Algebra II

HOME ASSIGNMENT 1

Subhadip Chowdhury

P 1.

\[t \in S \Rightarrow f(t) = 0 \text{ for all } f \in I(S) \Rightarrow t \in V(I(S)) \Rightarrow S \subseteq V(I(S)) \]

But \(V(I(S)) \) is a closed set. Thus \(\overline{S} \subseteq V(I(S)) \).

Conversely, assume, by contradiction, \(\overline{S} \neq V(I(S)) \). Suppose \(x \in V(I(S)) \setminus \overline{S} \). Now \(X \) is compact,hausdorff implies \(\exists f \in A \) such that \(f(x) = 1 \) and \(f \) has value 0 at any point of \(\overline{S} \). Thus in particular, \(f \in I(S) \Rightarrow f(x) = 0 \Rightarrow \) CONTRADICT.

P 2. If \(S = V(I) \) for some ideal \(I \) of \(A \), then by definition, \(S \) is closed.

Conversely assume that \(S \) is closed i.e. \(S = \overline{S} \). By prob 1, then \(S = V(I(S)) \). But clearly \(I(S) \) is an ideal of \(A \).

P 3. \(x \in \bigcap_{i=1}^{n} V(f_{i}) \)

\[\Rightarrow f_{i}(x) = 0, \forall i \in \{1, 2, \ldots, n\} \]

\[\Rightarrow (\sum_{i=1}^{n} f_{i} \overline{f_{i}})(x) = 0 \]

\[\Rightarrow \bigcap_{i=1}^{n} V(f_{i}) \subseteq V(\sum_{i=1}^{n} f_{i} \overline{f_{i}}). \]

On the other hand

\[x \in V(\sum_{i=1}^{n} f_{i} \overline{f_{i}}) = 0 \]

\[\Rightarrow (\sum_{i=1}^{n} f_{i} \overline{f_{i}})(x) = 0 \]

\[\Rightarrow \sum_{i=1}^{n} |f_{i}(x)|^{2} = 0 \text{ where } |f_{i}(x)| \text{ denotes the absolute value of the complex no. } f_{i}(x) \]

\[\Rightarrow |f_{i}(x)| = 0, \forall i \in \{1, 2, \ldots, n\} \]

\[\Rightarrow x \in V(f_{i}), \forall i \in \{1, 2, \ldots, n\}. \]

Thus \(\bigcap_{i=1}^{n} V(f_{i}) = V(\sum_{i=1}^{n} f_{i} \overline{f_{i}}) \) for \(f_{1}, \ldots, f_{n} \in A \).

Suppose, on contrary to what we have to prove, we have \(V(I) = \emptyset \) but \(I \neq A \). Note that \(f_{i} \in I \) for \(i \in \{1, 2, \ldots, n\} \Rightarrow g = \sum_{i=1}^{n} f_{i} \overline{f_{i}} \in I \) since \(I \) is an ideal.

Thus \(I \neq A \Rightarrow g \) is not invertible in \(A \).

\[\Rightarrow g(x) = 0 \text{ for some } x \in X. \]

\[\Rightarrow \bigcap_{i=1}^{n} V(f_{i}) = V(\sum_{i=1}^{n} f_{i} \overline{f_{i}}) \neq \emptyset. \]

In other words, the class of closed sets \(\{V(f)\}_{i \in I} \) has the finite intersection property. But \(X \) is a compact,hausdorff space. Hence we must have \(\bigcap_{i \in I} V(f_{i}) \neq \emptyset \). But clearly from definition, \(\bigcap_{i \in I} V(f_{i}) = V(I) \) which is given to be empty. So we have a contradiction. Hence our initial assumption was wrong and we have \(I = A \).

P 4. We name the given map \(\psi : X \rightarrow \operatorname{max}(A) \) such that \(\psi(p) = \{f \in A | f(p) = 0\} = I(\{p\}). \)

For \(p, q \in X, \psi(p) = \psi(q) \Rightarrow I(\{p\}) = I(\{q\}) \Rightarrow V(I(\{p\})) = V(I(\{q\})) \Rightarrow p = q \) by problem 1. So \(\psi \) is injective.

To show that \(\psi \) is surjective we need to prove that every element in \(\operatorname{max}(A) \) is of the form \(I(\{p\}) \) for some \(p \in X \). By problem 3 we know that \(m \in \operatorname{max}(A) \Rightarrow V(m) \neq \emptyset \). Let \(x \in V(m) \). Then \(I(\{x\}) \supseteq I(V(m)) \supseteq m \).

