Manifolds with complete metrics of positive scalar curvature

Shmuel Weinberger Joint work with Stanley Chang and Guoliang Yu

May 5-14, 2008

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Fact

If S_p is the scalar curvature at a point p in a manifold M^n , then

$$\mathsf{Vol}_{\mathcal{M}}\left(B_{\epsilon}\left(p
ight)
ight)=\mathsf{Vol}_{\mathbb{R}^{n}}(B_{\epsilon})-S_{p}\cdot C\epsilon^{n+2}+\cdots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fact

If S_p is the scalar curvature at a point p in a manifold M^n , then

$$\mathsf{Vol}_{M}\left(B_{\epsilon}\left(p
ight)
ight)=\mathsf{Vol}_{\mathbb{R}^{n}}(B_{\epsilon})-S_{p}\cdot C\epsilon^{n+2}+\cdots$$

Remark (Kazhdan-Warner)

Suppose M is a compact n-manifold with n > 2.

Fact

If S_p is the scalar curvature at a point p in a manifold M^n , then

$$\mathsf{Vol}_{M}\left(B_{\epsilon}\left(p
ight)
ight)=\mathsf{Vol}_{\mathbb{R}^{n}}(B_{\epsilon})-S_{p}\cdot C\epsilon^{n+2}+\cdots$$

Remark (Kazhdan-Warner)

Suppose M is a compact n-manifold with n > 2.

 If f : M → ℝ is a function with f(p) < 0 for some p ∈ M, then there is a metric g so that f(p) is the scalar curvature of (M,g) at p.

Fact

If S_p is the scalar curvature at a point p in a manifold M^n , then

$$\mathsf{Vol}_{M}\left(B_{\epsilon}\left(p
ight)
ight)=\mathsf{Vol}_{\mathbb{R}^{n}}(B_{\epsilon})-S_{p}\cdot C\epsilon^{n+2}+\cdots$$

Remark (Kazhdan-Warner)

Suppose M is a compact n-manifold with n > 2.

- If f : M → ℝ is a function with f(p) < 0 for some p ∈ M, then there is a metric g so that f(p) is the scalar curvature of (M,g) at p.
- If there is a metric g with positive scalar curvature, then any function $f : M \to \mathbb{R}$ is the scalar curvature of some metric.

Fact

If S_p is the scalar curvature at a point p in a manifold M^n , then

$$\mathsf{Vol}_{M}\left(B_{\epsilon}\left(p
ight)
ight)=\mathsf{Vol}_{\mathbb{R}^{n}}(B_{\epsilon})-S_{p}\cdot C\epsilon^{n+2}+\cdots$$

Remark (Gauss-Bonnet)

If a surface Σ^2 has a complete metric of positive scalar curvature, then $\Sigma^2 \cong S^2$ or $\Sigma^2 \cong \mathbb{R}P^2$.

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Theorem (Atiyah-Singer, due to Lichnerowicz)

If M^n is a compact spin manifold admitting a metric of positive scalar curvature, then

 $\langle \hat{A}(M), [M] \rangle = 0.$

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Theorem (Atiyah-Singer, due to Lichnerowicz)

If M^n is a compact spin manifold admitting a metric of positive scalar curvature, then

$$\langle \hat{A}(M), [M] \rangle = 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example (*K*3 Surface)

- K3 is spin.
- sign K3 = 16, so $\langle \hat{A}(K3), [K3] \rangle \neq 0$
- K3 has no metric of positive scalar curvature.

Theorem (Atiyah-Singer, due to Lichnerowicz)

If M^n is a compact spin manifold admitting a metric of positive scalar curvature, then

$$\langle \hat{A}(M), [M] \rangle = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example ($\mathbb{C}P^2$)

- $\mathbb{C}P^2$ has a metric with positive scalar curvature,
- sign $\mathbb{C}P^2 = 1$,
- $\mathbb{C}P^2$ is not spin.

Theorem (Atiyah-Singer, due to Lichnerowicz)

If M^n is a compact spin manifold admitting a metric of positive scalar curvature, then

$$\langle \hat{A}(M), [M] \rangle = 0.$$

Idea of Proof:

Theorem (Atiyah-Singer, due to Lichnerowicz)

If M^n is a compact spin manifold admitting a metric of positive scalar curvature, then

 $\langle \hat{A}(M), [M] \rangle = 0.$

(日) (同) (日) (日)

Idea of Proof:

Since *M* is spin, *M* has a Dirac operator \mathcal{D} .

