Algebra III
Home Assignment 4

Subhadip Chowdhury

Problem 11

B We will denote the quadratic form ¢(z,y) = ax® + bxy + cy? by the ordered tuple (a,b, c). We are
given that d is a negative squarefree integer congruent to 1 mod 4. Since K = Q[\/E], we have

1++Vd
9

OKIRIZ—|— 7

Let us define
F4 = The set of integral quadratic forms of discriminant d modulo SLs(Z)-equivalence

and let F, denote those elements of F,; represented by a positive definite quadratic form(i.e. a form
(a,b,c) with a > 0, since d < 0).

Define the function ® : F; — CI(R) by

®(a,b,c) =aZ + b _2\/6_12
and define ¥ : CI(R) — Fy; by N
¥(a) = (O;\f(;r)ﬁy)
where {«, 5} is a Z—Dbasis of a such that
af = pa’ >0 (%)

Here o denotes the Galois conjugate of v in K.

We claim that ® and ¥ are well defined and induce bijections from F; to CI(R).
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¢ To check ® is well defined: First of all we check that if 1> — 4ac = d =1 mod 4, then b is odd,

SO
b—+vd 1 d
Vi €EZ+ + \/_Z = Ok
2 2
Now if Uy ) element of SLy(Z) acts on (a, b, c) then the quantity 7 = =%>** becomes
o Vr—B
—Ur+ A

and a becomes
a =aN(-Ut+ A)

Now in CI(R),

N(— A
d(Z+ (—1Z) = ¢ —(U[T]:L—;l >(Z +(—7)Z) = a(Z + (—7)Z)
since ANCUTHA) € K*. Thus @ is well defined.

-Ut+A

¢ To check V is well defined: Say a basis {«, 5} of I, an ideal of R is correctly ordered if (%) is
satisfied. We prove the following lemma:

Lemma 1: Any two correctly ordered bases of an ideal I are equivalent by an element in SLs(Z), and
conversely.

Proof: Suppose {«, 8} and {v,d} are two correctly ordered bases for an ideal I. Because these are
two different basis for the same free Z-module, there are a,b, ¢,d € Z such that

(5)= (0 ()= ()

and det(A) = +1. Since a, b, ¢,d € Z and the conjugation automorphism fixes Z, we have
a o\  fa b\ (v
B B) \e d)\§ o

af’ — pa’ = det(A) (0" — 57') (1)
Since {a, B} and {v,0} are correctly oriented, we must have det(A) = +1. So A € SLy(7Z).

Taking determinants we have

Conversely, if A € SLy(Z) and {7, d} is a correctly oriented basis then,
a b\ (v Y\ _ [a
c d)\o &) \p /&
and by (1), {«, 5} is also correctly oriented. [ |

Lemma 2: Let a be an ideal of Ok and Let {a, 8} be a basis of a. Since d =1 mod 4, the absolute

discriminant of K is d. Then )
a o
det | =dN(a)?
(5 %) —av
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Proof: Let {7,d} be a basis for Ok. Since o and  can be written as a Z—linear combination of

and ¢ there is a 2 X 2 matrix A such that
7\ [«
4(3)= )

N 2 AN 2
det (g g) = det (A <g g)) = det(A)%d = N(a)%.d

We have

We next prove that ¥(a) € F;. Let {a, 3} be a correctly ordered basis of a and

N(az + By) = (ax + By)(a'z + B'y)
= ad'z’ + (af' + Bo’)zy + BBy
= Az? + Bay + Cy?

The coefficients A, B, C' are integers since they are norms and traces. We claim that in fact A, B,C' €
(N(a)). Note that if @ € a, then N(a) € (N(a)). Thus A = N(a) € (N(a)). Similarly C' = N(p) €
(N(a)) and (N(a+B)—N(a—p)) € (N(a)) = B € (N(a)). Let A =aN(a), B=bN(a),C = cN(a). Since
A, N(a) are both in Z and R = Ok, we see that a € Z. Likewise b, c € Z. Thus ¥(a) = az? + bry + cz*
has coefficients in Z. Now

B? —4AC _ (af’ — pa’)?

