Set 6.

Please study the following Problems 51–60 by February 22 (Friday).

The following fact about Noetherian property may be useful for Problem 51. For a commutative ring A, the following (i) and (ii) are equivalent. (i) A is Noetherian. (ii) For any sequence I_1, I_2, I_3, \ldots of ideals of A such that $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$, there is $n \geq 1$ such that $I_n = I_{n+1} = I_{n+2} = \ldots$. The proof of (i) \Rightarrow (ii) is that the ideal $I := \bigcup_{n \geq 1} I_n$ is finitely generated by the Noetherian assumption, and the finite generators should belong to some I_n for n big enough, and $I = I_n$ and hence $I_n = I_{n+1} = I_{n+2} = \ldots$. I omit the proof of (ii) \Rightarrow (i).

51. Let A be a Noetherian integral domain. Let f be a prime element of A (this means that $f \neq 0$ and the ideal (f) of A is a prime ideal). Prove that there is no prime ideal p of A such that $0 \subsetneq p \subsetneq (f)$.

A suggestion for the proof: Assume such p exists. Take a non-zero element g of p. By using the fact $f \notin p$ and by some argument, get $g = g_1 f$ for some $g_1 \in A$, $g_1 = g_2 f$ for some $g_2 \in A$, $g_2 = g_3 f$ for some $g_3 \in A$, \ldots, and use the Noetherian property of A looking at the ideals $(g) \subset (g_1) \subset (g_2), \ldots$ of A.

52. Let A be a unique factorization domain (UFD; see below). Let p be a prime ideal of A. Assume that there is no prime ideal q of A such that $(0) \subsetneq q \subsetneq p$. Prove that $p = (f)$ for some prime element f of A.

A suggestion for the proof. Take a non-zero element of p and consider the prime factorization of it.

Remark. This is just a remark concerning UFD. For a non-zero element a of an integral domain A, the following conditions (i) and (ii) need not coincide. (i) a is a prime element (in the sense written in Problem 51). (ii) $a \notin A^\times$ and a can not be written as bc with $b, c \in A$ such that $b \notin A^\times$ and $c \notin A^\times$. (i) implies (ii) but (ii) need not imply (i). If a non-zero element a of A is written in the form $a = u\pi_1 \ldots \pi_n$ with $u \in A^\times$ and with elements π_i of A satisfying (ii), we do not have any uniqueness of such expression of a. But if π_i in this expression are prime elements, this expression of a is unique up to replacements of π_i by $v_i\pi_i$ for units v_i and changes of the order of π_1, \ldots, π_n in the presentation. An integral domain is called UFD if any non-zero element of A is written in the form $u\pi_1 \ldots \pi_r$ where $u \in A^\times$ and π_i are prime elements.

53. In the polynomial ring $k[T_1, \ldots, T_n]$ in n variables over a field k, the ideals $p_i = (T_1, \ldots, T_i)$ $(i = 0, 1, \ldots, n)$ are prime ideals. $(p_0$ means the ideal (0). You do not need prove that they are prime ideals.) Prove that for each $i = 0, 1, \ldots, n - 1$, there is no prime ideal q of A such that $p_i \subsetneq q \subsetneq p_{i+1}$.

Hint. Apply Problem 51 to $A = k[T_1, \ldots, T_n]/p_i \cong k[T_{i+1}, \ldots, T_n]$ and $f = T_{i+1}$.

Let A be the ring of polynomial functions on the algebraic set $X = \{(x, y) \in \mathbb{C}^2 \mid y^2 = x^3 + 1\}$. We have an isomorphism $\mathbb{C}[T_1, T_2]/(T_2^2 - T_1^3 - 1) \cong A$ by
sending \(T_1 \) (resp. \(T_2 \)) to the function \(x \) (resp. \(y \)) on \(X \) which has value \(x \) (resp. \(y \)) at \((x,y) \in X\). In the course, I will tell (without proof) the following. \(A \) is not PID, but the local ring of \(A \) at any prime ideal is PID. In the following Problems 54-56, let \(p \) be the maximal ideal \(\{ f \in A \mid f(0,1) = 0 \} \) of \(A \). Note that we have \(p = (x,y-1) \) and that \((y-1)(y+1) = x^3 \).

54. Note that any element \(f \) of \(A \) is written in the form \(f_0(y) + f_1(y)x + f_2(y)x^2 \), where \(f_i(y) \) \((i = 0, 1, 2)\) are polynomials in \(y \). For \(i = 0, 1, 2 \), let \(m_i \) be the \((y-1)\)-adic order of \(f_i(y) \). (This means that in the case \(f_i(y) \neq 0 \), \(f_i(y) \) is divisible by \((y-1)^{m_i} \) but not divisible by \((y-1)^{m_i} + 1 \). In the case \(f_i(y) = 0 \), \(m_i \) is defined to be \(\infty \).

55. Let the notation be as in Problem 54. Prove that any non-zero ideal of \(A_p \) is written in the form \((x^m)\) for some \(m \geq 0 \), and hence \(A_p \) is a PID.