Theorem (Atiyah-Singer, due to Lichnerowicz)

If M^n is a compact spin manifold admitting a metric of positive scalar curvature, then

$$\langle \hat{A}(M), [M] \rangle = 0.$$

Idea of Proof:

Since *M* is spin, *M* has a Dirac operator \mathcal{P} .

$$ot\!\!\!D^{\star}
ot\!\!\!D = \Delta + \mathsf{Scal}.$$

Theorem (Atiyah-Singer, due to Lichnerowicz)

If M^n is a compact spin manifold admitting a metric of positive scalar curvature, then

 $\langle \hat{A}(M), [M] \rangle = 0.$

Idea of Proof:

Since *M* is spin, *M* has a Dirac operator \mathcal{D} .

$$\mathcal{D}^{\star}\mathcal{D} = \Delta + \text{Scal.}$$

(日) (同) (日) (日)

If Scal > 0, then $\Delta + Scal > 0$,

Theorem (Atiyah-Singer, due to Lichnerowicz)

If M^n is a compact spin manifold admitting a metric of positive scalar curvature, then

 $\langle \hat{A}(M), [M] \rangle = 0.$

Idea of Proof:

Since *M* is spin, *M* has a Dirac operator \mathcal{P} .

$$\mathcal{D}^{\star}\mathcal{D} = \Delta + \text{Scal.}$$

If Scal > 0, then Δ + Scal > 0, then ker $D^{\star} =$ 0 and ker D = 0,

Theorem (Atiyah-Singer, due to Lichnerowicz)

If M^n is a compact spin manifold admitting a metric of positive scalar curvature, then

 $\langle \hat{A}(M), [M] \rangle = 0.$

Idea of Proof:

Since *M* is spin, *M* has a Dirac operator \mathcal{P} .

$$\mathcal{D}^{\star}\mathcal{D} = \Delta + \text{Scal.}$$

If Scal > 0, then $\Delta + \text{Scal} > 0$, then ker $\not D^* = 0$ and ker $\not D = 0$, then ind $\not D = \text{ker } \not D - \text{ker } \not D^* = 0$,

Theorem (Atiyah-Singer, due to Lichnerowicz)

If Mⁿ is a compact spin manifold admitting a metric of positive scalar curvature, then

 $\langle \hat{A}(M), [M] \rangle = 0.$

Idea of Proof:

Since *M* is spin, *M* has a Dirac operator \mathcal{P} .

$$\mathcal{D}^{\star}\mathcal{D} = \Delta + \text{Scal.}$$

If Scal > 0, then Δ + Scal > 0, then ker $\not{D}^* = 0$ and ker $\not{D} = 0$, then ind $\not{D} = \ker \not{D} - \ker \not{D}^* = 0$, so $\langle \hat{A}(M), [M] \rangle = 0$ by Atiyah-Singer.

If M^n with n > 4 and M simply connected, then M has a metric of positive scalar curvature iff

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

If M^n with n > 4 and M simply connected, then M has a metric of positive scalar curvature iff

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

• M is not spin, or

If M^n with n > 4 and M simply connected, then M has a metric of positive scalar curvature iff

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

- M is not spin, or
- *M* is spin, and $\langle \hat{A}(M), [M] \rangle = 0$?

If M^n with n > 4 and M simply connected, then M has a metric of positive scalar curvature iff

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

- M is not spin, or
- *M* is spin, and ind $\not D = 0 \in \mathrm{KO}_n(\mathrm{pt})$.

Question

Does T^n have a metric of positive scalar curvature?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Question

Does T^n have a metric of positive scalar curvature?

Theorem (Schoen-Yau for $n \leq 7$, Gromov-Lawson for all n)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 T^n has no metric of positive scalar curvature.

Question

Does T^n have a metric of positive scalar curvature?

Theorem (Schoen-Yau for $n \leq 7$, Gromov-Lawson for all n)

 T^n has no metric of positive scalar curvature.

Theorem (Gromov-Lawson)

 $K \setminus G / \Gamma$, a compact locally symmetric space, has no complete metric of positive scalar curvature.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question

Does T^n have a metric of positive scalar curvature?

Theorem (Schoen-Yau for $n \leq 7$, Gromov-Lawson for all n)

 T^n has no metric of positive scalar curvature.

Theorem (Gromov-Lawson)

 $K \setminus G/\Gamma$, a compact locally symmetric space, has no complete metric of positive scalar curvature. Additionally, noncompact hyperbolic manifolds do not have metrics of positive scalar curvature.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question

Does T^n have a metric of positive scalar curvature?

Theorem (Schoen-Yau for $n \leq 7$, Gromov-Lawson for all n)

 T^n has no metric of positive scalar curvature.