But \(m \) is a maximal ideal of \(A \Rightarrow \text{Either } I(\{x\}) = A \text{ or } I(\{x\}) = m \). Clearly \(I(\{x\}) \neq A \) since \(\exists f \in A \) such that \(f(x) \neq 0 \). Thus \(m \) is of the form \(\{f \in A | f(x) = 0\} = \psi(x) \). So \(\psi \) is surjective.
P 5. The map $\rho : X \to \text{hom}_C(A, C)$ is defined by the map $\rho(x) : A \to C$ which has $\ker(\rho(x)) = \psi(x)$ where ψ is defined in problem 4.

First of all we need to check that the map is well-defined i.e. given $m = \psi(p)$, a maximal ideal in A, there is a unique $\rho(p)$ such that $\ker(\rho(p)) = m$.

Let $F \in \text{hom}_C(A, C)$ be such that $\ker(F) = m$. Take any $f \in A$. Consider the element $c_p \in A$ which sends every $x \in X$ to the constant $f(p)$. Note that $(f - c_p)(p) = 0$. Then we have

$$(f - c_p) \in m \Rightarrow F(f - c_p) = 0 \Rightarrow F(f) = F(c_p) = F(f(p).1) = f(p),$$

a unique constant in C i.e F depends only on m i.e. given $p \in X$, $F = \rho(p)$ is unique. In fact $(\rho(p))(f) = f(p) \Rightarrow \rho(p) = ev_p$, the evaluation map at p. So ρ is well-defined.

Also $\rho(p) = \rho(q)$ for $p, q \in X$ implies $\psi(p) = \psi(q)$. By problem 4, then $p = q$. So ρ is injective.

Thus $A/\ker(F) \cong C$, a field. Hence $\ker(F)$ is an maximal ideal in A. By problem 4, then $\ker(F) = m = \psi(p)$ for some $p \in X$, i.e. $\rho(p) = F$.

P 6. By problem 5 we have following bijections:

$$X \xrightarrow{\rho_X} \text{hom}_C(A, C) \quad Y \xrightarrow{\rho_Y} \text{hom}_C(B, C)$$

$$p \longmapsto ev_p \quad q \longmapsto ev_q$$

Given $y \in Y$, consider the following:

$$A \xrightarrow{\varphi} B \xrightarrow{ev_y} C$$

We define $\Phi(y) := \rho_X^{-1}(ev_y \circ \varphi)$.

Note that $\varphi(f)(y) = ev_y(\varphi(f)) = \rho_X(\Phi(y))(f) = ev_{\Phi(y)}(f) = (f \circ \Phi)(y)$. So $\varphi(f) = f \circ \Phi$.

Since φ is given and ρ_X is a bijection by problem 5, the map Φ is well defined and unique.

To prove that Φ is continuous, it will be enough to show that inverse image of closed sets are closed.

Now, a closed set in X is of the form $S = V(I) = \bigcap_{f \in I} V(f)$ for an ideal I of A. We have $\Phi(y) \in V(I)$

$\iff \Phi(y) \in V(f), \forall f \in I$

$\iff ev_y \circ \varphi \in \rho_X(V(f)) = \{ev_x | f(x) = 0\} = \{ev_x | ev_x(f) = 0\}; \forall f \in I$

$\iff ev_y \circ \varphi(f) = 0; \forall f \in I$

$\iff (\varphi(f))(y) = 0; \forall f \in I$

$\iff y \in V(\varphi(f)); \forall f \in I$

$\iff y \in \bigcap_{f \in I} V(\varphi(f))$.

Thus $\Phi^{-1}(V(I)) = \bigcap_{f \in I} V(\varphi(f))$, an arbitrary intersection of closed sets; hence closed.

Thus Φ is continuous.

P 7. \Rightarrow

Suppose φ is injective. Suppose $\exists x \in X \setminus \Phi(Y)$. We know that Φ is continuous. Hence $\Phi(Y)$ is compact image of a compact set, hence itself compact. So $\Phi(Y)$ is a compact subset of X, a compact Hausdorff space; hence it is closed. Now by Uryshonn’s lemma, $\exists f \in A$ such that $f(\Phi(y)) = 0$ for all $y \in Y$ and $f(x) = 1$. But $f(\Phi(y)) = 0 \Rightarrow \varphi(f)(y) = 0; \forall y \in Y$. Since φ is injective; that means $f \equiv 0$. But $f(x) = 1$. Contradiction! Thus $X = \Phi(Y)$ i.e. Φ is surjective.

