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Classical background.

Fact

If Sp is the scalar curvature at a point p in a manifold Mn, then

VolM (Bε (p)) = VolRn(Bε)− Sp · Cεn+2 + · · ·

Remark (Gauss-Bonnet)

If a surface Σ2 has a complete metric of positive scalar curvature,
then Σ2 ∼= S2 or Σ2 ∼= RP2.
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If Mn is a compact spin manifold admitting a metric of positive
scalar curvature, then
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Example (K3 Surface)

K3 is spin.

sign K3 = 16, so 〈Â(K3), [K3]〉 6= 0

K3 has no metric of positive scalar curvature.
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Theorem (Atiyah-Singer, due to Lichnerowicz)

If Mn is a compact spin manifold admitting a metric of positive
scalar curvature, then

〈Â(M), [M]〉 = 0.

Example (CP2)

CP2 has a metric with positive scalar curvature,

sign CP2 = 1,

CP2 is not spin.
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Atiyah-Singer.



Background.

Theorem (Atiyah-Singer, due to Lichnerowicz)

If Mn is a compact spin manifold admitting a metric of positive
scalar curvature, then

〈Â(M), [M]〉 = 0.

Idea of Proof:

Since M is spin, M has a Dirac operator /D.

/D? /D = ∆ + Scal.

If Scal > 0, then ∆ + Scal > 0, then ker /D? = 0 and ker /D = 0,
then ind /D = ker /D − ker /D? = 0, so 〈Â(M), [M]〉 = 0 by
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Question

Does T n have a metric of positive scalar curvature?

Theorem (Schoen-Yau for n ≤ 7, Gromov-Lawson for all n)

T n has no metric of positive scalar curvature.

Theorem (Gromov-Lawson)

K\G/Γ, a compact locally symmetric space, has no complete
metric of positive scalar curvature.
Additionally, noncompact hyperbolic manifolds do not have metrics
of positive scalar curvature.
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Following Rosenberg, same as before but using K (C ?π).
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What happens for interiors of manifolds with boundary?

M ∂M

M is the interior of a manifold with boundary.

The boundary has a fundamental group π∞1 M.
This suggests an obstruction in KO(Bπ1M,Bπ∞1 M).
Assembly map for pairs into L-theory. But in the C ?-algebra
setting only works really well if the fundamental group injects.
One mystery of the Baum-Conjecture is the functoriality
aspect (even in the torsion free case.) Why should there be
functoriality associated to homomorphisms?
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Proper homotopy equivalence of non-compact manifolds.

Definition

M is simply connected at infinity if every compact K ⊂ M is
contained in a larger compact C ⊃ K , so that M − C is simply
connected.

Theorem (Browder-Livesay-Levine)

Mn, n > 5, is the interior of a manifold with simply connected
boundary iff

M has finitely generated homology and

M is simply connected at infinity.
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The case of lattices.

Theorem (Block-W)

K\G/Γ has a complete metric of positive scalar curvature iff
Q-rk(Γ) > 2.

Theorem (Chang)

K\G/Γ never has a complete metric of positive scalar curvature in
the obvious QI class.

Idea of Proof:

Marry Novikov idea to Roe’s partitioned manifold index
theorem.

We will discuss it in more detail later.
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Fundamental group at infinity.

Definition (Fundamental group at infinity)

K1 K2 K3 K4 K5

K1 ⊂ K2 ⊂ K3 ⊂ · · · ⊂ M

π∞1 (M) = Γ means that the pro-system

π1(M − K1)← π1(M − K2)← π1(M − K3)← · · ·

is pro-equivalent to the constant system Γ← Γ← · · · .
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Theorem (Siebenmann’s thesis)

The obstruction to putting a boundary on a tame manifold lies in
K̃0(Zπ∞1 ).

Takes the fear out of non-compactness when you are tame.

If tame at infinity, then there is a relative assembly theory, relative
Novikov conjecture for L-classes and so on.

If not, it’s somewhat harder to describe the relevant assembly
maps that enter the theory, but not impossible.
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Key example: Whitehead manifold.

· · ·

Whitehead = S3 −
⋂
i

hi (S1 × D2).

Remark

No nice metric on these manifolds.
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(by Papakyriakopoulos’ sphere theorem,
because A is the complement of a non-split link)

Naively construed, “π∞1 ” is trivial.
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Theorem
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Proof:

DW = double of Whitehead manifold along T 2

DW has a positive scalar curvature metric except at A ∪ Ā

DW has positive scalar curvature metric at infinity

—a
contradiction.
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DW has positive scalar curvature metric at infinity

—a
contradiction.



The Whitehead manifold and positive scalar curvature.

Proof:

AAAAĀ Ā Ā
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independent of the
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the metric.
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The non-simply connected case.

AAAAĀ Ā Ā

T 2 T 2T 2T 2
T 2

T 2

If V is not simply connected, attractive to couple Roe’s theorem to
C ?(π1V ).

In this case, V = T 2.

But [/D] ∈ K2(T
2) dies on pushing forward by K2(T

2)→ K2(pt),
so /D on T 2 does not obstruct positive scalar curvature.

On the other hand, K2(T
2)→ K2(C

?(Z2)) is injective.
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T 2 T 2T 2T 2
T 2

T 2

If V is not simply connected, attractive to couple Roe’s theorem to
C ?(π1V ). In this case, V = T 2.

But [/D] ∈ K2(T
2) dies on pushing forward by K2(T

2)→ K2(pt),
so /D on T 2 does not obstruct positive scalar curvature.

On the other hand, K2(T
2)→ K2(C

?(Z2)) is injective.



The non-simply connected case.

AAAAĀ Ā Ā
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Tilt horizontal direction to the vertical.

Idea

Use π1(DW ) rather than π1(T
2) = Z2.

Question

Do we know strong Novikov conjecture for π1(DW )?

DW aspherical.

H2(T
2)

� � // H2(DW )

K2(T
2) //

OO

K2(DW )

OO

// K2(π1DW )

Theorem (Connes-Gromov-Mascovicci)

Novikov conjecture holds for all 2-dimensional cohomology classes.



Taming 3-manifolds.

Theorem

If M3 is of finite type and has positive scalar curvature at infinity,
then M is the interior of a manifold with boundary.

Example

S3 − cantor set = L̃3#L3.

Proof:

Whitehead case applies.
Perelman is used—though Hamilton is probably enough.
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