Theorem (Gromov-Lawson)

 $K \setminus G/\Gamma$, a compact locally symmetric space, has no complete metric of positive scalar curvature. Additionally, noncompact hyperbolic manifolds do not have metrics

of positive scalar curvature.

Proof.

Following Rosenberg, same as before but using $K(C^*\pi)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• *M* is the interior of a manifold with boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *M* is the interior of a manifold with boundary.
- The boundary has a fundamental group $\pi_1^{\infty}M$.

- *M* is the interior of a manifold with boundary.
- The boundary has a fundamental group $\pi_1^{\infty} M$.
- This suggests an obstruction in $KO(B\pi_1 M, B\pi_1^{\infty} M)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *M* is the interior of a manifold with boundary.
- The boundary has a fundamental group $\pi_1^{\infty} M$.
- This suggests an obstruction in $KO(B\pi_1 M, B\pi_1^{\infty} M)$.
- Assembly map for pairs into L-theory. But in the C*-algebra setting only works really well if the fundamental group injects.

- *M* is the interior of a manifold with boundary.
- The boundary has a fundamental group $\pi_1^{\infty} M$.
- This suggests an obstruction in $KO(B\pi_1 M, B\pi_1^{\infty} M)$.
- Assembly map for pairs into L-theory. But in the C*-algebra setting only works really well if the fundamental group injects.
- One mystery of the Baum-Conjecture is the functoriality aspect (even in the torsion free case.) Why should there be functoriality associated to homomorphisms?

Proper homotopy equivalence of non-compact manifolds.

Definition

M is **simply connected at infinity** if every compact $K \subset M$ is contained in a larger compact $C \supset K$, so that M - C is simply connected.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Proper homotopy equivalence of non-compact manifolds.

Definition

M is **simply connected at infinity** if every compact $K \subset M$ is contained in a larger compact $C \supset K$, so that M - C is simply connected.

Theorem (Browder-Livesay-Levine)

 M^n , n > 5, is the interior of a manifold with simply connected boundary iff

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- M has finitely generated homology and
- M is simply connected at infinity.

Theorem (Block-W)

 $K \setminus G / \Gamma$ has a complete metric of positive scalar curvature iff \mathbb{Q} -rk(Γ) > 2.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Theorem (Block-W)

 $K \setminus G / \Gamma$ has a complete metric of positive scalar curvature iff \mathbb{Q} -rk(Γ) > 2.

Theorem (Chang)

 $K \setminus G / \Gamma$ never has a complete metric of positive scalar curvature in the obvious QI class.

Idea of Proof:

Theorem (Block-W)

 $K \setminus G / \Gamma$ has a complete metric of positive scalar curvature iff \mathbb{Q} -rk(Γ) > 2.

Theorem (Chang)

 $K \setminus G / \Gamma$ never has a complete metric of positive scalar curvature in the obvious QI class.

Idea of Proof:

• Marry Novikov idea to Roe's partitioned manifold index theorem.

Theorem (Block-W)

 $K \setminus G / \Gamma$ has a complete metric of positive scalar curvature iff \mathbb{Q} -rk(Γ) > 2.

Theorem (Chang)

 $K \setminus G / \Gamma$ never has a complete metric of positive scalar curvature in the obvious QI class.

Idea of Proof:

• Marry Novikov idea to Roe's partitioned manifold index theorem.

イロン 不通と イヨン イヨン

• We will discuss it in more detail later.
Fundamental group at infinity.

Definition (Fundamental group at infinity)

 $K_1 \subset K_2 \subset K_3 \subset \cdots \subset M$

Fundamental group at infinity.

Definition (Fundamental group at infinity)

 $K_1 \subset K_2 \subset K_3 \subset \cdots \subset M$

 $\pi_1^\infty(M) = \Gamma$ means that the pro-system

$$\pi_1(M-K_1) \leftarrow \pi_1(M-K_2) \leftarrow \pi_1(M-K_3) \leftarrow \cdots$$

a C

Fundamental group at infinity.

Definition (Fundamental group at infinity)

 $K_1 \subset K_2 \subset K_3 \subset \cdots \subset M$

 $\pi_1^\infty(M) = \Gamma$ means that the pro-system

$$\pi_1(M-K_1) \leftarrow \pi_1(M-K_2) \leftarrow \pi_1(M-K_3) \leftarrow \cdots$$

is pro-equivalent to the constant system $\Gamma \leftarrow \Gamma \leftarrow \cdots$.

