_{I}^{+}}$

Next suppose we have a fractional ideal \mathfrak{a} . Then if $\{\alpha, \beta\}$ is a correctly ordered basis for \mathfrak{a} then as shown above $\Psi(\mathfrak{a}) = ax^2 + bxy + cy^2$ with $b^2 - 4ac = d$ and $a = A/N(\mathfrak{a})$ etc. So

$$\begin{split} \Phi(a,b,c) &= \frac{\alpha \alpha'}{N(\mathfrak{a})} \mathbb{Z} + \frac{(\alpha \beta' + \beta \alpha')/N(\mathfrak{a}) - \sqrt{d}}{2} \mathbb{Z} \\ &= \sqrt{d} \frac{\alpha \alpha'}{\alpha \beta' - \beta \alpha'} \mathbb{Z} + \sqrt{d} \frac{\frac{\alpha \beta' + \beta \alpha'}{\alpha \beta' - \beta \alpha'} - 1}{2} \mathbb{Z} \\ &= \sqrt{d} \frac{\alpha \alpha'}{\alpha \beta' - \beta \alpha'} \mathbb{Z} + \sqrt{d} \frac{\beta \alpha'}{\alpha \beta' - \beta \alpha'} \mathbb{Z} \end{split}$$

Hence

$$(\alpha\beta' - \beta\alpha')\Phi(a, b, c) = (\sqrt{d\alpha'})\mathfrak{a}$$

Hence we can find suitable $\mu, \lambda \in \mathcal{O}_K$ such that $\mu \Phi(a, b, c) = \lambda \mathfrak{a}$. So in $Cl(R), \Phi(a, b, c) = \mathfrak{a}$ implying

 $\Phi \circ \Psi = Id_{Cl(R)}$

Thus we have proved that Φ and Ψ are well defined and induce bijections from \mathcal{F}_d^+ to Cl(R).

We have to prove two things. First, that every $SL_2(\mathbb{Z})$ -equivalence class of positive definite quadratic form of discriminant d < 0 contains at least one reduced form, and second that this reduced form is the only one in the equivalence class.

We first prove that there is a reduced form in every class. Let \mathcal{C} be an equivalence class of positive definite quadratic forms of discriminant d. Let (a, b, c) be an element of \mathcal{C} such that a is minimal (amongst elements of \mathcal{C}). Note that for any such form we have $c \geq a$, since (a, b, c) is equivalent to (c, -b, a) using the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in SL_2(\mathbb{Z})$. Applying the element $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$ to (a, b, c) for a suitably chosen integer k (precisely, $k = \lfloor (a - b)/2a \rfloor$) results in a form (a', b', c') with a' = a and $b' \in (-a', a']$. Since a' = a is minimal, we have just as above that $a' \leq c'$, hence (a', b', c') is reduced except in the case when a' = c' and b' < 0. In that case, changing (a', b', c') to (c'', b'', a'') = (c', -b', a') results in an equivalent form with b'' > 0, so that (c'', b'', a'') is reduced.

Next suppose (a, b, c) is a reduced form. We will now establish that (a, b, c) is the only reduced form in its equivalence class. First, we check that a is minimal amongst all forms equivalent to (a, b, c). Indeed, every other a' has the form $a' = ap^2 + bpr + cr^2$ with (p, r) = 1. The identities

$$ap^{2} + bpr + cr^{2} = ap^{2}\left(1 + \frac{br}{ap}\right) = ap^{2} + cr^{2}\left(1 + \frac{bp}{cr}\right)$$

then implied our claim since $|b| \le a \le c$ (using first identity if r/p < 1 and the second otherwise). Thus any other reduced form (a', b', c') equivalent to (a, b, c) and a = a'. But the same identity implies that the only forms equivalent to (a, b, c) with a' = a are obtained by applying a transformation of the form $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ (corresponding to p = 1, r = 0). Thus b' = b + 2ak for some k. Since a = a', we have $b, b' \in (-a, a]$, so k = 0. Finally

$$c' = \frac{(b')^2 - d}{4a} = \frac{b^2 - d}{4a} = c$$

So (a, b, c) = (a', b', c').