S O (5

=d
Thus ¥(a) € F;.

Note that by lemma 1, ¥ is independent of the choice of basis for a Choosing a different basis amounts
to changing the basis from (a) to (7) obtained by multiplying (a) by an element A = (a b) of

B 0 B c d
SLy(7Z); so that
N((aa +08)x + (ca+ dB)y) = N(a(ax + cy) + 8(bx + dy)

and hence the new quadratic form is a SLy(Z) conjugate of the old quadratic form. So in F;, they are
equal.

Thus ¥ does not depend on the choice of basis. Also if a and b are in the same equivalence class.
Then there exists p, A € Ok such that

pa = Ab and N(pA) >0
Then {7, 0} forms a basis of b where paw = Ay and pf8 = Ad. Also pp'N(a) = N(pa) = N(Ab) = AN'N(b).

Hence the ratio of N(yz + dy) and N(b) is equal to ¥(a). Thus ¥ is constant on the equivalence class of
a. Thus we have proved that ¥ is well defined.
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¢ To show ® and V¥ are inverse maps: Suppose we have a quadratic form (a, b, ¢) with b? —4ac = d.
We want to show that
Vo ®(a,b,c) = (a,b,c) in F;

Now it is easy to check that {a, %ﬁ} is correctly ordered if @ > 0. Then by definition,
b—d N b-vd
U | aZ + \/_Z = (az + *5")
2 N (az + %Z)

= V) Vi \/_ [We used Lemma 2]

= az? + bxy + cy?

Thus
Vod = ]d]_-;

Next suppose we have a fractional ideal a. Then if {a, 8} is a correctly ordered basis for a then as
shown above ¥(a) = ax? + bxy + cy? with b*> — 4ac = d and a = A/N(a) etc. So

ao’  (af +pa’)/N(a) - vVd

@(a,b,c):N(a)Z—i— 5 Z
a’ ozg:—i-goc —1
— Vi g 5, Z
x/_ AT —Fa +\/_ —

Hence
(af' = Ba)®(a,b,c) = (Vda')a
Hence we can find suitable p, A € Ok such that u®(a,b,c) = Aa. So in CI(R), ®(a,b,c) = a implying

bPoVU =1 dCl( R)
Thus we have proved that ® and W are well defined and induce bijections from F; to Cl(R).

HE We have to prove two things. First, that every SLy(Z)—equivalence class of positive definite
quadratic form of discriminant d < 0 contains at least one reduced form, and second that this reduced
form is the only one in the equivalence class.

We first prove that there is a reduced form in every class. Let C be an equivalence class of positive
definite quadratic forms of discriminant d. Let (a,b,c¢) be an element of C such that a is minimal
(amongst elements of C). Note that for any such form we have ¢ > a, since (a,b,¢) is equivalent to

-1 . 1 k
[1) 0 ) € SLy(Z). Applying the element (0 1> € SLy(Z) to (a,b,c) for
a suitably chosen integer k (precisely, k = |(a — b)/2a]) results in a form (a’,V', ') with ' = a and
b € (—d,d']. Since o' = a is minimal, we have just as above that @’ < ¢, hence (d/, V', ) is reduced
except in the case when a’ = ¢ and & < 0. In that case, changing (', ¥, ) to (¢, b",a") = (¢, =¥V, d’)
results in an equivalent form with ” > 0, so that (¢”, 0", a”) is reduced.

(¢, —b,a) using the matrix

4
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Next suppose (a, b, ¢) is a reduced form. We will now establish that (a, b, ) is the only reduced form in
its equivalence class. First, we check that a is minimal amongst all forms equivalent to (a,b,c). Indeed,
every other @' has the form a’ = ap® + bpr + cr? with (p,r) = 1. The identities

b b
ap?® + bpr + cr? = ap? (1 + _r) = ap® + cr? (1 + _p>
ap cr

then impll our claim since |b| < a < c(using first identity if /p < 1 and the second otherwise). Thus any
other reduced form (o', ¥, ¢') equivalent to (a, b, ¢) ahs a = a’. But the same identity implies that the only

forms equivalent to (a, b, c) with @’ = a are obtained by applying a transformation of the form <(1) ]f)

(corresponding to p = 1,7 = 0). Thus b’ = b+ 2ak for some k. Since a = d/, we have b,V € (—a,al, so
k = 0. Finally
CoW2—d ¥—d

©= 4qa - 4qa — ¢

So (a,b,c) = (a', V', ).