Theorem (Siebenmann's thesis)

The obstruction to putting a boundary on a tame manifold lies in $\tilde{K}_0(\mathbb{Z}\pi_1^\infty)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Siebenmann's thesis)

The obstruction to putting a boundary on a tame manifold lies in $\tilde{K}_0(\mathbb{Z}\pi_1^\infty)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Takes the fear out of non-compactness when you are tame.

Theorem (Siebenmann's thesis)

The obstruction to putting a boundary on a tame manifold lies in $\tilde{K}_0(\mathbb{Z}\pi_1^\infty)$.

Takes the fear out of non-compactness when you are tame.

If tame at infinity, then there is a relative assembly theory, relative Novikov conjecture for *L*-classes and so on.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Siebenmann's thesis)

The obstruction to putting a boundary on a tame manifold lies in $\tilde{K}_0(\mathbb{Z}\pi_1^\infty)$.

Takes the fear out of non-compactness when you are tame.

If tame at infinity, then there is a relative assembly theory, relative Novikov conjecture for L-classes and so on.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If not, it's somewhat harder to describe the relevant assembly maps that enter the theory, but not impossible.

Question

To what extent does the theory of pairs capture the issues?

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ●

Answer

In the findamental group tame case, pretty well

Answer

In the findamental group tame case, pretty well—but not in general.

Answer

In the findamental group tame case, pretty well—but not in general.

There are lim¹ terms,

$$0 \to \lim{}^{1}H^{\mathsf{lf}}_{\star-1}(K_{i}) \to H^{\mathsf{lf}}_{\star}(M) \to \lim_{\leftarrow} H^{\mathsf{lf}}_{\star}(K_{i}) \to 0,$$

) 2 (~

Answer

In the findamental group tame case, pretty well—but not in general.

There are lim¹ terms,

$$0 \to \lim{}^{1}H^{\mathsf{lf}}_{\star-1}(K_{i}) \to H^{\mathsf{lf}}_{\star}(M) \to \lim_{\leftarrow} H^{\mathsf{lf}}_{\star}(K_{i}) \to 0,$$

and other terms measured off group homology's limits.

Example

 $h^1(S^1 imes D^2)$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

$$h^1(S^1 imes D^2)$$
, $h^2(S^1 imes D^2)$,

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

Example

$$h^{1}(S^{1} \times D^{2}), h^{2}(S^{1} \times D^{2}), h^{3}(S^{1} \times D^{2}), \ldots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Whitehead =
$$S^3 - \bigcap_i h^i (S^1 \times D^2)$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Whitehead =
$$S^3 - \bigcap_i h^i (S^1 \times D^2)$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

Whitehead $\cong \mathbb{R}^3$, but $\mathbb{R} \times$ Whitehead $\cong \mathbb{R}^4$.

Whitehead =
$$S^3 - \bigcap_i h^i (S^1 \times D^2)$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

There are uncountably many variants of this construction.

Whitehead =
$$S^3 - \bigcap_i h^i (S^1 \times D^2)$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question

What does the moduli space of these manifolds look like?

Whitehead =
$$S^3 - \bigcap_i h^i (S^1 \times D^2)$$
.

Question

What does the moduli space of these manifolds look like? A little bit like the space of Penrose tilings.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 35

Whitehead =
$$S^3 - \bigcap_i h^i (S^1 \times D^2)$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

No nice metric on these manifolds.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

• A is aspherical

• A is aspherical (by Papakyriakopoulos' sphere theorem, because A is the complement of a non-split link)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• A is aspherical (by Papakyriakopoulos' sphere theorem, because A is the complement of a non-split link)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Naively construed, " π_1^{∞} " is trivial.

Theorem

The Whitehead manifold has no complete metric of positive scalar curvature.

Proof:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof:

• DW = double of Whitehead manifold along T^2

- DW = double of Whitehead manifold along T^2
- *DW* has a positive scalar curvature metric except at $A \cup \overline{A}$

- DW = double of Whitehead manifold along T^2
- *DW* has a positive scalar curvature metric except at $A \cup \overline{A}$
- DW has positive scalar curvature metric at infinity

- DW = double of Whitehead manifold along T^2
- *DW* has a positive scalar curvature metric except at $A \cup \overline{A}$
- DW has positive scalar curvature metric at infinity—a contradiction.

Digression: Roe's Partition Manifold Theorem.

Theorem (Roe)

If V is spin and Z positive scalar curvature at infinity, then ind = 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Digression: Roe's Partition Manifold Theorem.

Theorem (Roe)

If V is spin and Z positive scalar curvature at infinity, then ind = 0.