The class number $h_d = Cl(R)$ for $d \equiv 1 \mod 4$ and d < 0 is equal to the number of equivalence classes of positive definite quadratic forms of discriminant d which is same as the number of reduced positive definite quadratic form of discriminant d. Note that if a form (a, b, c) is reduced then $0 \leq |b| \leq a \leq c$. Then $d = b^2 - 4ac$ implies

$$b^2 \le a^2 \le ac \Rightarrow d \le -3ac \Rightarrow 3ac \le -d$$

- For d = -3, $3ac \le 3 \Rightarrow ac \le 1 \Rightarrow ac = 1 = a = c \Rightarrow b^2 = 1 \Rightarrow b = 1$ since $a = c \Rightarrow b \ge 0$. Thus there is only one possibility implying $h_d = 1$.
- For d = -7, $3ac \le 7 \Rightarrow ac \le 2 \Rightarrow ac = 1, 2$. If ac = 1, then a = c = 1 and $b^2 = -3$, not possible. Hence ac = 2. Then $b^2 = 1 \Rightarrow b = 1$. Thus $|b| \le a \le c \Rightarrow (a, b, c) = (1, 1, 2)$. So again $h_d = 1$.
- For d = -11, $3ac \le 11 \Rightarrow ac = 1, 2, 3$. If $ac = 1, 2, b^2 = -7, -3$, not possible. If ac = 3, $b^2 = 1 \Rightarrow b = 1 \Rightarrow (a, b, c) = (1, 1, 3)$. So $h_d = 1$.
- For d = -15, $3ac \le 15 \Rightarrow ac = 1, 2, 3, 4, 5$. If ac = 1, 2, 3 we get $b^2 < 0$, not possible. If ac = 4, $b^2 = 1 \Rightarrow (a, b, c) = (1, 1, 4)$ or (2, 1, 2). If ac = 5, $b^2 = 5$, not possible. Thus $h_d = 2$.
- For d = -19, $3ac \le 19 \Rightarrow ac = 1, 2, 3, 4, 5, 6$. If ac = 1, 2, 3, 4, we have $b^2 < 0$. For ac = 5, $b^2 = 1 \Rightarrow (a, b, c) = (1, 1, 5)$. For ac = 6, $b^2 = 5$, not possible. thus $h_d = 1$.

Problem 12

For a commutative ring A and a ring extension B of A which is a finite free A-module:

$$B = Av_1 \oplus Av_2 \oplus \ldots \oplus Av_n$$

We write

$$\operatorname{disc}_{A}(B) = \operatorname{disc}_{A}(v_{1}, \dots, v_{n}) = \operatorname{det}(\operatorname{Tr}_{B/A}(v_{i}v_{j})) \in A$$

In particular, the absolute discriminant of L is then $\operatorname{disc}_{\mathbb{Z}}(\mathcal{O}_L)$. Note that given a number field L, there is a place ν of L over p which is ramified is equivalent to the fact that the prime ideal factorization

$$(p) = p\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_q^{e_g} \dots$$
(1)

has some e_i greater than 1. Now by Chinese remainder theorem and by (1),

$$\mathcal{O}_L/(p) \cong \mathcal{O}_L/\mathfrak{p}_1^{e_1} \times \ldots \times \mathcal{O}_L/\mathfrak{p}_q^{e_g}$$
⁽²⁾

If some e_i is greater than 1, then the quotient ring $\mathcal{O}_L/\mathfrak{p}_i^{e_i}$ has a nonzero nilpotent element, so the product ring (2) has a nonzero nilpotent element. If each e_i equals 1, then $\mathcal{O}_L/(p)$ is a product of finite fields, and hence has no nonzero nilpotent elements. Thus p ramifies in L iff $\mathcal{O}_L/(p)$ has a nonzero nilpotent element.

Let degree of L over \mathbb{Q} be n. Then the ring \mathcal{O}_L is a free rank-n free \mathbb{Z} -module, say

$$\mathcal{O}_L = \bigoplus_{i=1}^n \mathbb{Z}\omega_i$$

Reducing both sides modulo p,

$$\mathcal{O}_L/(p) = \bigoplus_{i=1}^n (\mathbb{Z}/p\mathbb{Z})\overline{\omega}_i$$

where $\overline{\omega}_i = \omega_i \mod p$ So $\mathcal{O}_L/(p)$ is a $\zeta/p\mathbb{Z}$ vector space of dimension n. We prove the following lemma:

Lemma 1: Choosing bases appropriately for \mathcal{O}_L and $\mathcal{O}_L/(p)$

$$\operatorname{disc}_{\mathbb{Z}}(\mathcal{O}_L) \mod p = \operatorname{disc}_{\mathbb{Z}/p\mathbb{Z}}(\mathcal{O}_L/(p))$$

Proof: Pick a \mathbb{Z} -basis $\omega_1, \ldots, \omega_n$ for \mathcal{O}_L . Then writing $\overline{\omega}_i = \omega_i \mod p$, we get that $\overline{\omega}_i$ forms a $\mathbb{Z}/p\mathbb{Z}$ basis of $\mathcal{O}_L/(p)$. So the multiplication matrix $[m_x]$ for any $x \in \mathcal{O}_L$ w.r.t. $\{\omega_i\}$ reduces modulo p to the multiplication matrix $[m_{\overline{x}}]$ for \overline{x} on $\mathcal{O}_k/(p)$ w.r.t. $\{\overline{\omega}_i\}$. Therefore,

$$Tr_{(\mathcal{O}_L/(p))/(\mathbb{Z}/p\mathbb{Z})}(\overline{\omega_i\omega_j}) = Tr(m_{\overline{\omega_i\omega_j}}) = Tr(m_{\omega_i\omega_j}) \mod p = Tr_{\mathcal{O}_L/Z}(\omega_i\omega_j) \mod p$$

Taking determinants on both sides gives our result.

Thus by the lemma we have, $p|\operatorname{disc}_{\mathbb{Z}}(\mathcal{O}_L)$ if and only if $\operatorname{disc}_{\mathbb{Z}}(\mathcal{O}_L) \equiv 0 \mod p$ if and only if $\operatorname{disc}_{\mathbb{Z}/p\mathbb{Z}}(\mathcal{O}_L/(p)) = \overline{0} \operatorname{in} \mathbb{Z}/p\mathbb{Z}$.

In (2), each factor $\mathcal{O}_L/\mathfrak{p}_i^{e_i}$ is a $\mathbb{Z}/p\mathbb{Z}$ vector space since $p \in \mathfrak{p}_i^{e_i}$. So we can write

$$\operatorname{disc}_{\mathbb{Z}/p\mathbb{Z}}(\mathcal{O}_L/(p)) = \prod_{i=1}^g \operatorname{disc}_{\mathbb{Z}/p\mathbb{Z}}(\mathcal{O}_L/\mathfrak{p}_i^{e_i})$$

Therefore we need to show that for any prime p and prime-power ideal \mathbf{p}^e such that $\mathbf{p}^e|(p)$ we have

$$\operatorname{disc}_{\mathbb{Z}/p\mathbb{Z}}(\mathcal{O}_L/\mathfrak{p}^e) = \overline{0} \in \mathbb{Z}/p\mathbb{Z} \iff e > 1$$

♦ Suppose e > 1. Then any $x \in \mathfrak{p} - \mathfrak{p}^e$ is a nonzero nilpotent element in $\mathcal{O}_L/\mathfrak{p}^e$. Extend \overline{x} to a $\mathbb{Z}/p\mathbb{Z}$ -basis of $\mathcal{O}_L/\mathfrak{p}^e$, say { $\overline{x} = \overline{x}_1, \overline{x}_2, \ldots, \overline{x}_n$ }. Let us denote $Tr_{(\mathcal{O}_L/\mathfrak{p}^e)/(\mathbb{Z}/p\mathbb{Z})}$ by Tr. The first column of the matrix $[Tr(\overline{x}_i\overline{x}_j)]$ contains the numbers $Tr(\overline{x}_i\overline{x})$. We claim that these traces are all $\overline{0}$. Indeed all the $\overline{x}_i\overline{x}$ are nilpotent. Hence the linear transformation $m_{\overline{x}_i\overline{x}}$ on $\mathcal{O}_L/\mathfrak{p}^e$ is nilpotent. Thus all the eigenvalues are zero. Hence $Tr(\overline{x}_i\overline{x}) = \overline{0}$. Since one column of $[Tr(\overline{x}_i\overline{x}_j)]$ is zero, the determinant is zero as well. Hence disc_{\mathbb{Z}/p\mathbb{Z}}(\mathcal{O}_L/\mathfrak{p}^e) = \overline{0}.