BEEE The class number hy = CI(R) for d =1 mod 4 and d < 0 is equal to the number of equivalence
classes of positive definite quadratic forms of discriminant d which is same as the number of reduced
positive definite quadratic form of discriminant d. Note that if a form (a, b, ¢) is reduced then 0 < |b| <
a < c.Then d = b? — 4ac implies

V¥ <a’®<ac=d< —3ac= 3ac < —d

eFord=-3,3cc<3=ac<l=ac=1l=a=c=b=1=b=1sincea=c=0b>0. Thus
there is only one possibility implying hy = 1.

e Ford=—-7,3ac<7=ac<2=ac=1,2 Ifac=1, then a = ¢ =1 and b*> = —3, not possible.
Hence ac = 2. Then b* =1=-b=1. Thus |b| <a < c¢= (a,b,¢c) = (1,1,2). So again hy = 1.

e For d = —11, 3ac < 11 = ac = 1,2,3. If ac = 1,2, b* = —7,—3, not possible. If ac = 3,
V=1=b=1= (a,b,c) =(1,1,3). So hg = 1.

e For d = —15, 3ac < 15 = ac = 1,2,3,4,5. If ac = 1,2,3 we get b> < 0, not possible. If ac = 4,
V¥ =1= (a,b,c) =(1,1,4) or (2,1,2). If ac = 5, b*> = 5, not possible. Thus hy = 2.

e For d = —19, 3ac < 19 = ac = 1,2,3,4,5,6. If ac = 1,2,3,4, we have b* < 0. For ac = 5,
V¥ =1= (a,b,c) = (1,1,5). For ac = 6, b*> = 5, not possible. thus hy = 1.

'Problem 12|

For a commutative ring A and a ring extension B of A which is a finite free A-module:
B=Av, ® Av, @& ... D Av,

We write
disca(B) = disca(vy, ..., v,) = det(Trpja(viv;)) € A
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In particular, the absolute discriminant of L is then discz(Op). Note that given a number field L, there
is a place v of L over p which is ramified is equivalent to the fact that the prime ideal factorization

(p) = pOr =p7 - -pg? ... (1)
has some e; greater than 1. Now by Chinese remainder theorem and by (1),
OL/(p) = OL/pi' X ... x OL/py (2)

If some ¢; is greater than 1, then the quotient ring Oy /p;" has a nonzero nilpotent element, so the
product ring (2) has a nonzero nilpotent element. If each e; equals 1, then O /(p) is a product of finite
fields, and hence has no nonzero nilpotent elements. Thus p ramifies in L iff Op/(p) has a nonzero
nilpotent element.

Let degree of L over Q be n. Then the ring Oy is a free rank-n free Z-module, say

OL = é Zwi
i=1

Reducing both sides modulo p,

n

OL/(p) = P (Z/p2)w;

i=1
where @W; = w; mod p So Or/(p) is a (/pZ vector space of dimension n. We prove the following lemma:
Lemma 1: Choosing bases appropriately for Oy and Oy, /(p)

discz(Or) mod p = disczpz(OL/(p))

Proof: Pick a Z-basis wy, . ..,w, for Op. Then writing @; = w; mod p, we get that w; forms a Z/pZ
basis of Or/(p). So the multiplication matrix [m,] for any z € O w.r.t. {w;} reduces modulo p to the
multiplication matrix [mz] for T on Oy/(p) w.r.t. {@w;}. Therefore,

Tr 0y /) z/pz) (@i5) = Tr(Mez;) = Tr(me,,,;) mod p=Tro, z(ww;) mod p

Taking determinants on both sides gives our result. [ ]

Thus by the lemma we have, pldiscz(Or) if and only if discz(Or) = 0 mod p if and only if
discz/pz(Or/(p)) = 0 in Z/pZ.