Modern Philosophy

The partition defines a virtual vector bundle on the space at infinity.

Digression: Roe's Partition Manifold Theorem.

Theorem (Roe)

If V is spin and Z positive scalar curvature at infinity, then ind = 0.

Modern Philosophy

The partition defines a virtual vector bundle on the space at infinity. Only the ends of the space at infinity are independent of the quasi-isometry class of the metric.

If V is not simply connected, attractive to couple Roe's theorem to $C^{\star}(\pi_1 V)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If V is not simply connected, attractive to couple Roe's theorem to $C^*(\pi_1 V)$. In this case, $V = T^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If V is not simply connected, attractive to couple Roe's theorem to $C^*(\pi_1 V)$. In this case, $V = T^2$.

But $[\mathcal{P}] \in \mathcal{K}_2(T^2)$ dies on pushing forward by $\mathcal{K}_2(T^2) \to \mathcal{K}_2(\mathsf{pt})$,

If V is not simply connected, attractive to couple Roe's theorem to $C^*(\pi_1 V)$. In this case, $V = T^2$.

But $[\mathcal{P}] \in K_2(T^2)$ dies on pushing forward by $K_2(T^2) \to K_2(\text{pt})$, so \mathcal{P} on T^2 does not obstruct positive scalar curvature.

If V is not simply connected, attractive to couple Roe's theorem to $C^*(\pi_1 V)$. In this case, $V = T^2$.

But $[\mathcal{P}] \in \mathcal{K}_2(\mathcal{T}^2)$ dies on pushing forward by $\mathcal{K}_2(\mathcal{T}^2) \to \mathcal{K}_2(\text{pt})$, so \mathcal{P} on \mathcal{T}^2 does not obstruct positive scalar curvature.

On the other hand, $K_2(T^2) \to K_2(C^*(\mathbb{Z}^2))$ is injective.

Tilt horizontal direction to the vertical.

Idea

Use
$$\pi_1(DW)$$
 rather than $\pi_1(T^2) = \mathbb{Z}^2$.

Question

Do we know strong Novikov conjecture for $\pi_1(DW)$?

DW aspherical.

Theorem (Connes-Gromov-Mascovicci)

Novikov conjecture holds for all 2-dimensional cohomology classes.

Theorem

If M^3 is of finite type and has positive scalar curvature at infinity, then M is the interior of a manifold with boundary.

Theorem

If M^3 is of finite type and has positive scalar curvature at infinity, then M is the interior of a manifold with boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

$$S^3$$
 – cantor set = $\widetilde{L^3 \# L^3}$.

Theorem

If M^3 is of finite type and has positive scalar curvature at infinity, then M is the interior of a manifold with boundary.

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Example

$$S^3$$
 – cantor set = $\widetilde{L^3 \# L^3}$.

Proof:

Whitehead case applies.

Theorem

If M^3 is of finite type and has positive scalar curvature at infinity, then M is the interior of a manifold with boundary.

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Example

$$S^3$$
 – cantor set = $\widetilde{L^3 \# L^3}$.

Proof:

Whitehead case applies. Perelman is used

Theorem

If M^3 is of finite type and has positive scalar curvature at infinity, then M is the interior of a manifold with boundary.

Example

$$S^3$$
 – cantor set = $\widetilde{L^3 \# L^3}$.

Proof:

Whitehead case applies.

Perelman is used—though Hamilton is probably enough.

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Theorem

For all n, there is a contractible manifold M^n having no complete metric of positive scalar curvature.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Theorem

For all n, there is a contractible manifold M^n having no complete metric of positive scalar curvature.

Theorem

For all n, there is a contractible manifold M^n having no complete metric of positive scalar curvature.

Proof:	
n=1	$\mathbb{R}.$
n = 2	\mathbb{R}^2 .

Theorem

For all n, there is a contractible manifold M^n having no complete metric of positive scalar curvature.

◆□> ◆□> ◆ヨ> ◆ヨ> ○三

Theorem

For all n, there is a contractible manifold M^n having no complete metric of positive scalar curvature.

Theorem

For all n, there is a contractible manifold M^n having no complete metric of positive scalar curvature.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Proof:

- **n** = **3** The Whitehead manifold.
- n = 4 The Mazur manifold.
- n > 4 Variations on the Mazur manifold.

Dimension four?

Question

Are there are interesting 4-manifolds that have complete metrics of positive scalar curvature?

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

Dimension four?

Question

Are there are interesting 4-manifolds that have complete metrics of positive scalar curvature?

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Question

Is \mathbb{R}^4 the only contractible 4-manifold with positive scalar curvature?