Definition: Let A be a not necessarily commutative ring. An A-module M is said to be of finite length n if, for any chain of A-submodules $0 \neq M_1 \subsetneq M_2 \subsetneq \ldots \subsetneq M_m = M$, we have $m \leq n$ and, moreover, there exists a chain as above with $m = n$.

1. Let M be an A-module of finite length and let $u : M \to M$ be an A-module morphism. Put

$$\text{Image}(u^\infty) := \bigcap_{k=1}^\infty \text{Image}(u^k), \quad \text{resp.} \quad \text{Ker}(u^\infty) = \bigcup_{k=1}^\infty \text{Ker}(u^k).$$

Show that $\text{Image}(u^\infty)$ and $\text{Ker}(u^\infty)$ are A-submodules in M and, moreover, we have

$$M = \text{Image}(u^\infty) \oplus \text{Ker}(u^\infty).$$

2. Fix a ring A and an idempotent $e \in A$. The subset $eAe \subset A$ is a ring with unit e (thus, eAe is not a subring of A, according to our definitions). Prove the following:
 (i) For any A-module M, there is a natural eAe-module structure on the subgroup $eM \subset M$ (here $eM = \{em \mid m \in M\}$). Furthermore, for any A-modules M and N there is a natural morphism of additive groups $f : \text{Hom}_A(M, N) \to \text{Hom}_{eAe}(eM, eN)$;
 (ii) Multiplication on the right gives an algebra isomorphism $(eAe)^{op} \cong \text{Hom}_A(Ae, Ae)$;
 (iii) There is an algebra isomorphism $A^{op} \cong \text{Hom}_{eAe}(Ae, Ae)$;
 (iv) For any A-modules M, N the map f in (i) is a bijection.

3. (i) Find all group homomorphisms $f : (\mathbb{Q}, +) \to (\mathbb{Q}, +)$.
 Find all continuous group homomorphisms f in the following cases:
 (ii) $f : (\mathbb{R}, +) \to (\mathbb{R}, +); \quad$ (iii) $f : (\mathbb{R}^n, +) \to (\mathbb{R}, +);$
 (iv) $f : (\mathbb{R}, +) \to S^1; \quad$ (v) $f : S^1 \to S^1.$
 Here, $S^1 := \{z \in \mathbb{C} \mid |z| = 1\}$, the unit circle viewed as a group with respect to the operation of multiplication of complex numbers.

4. Recall the setting of Problem 2 of Assignment 1. The function N gives a metric on the vector space $A := \text{End}_C V$. For $r > 0$, let $B_r := \{a \in A \mid N(a) \leq r\}$ be a ball in A of radius r. Show that
 (i) The series $e^a := \text{Id} + a + \frac{1}{2!} a^2 + \frac{1}{3!} a^3 + \ldots$ converges (absolutely) on B_r to a continuous function $A \to \text{GL}(V)$, $a \mapsto e^a$.
 (ii) For any fixed $r < 1$, the series $\log(\text{Id} + a) := a - \frac{1}{2} a^2 + \frac{1}{3} a^3 - \ldots$ converges absolutely to a continuous function $B_r \to A$, $a \mapsto \log(\text{Id} + a)$.
 (iii) One has $\log(e^a) = a$, resp., $e^{\log(\text{Id} + a)} = \text{Id} + a$, for any $a \in M_n(\mathbb{C})$ such that $N(a)$ is sufficiently small, say $N(a) < 1/10$.

5. (i) Show that any matrix $g \in \text{GL}_n(\mathbb{C})$ can be written in the form $g = e^a$ for some $a \in M_n(\mathbb{C})$.
 (ii) For fixed g, consider the following system of two equations on the matrix x:
 $$\begin{cases} e^x = g \\ \text{tr} x = 0. \end{cases}$$
 Give an example of a matrix $g \in \text{SL}_2(\mathbb{C})$ such that the above system has no solution $x \in M_2(\mathbb{C})$.
 Give an example of a matrix $g \in \text{SL}_2(\mathbb{R})$ such that the above system has a solution $x \in M_2(\mathbb{C})$ but has no solution $x \in M_2(\mathbb{R})$.

Assignment 3: due Friday, October 19
6. (i) Prove that, for any $a \in M_n(\mathbb{R})$, the map $f : (\mathbb{R},+) \to GL_n(\mathbb{R}), \ t \mapsto e^{t \cdot a}$ is a continuous group morphism.

(ii) Prove that any continuous group morphism $f : (\mathbb{R},+) \to GL_n(\mathbb{R})$ has the form $f(t) = e^{t \cdot a}$, for some fixed $a \in M_n(\mathbb{R})$.

7. Fix $n > 1$ and identify $M_n(\mathbb{R})$ with \mathbb{R}^{n^2}. Let dx be the standard euclidean Lebesgue measure on the vector space $M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$. Find a continuous function $f : GL_n(\mathbb{R}) \to \mathbb{R}_>$ such that the measure $f(x)\ dx$ is a left invariant measure on the group $G = GL_n(\mathbb{R})$.

8. Let $G \to GL(V)$ be a finite dimensional irreducible representation of a finite group G in a complex vector space V. Let $\beta_1, \beta_2 : V \times V \to \mathbb{C}$ be a pair of nonzero hermitian (not necessarily positive definite) G-invariant forms on V. Prove that there exists a nonzero constant $c \in \mathbb{R}$ such that one has $\beta_2(v_1,v_2) = c \cdot \beta_1(v_1,v_2)$, for any $v_1, v_2 \in V$.

9. Let $X \subset \mathbb{R}^n$ be a compact set. Let $C_{\text{cont}}(X)$ be the algebra of continuous functions $f : X \to \mathbb{C}$, with pointwise operations. Define a metric on $C_{\text{cont}}(X)$ by $\text{dist}(f,g) := \max_{x \in X} |f(x) - g(x)|$, for any $f, g \in C_{\text{cont}}(X)$. An ideal $I \subset C_{\text{cont}}(X)$ is called a closed ideal if I is a closed subset of $C_{\text{cont}}(X)$ viewed as a metric space.

(i) Show that the closure \overline{I} of a proper ideal $I \subset C_{\text{cont}}(X)$, is a proper ideal again (in particular, one has $\overline{I} \neq C_{\text{cont}}(X)$). Deduce that any maximal ideal is closed.

(ii) Show that, for any subset $Y \subset X$, the set $I_Y := \{ f \in C_{\text{cont}}(X) \mid f(y) = 0 \ \forall y \in Y \}$ is a closed ideal in $C_{\text{cont}}(X)$. Prove that, for any $x \in X$, the ideal $I_{\{x\}}$ is maximal.

Let $X := \{ x \in \mathbb{R} \mid 0 \leq x \leq 2 \}$ be a closed segment.

(iii) Give an example of a nonclosed ideal in $C_{\text{cont}}(X)$.

(iv) Prove that the ideal $I_{\{1\}}$ is not generated by any finite collection of elements of $C_{\text{cont}}(X)$; in particular, it is not a principal ideal.

(v) Show that any closed ideal I in $C_{\text{cont}}(X)$ has the form I_Y for some closed subset $Y \subset X$.

10. For each $c \in \mathbb{C}$, analyze the existence of nonzero two-sided ideals $J \subset A_c$ in the \mathbb{C}-algebra $A_c := \mathbb{C}\langle x,y \rangle / I_c$ where I_c is a two-sided ideal generated by the element $xy - yx - c \cdot x - 1$.