Recall that we have the Taylor expansion
\[
(1 + x)^a = \sum_{n=0}^{\infty} \binom{a}{n} x^n
\]
for \(x \in \mathbb{C} \) such that \(|x| < 1\), where
\[
\binom{a}{0} = 1, \quad \binom{a}{1} = a, \quad \binom{a}{2} = \frac{a(a-1)}{2}, \quad \binom{a}{n} = \frac{a(a-1) \ldots (a-(n-1))}{n!}
\]
In the case \(a = 1/m \) \((m \geq 1)\), this gives an \(m \)-th root of \(1 + x \). For example,
\[
(1 + x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \ldots.
\]

56. Consider the ring homomorphism \(h : A \to \mathbb{C}[[T]] \) over \(\mathbb{C} \) which sends \(x \) to \(T \) and \(y \) to \(\sum_{n=0}^{\infty} \left(\frac{1/2}{n} \right) T^{3n} = 1 + \frac{1}{2}T^3 - \frac{1}{8}T^6 + \ldots \). Prove that \(h \) induces a ring homomorphism \(A_p \to \mathbb{C}[[T]] \). Prove that for any \(n \geq 1 \), the two arrows in
\[
\mathbb{C}[[T]]/(T^n) \to A/p^n \cong A_p/(pA_p)^n = A_p/x^nA_p \to \mathbb{C}[[T]]/(T^n) \cong \mathbb{C}[[T]]/(T^n)
\]
are isomorphisms. Here the first arrow is the ring homomorphism over \(\mathbb{C} \) which sends \(T \) to the class of \(x \), and the second arrow is the ring homomorphism induced by \(h \). Obtain an isomorphism
\[
\lim_{n \to \infty} A_p/(pA_p)^n \cong \mathbb{C}[[T]].
\]

57. Prove that for any \(n \geq 1 \), the canonical ring homomorphism \(\mathbb{Z}/5^n\mathbb{Z} \to \mathbb{Z}[i]/(2 - i)^n \) is an isomorphism. By taking \(\lim_{n \to \infty} \), deduce that \(\mathbb{Z}_5 := \lim_{n \to \infty} \mathbb{Z}/5^n\mathbb{Z} \) contains a square root of \(-1\).
58. (Here assume that you already know that \(\mathbb{Z}_5 \) has a square root of \(-1\).) Prove that there are two ring homomorphisms \(\mathbb{Z}[i] \to \mathbb{Z}_5 \). (You can use the fact \(\mathbb{Z}_5 \) is an integral domain.) Show that the inverse image of \(5\mathbb{Z}_5 \subset \mathbb{Z}_5 \) under one homomorphism is \((2 - i) \subset \mathbb{Z}[i] \), and the inverse image of \(5\mathbb{Z}_5 \) under the other homomorphism is \((2 + i) \subset \mathbb{Z}[i] \).

The following is a complement to the story of Taylor expansion written before Problem 56.

For a prime number \(p \) and for a rational number \(a \) which belongs to \(\mathbb{Z}(p) = \{ \frac{r}{m} \mid r, m \in \mathbb{Z}, p \not| m \} \), it is known that \(\left(\frac{a}{n} \right) \in \mathbb{Z}(p) \) for any \(n \geq 0 \). For \(m \geq 1 \) which is prime to \(p \) and for \(x \in p\mathbb{Z}_p \), an \(m \)-th root of \(1 + x \) in \(\mathbb{Z}_p \) is obtained as

\[
\sum_{n=0}^{\infty} \left(\frac{1/m}{n} \right) x^n.
\]

(You do not need to prove these.) The case \(p = 5, m = 2 \) and \(x = -5/4 \) of this implies that a square root of \(1 - 5/4 = -1/2^2 \) exists in \(\mathbb{Z}_5 \) and hence a square root of \(-1\) exists in \(\mathbb{Z}_5 \).

59. Obtain a square root \(68 \mod \mathbb{Z}/5^3\mathbb{Z} \) of \(-1 = 2^2(1 - \frac{5}{4}) \) in \(\mathbb{Z}/5^3\mathbb{Z} \) by applying the above Taylor expansion of \((-1/5/4)^{1/2}\).

(In the computation, if \(1/4 \) appears, a good method is to expand it as \(1/4 = -1/(1 - 5) = -1 - 5 - 5^2 - \ldots \).)

Note that for a sequence \(a_n \) \((n = 1, 2, 3, \ldots) \) of rational numbers, for a prime number \(p \), and for \(c \in \mathbb{Q} \), \(a_n \) converges to \(c \) in the \(p \)-adic number field \(\mathbb{Q}_p \) if and only if the \(p \)-adic order \(\text{ord}_p(a_n - c) \) tends to \(\infty \).

60. Prove that \(1 - (2/3)^n \) (resp. \(1 - 6^n \)) \((n = 1, 2, 3, \ldots) \) converges to 0 in \(\mathbb{Q}_p \) for any prime number \(p \neq 2, 3 \), and converges to 1 in \(\mathbb{Q}_2 \) and in \(\mathbb{R} \) (resp. in \(\mathbb{Q}_2 \) and in \(\mathbb{Q}_3 \)).