\Leftarrow

Suppose Φ is surjective. Then $\phi(f) = \phi(g) \Rightarrow f \circ \Phi = g \circ \Phi$. Given $x \in X$, then there exists $y \in Y$ such that $\Phi(y) = x$. Then $f \circ \Phi(y) = g \circ \Phi(y) \Rightarrow f(x) = g(x)$. Thus $f = g$, i.e. ϕ is injective.
P 8. Suppose \(\varphi \) is surjective. Take \(y_1, y_2 \in Y \) such that \(\Phi(y_1) = \Phi(y_2) \). Thus \(f(\Phi(y_1)) = f(\Phi(y_2)) \)
\(\Rightarrow \varphi(f)(y_1) = \varphi(f)(y_2) ; \forall f \in A \)
\(\Rightarrow g(y_1) = g(y_2) ; \forall g \in B \), since \(\varphi \) is surjective.
\(\Rightarrow y_1 = y_2 \). i.e. \(\Phi \) is injective.

Suppose \(\Phi \) is injective. Take any \(g \in B \). Thus \(g : Y \to C \). For \(x \in \Phi(Y) \), define \(f(x) = g(\Phi^{-1}(x)) \). Note that \(\Phi \) is a bijection from a compact space to a Hausdorff space which is onto its image. Thus \(\Phi \) is a homeomorphism between \(Y \) and \(\Phi(Y) \). Then \(f \) is a continuous function on \(\Phi(Y) \), since both \(\Phi^{-1} \) and \(g \) are continuous. Hence it can be extended to a \(C \)-valued continuous function \(f' \) on \(X \). Thus given \(g \in B \), \(\exists f' \in A \) such that \((\varphi(f'))(y) = f'((\Phi(y)) = f(\Phi(y)) = g(y) \) for all \(y \in Y \). Thus \(\varphi \) is surjective.

P 9. If \(X \) is connected then \(f \in A \Rightarrow f(X) \) is connected. Also \(f^2(x) = f(x) \Rightarrow f(x) = 0 \) or \(1 \). Thus \(f(X) \) is a connected subset of \(\{0, 1\} \). Hence either \(f = 0 \) or \(f = 1 \). So there is no \(f \in A \) such that \(f^2 = f, f \neq 0, f \neq 1 \).

Suppose on contrary to what we have to prove \(X \) is not connected. Then for any connected component \(X_1 \subseteq X \)
we can define \(f \in A \) by \(f(x) = \begin{cases} 1 & \text{for } x \in X_1 \\ 0 & \text{o.w.} \end{cases} \) Then \(f^2 = f \) and \(f \neq 1, f \neq 0 \). Contradiction!
Thus \(X \) is connected.

P 10. For \(X \) a finite set \(X = \{x_1, \ldots, x_n\} \), we have \(A = \{f|f : X \to C \text{ is continuous}\} = \{f|f(x_i) \in C, \forall i \in \{1, 2, \ldots, n\}\} \approx C^n \), as a commutative ring. Then any ideal of \(A \) is of the form \(I_1 \times I_2 \times \ldots \times I_n \) where \(I_k \) is an ideal of \(C \), hence either \(\{0\} \) or \(C \). Also given \(S \subseteq X, I(S) = \{f|f(x_i) = 0 \text{ for } i \in S; f(x_i) \in C \text{ o.w.} \} \)
\(= I_1 \times \ldots I_n \) where \(I_k = \begin{cases} \{0\} & \text{for } k \in S \\ C & \text{ o.w.} \end{cases} \)
Thus given any ideal of \(A \), it is of the form \(I(S) \) for some subset \(S \)
of \(X \). i.e. the map \(S \mapsto I(S) \) is surjective.
Also \(I(S_1) = I(S_2) \Rightarrow V(I(S_1)) = V(I(S_2)) \Rightarrow S_1 = S_2 \), since finite sets are closed. Thus the map \(S \mapsto I(S) \)
is injective too.
So \(S \mapsto I(S) \) is a bijection from all subsets of \(X \) to set of all ideals of \(A \).

Note that \(V(I(S)) = S \) for all subsets \(S \) of \(X \). Also the map \(S \mapsto I(S) \) is a bijection onto the ideals of \(A \).
Hence \(J = I(S) \) mapping to \(S = V(J) \), i.e. \(J \mapsto V(J) \) is the inverse map of the above bijection.