♦ Suppose e = 1. Then $\mathcal{O}_L/\mathfrak{p}^e = \mathcal{O}_L/\mathfrak{p}$ is a finite field of characteristic p. Suppose, on contrary to what we have to prove, $\operatorname{disc}_{\mathbb{Z}/p\mathbb{Z}}(\mathcal{O}_L/\mathfrak{p}) = \overline{0}$. Note that this condition is independent of the basis. Since $\mathcal{O}_L/\mathfrak{p}$ is a field, this means the function $Tr : \mathcal{O}_L/\mathfrak{p} \to \mathbb{Z}/p\mathbb{Z}$ is identically zero. On the other hand $\mathbb{Z}/p\mathbb{Z}$ is a finite field, hence $\mathcal{O}_L/\mathfrak{p}$ is separable. Let $\#(\mathcal{O}_L/\mathfrak{p}) = p^r$. Then for any element $t \in \mathcal{O}_L/\mathfrak{p}$, the conjugates of t under different embeddings of $\mathcal{O}_L/\mathfrak{p} \cong \mathbb{F}_{p^r}$ in closure of $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{F}_p$ are given by images of t under powers of the Frobenius automorphism. Thus

$$Tr(t) = t + t^{p} + t^{p^{2}} + \ldots + t^{p^{r-1}}$$

Since this polynomial has degree less than the size of $\mathcal{O}_L/\mathfrak{p}$, it cannot be identically zero on all of $\mathcal{O}_L/\mathfrak{p}$. Contradiction!!

Problem 13

We will prove that there are only finitely many fields K/\mathbb{Q} of degree n and discriminant d. Note that the discriminant of the field extension $K(\sqrt{-1})/\mathbb{Q}$ differs from the discriminant of K/\mathbb{Q} only by a constant factor. So it is enough to prove that there exists only finitely many fields K/\mathbb{Q} of degree n containing $\sqrt{-1}$ with a given discriminant d. Such a field K has only complex embeddings; $\sigma : K \to \mathbb{C}$, total n = 2r embeddings. Choose any one of them, τ . Consider the convex, centrally symmetric open subset of \mathbb{C}^n given by

$$U = \left\{ (z_{\sigma}) \in \mathbb{C}^n \left| |\Im(z_{\tau})| < C\sqrt{d}, \Re(z_{\tau}) < 1, |z_{\sigma}| < 1 \text{ for } \sigma \neq \tau, \overline{\tau} \right\}$$

where C is an arbitrarily big constant which depends only on n. For a convenient choice of C, the volume of U will satisfy

$$vol(U) > 2^n \sqrt{d} = 2^n vol(\mathcal{O}_K)$$

where $vol(\mathcal{O}_K)$ is the volume of a fundamental mesh of the lattice obtained by embedding \mathcal{O}_K in \mathbb{C}^n . By Minkowski's lattice point theorem, we can then find an $\alpha \in \mathcal{O}_K$, $\alpha \neq 0$, such that

$$|\Im(\tau\alpha)| < C\sqrt{d}, \ |\Re(\tau\alpha)| < 1, \ |\sigma\alpha| < 1 \ \forall \sigma \neq \tau, \overline{\tau}$$
(*)

Note that $N_{K/\mathbb{Q}}(\alpha) = \prod_{\sigma} |\sigma(\alpha)| \ge 1$ implies $|\tau(\alpha)| > 1$; thus $\Im(\tau(\alpha)) \ne 0$ so that the conjugates $\tau(\alpha)$ and $\overline{\tau}(\alpha)$ of α have to be distinct. Since $|\sigma(\alpha)| < 1$ for $\sigma \ne \tau, \overline{\tau}$, we have $\tau(\alpha) \ne \sigma(\alpha)$ for all $\sigma \ne \tau$. This implies $K = \mathbb{Q}(\alpha)$, because if $\mathbb{Q}(\alpha) \subsetneq K$ then the restriction $\tau|_{\mathbb{Q}(\alpha)}$ would admit an extension σ different from τ , contradicting $\tau(\alpha) \ne \sigma(\alpha)$.

Since the conjugates $\sigma(\alpha)$ of α are subject to condition (\star) , which only depends on d and n, the coefficients of the minimal polynomial of α are bounded once d and n are fixed. Thus every field K/\mathbb{Q} of degree n and discriminant d is generated by one of the finitely many lattice points α in the bounded region U. Therefore there are only finitely many fields with given degree and discriminant. Hence there are only finitely many number fields of degree less than r and discriminant less than d for given integers $d, r \in \mathbb{N}$.