In (2), each factor O /p;" is a Z/pZ vector space since p € p;’. So we can write

g9
discz/,2(01/(p)) = | [ disczpz(Or/p5)
i=1

Therefore we need to show that for any prime p and prime-power ideal p¢ such that p¢|(p) we have

disczpz(Op/p°) =0 € Z/pZ <= e > 1

6



Algebra Subhadip Chowdhury Assignment 4

¢ Suppose ¢ > 1. Then any = € p — p°® is a nonzero nilpotent element in O /p°. Extend T to a
Z/pZ-basis of Op/p°, say {T = T1,Ta,...,Tn}. Let us denote T'r(o, /pey/z/pz) by Tr. The first column of
the matrix [Tr(Z;Z;)] contains the numbers Tr(7;7). We claim that these traces are all 0. Indeed all the
Z;T are nilpotent. Hence the linear transformation mz,z on Or/p€ is nilpotent. Thus all the eigenvalues
are zero. Hence Tr(Z;z) = 0. Since one column of [Tr(Z;Z;)] is zero, the determinant is zero as well.
Hence discy,,z(Or/p¢) = 0.

¢ Suppose e = 1. Then Oy /p¢ = Op/p is a finite field of characteristic p. Suppose, on contrary to
what we have to prove, discz/,z(Or/p) = 0. Note that this condition is independent of the basis. Since
Op/p is a field, this means the function Tr : Op/p — Z/pZ is identically zero. On the other hand
Z/pZ is a finite field, hence Oy /p is separable. Let #(Op/p) = p". Then for any element ¢ € Of/p, the
conjugates of ¢ under different embeddings of O /p = F,r in closure of Z/pZ = F,, are given by images
of t under powers of the Frobenius automorphism. Thus
Tr(t)=t+"+t" 4.+t

Since this polynomial has degree less than the size of Of/p, it cannot be identically zero on all of O /p.
Contradiction!!

Problem 13

We will prove that there are only finitely many fields K/Q of degree n and discriminant d. Note that the
discriminant of the field extension K (v/—1)/Q differs from the discriminant of K/Q only by a constant
factor. So it is enough to prove that there exists only finitely many fields K/Q of degree n containing
v/—1 with a given discriminant d. Such a field K has only complex embeddings; ¢ : K — C, total
n = 2r embeddings. Choose any one of them,r. Consider the convex, centrally symmetric open subset of
C™ given by

U= {(zg) eC”

where C' is an arbitrarily big constant which depends only on n. For a convenient choice of (', the
volume of U will satisfy

S(2,)| < CVd,R(z,) < 1,|2,| < 1 for o # T,T}

vol(U) > 2"Vd = 2"vol(O)

where vol(Of) is the volume of a fundamental mesh of the lattice obtained by embedding Ok in C". By
Minkowski’s lattice point theorem, we can then find an o € Ok, a # 0, such that

IS(ra)| < CVd, |R(ra)| <1, |oal <1 Vo #7,7 (%)

Note that Ng,g(a) =[], |o(a)| > 1 implies |7(a)| > 1; thus I(7(v)) # 0 so that the conjugates 7(«)
and 7(«) of a have to be distinct. Since |o(«)| < 1 for o # 7,7, we have 7(a) # o(«) for all o # 7. This
implies K = Q(«), because if Q(«) C K then the restriction 7|g) would admit an extension o different
from 7, contradicting 7(«) # o(«).

Since the conjugates o(a) of a are subject to condition (%), which only depends on d and n, the
coefficients of the minimal polynomial of « are bounded once d and n are fixed. Thus every field K/Q of
degree n and discriminant d is generated by one of the finitely many lattice points « in the bounded
region U. Therefore there are only finitely many fields with given degree and discriminant. Hence there
are only finitely many number fields of degree less than r and discriminant less than d for given integers
d,r € N.



