
Equivariant Periodicity for Compact Group Actions

Shmuel Weinberger∗

University of Chicago

Min Yan†

Hong Kong University of Science and Technology

October 2, 2003

1 Introduction

Probably the most basic structural phenomenon of high dimensional topology is Sieben-
mann’s periodicity theorem [3] (as amended by Nicas [5]), which asserts that the manifolds
homotopy equivalent to M are in a one-to-one correspondence with (a subset of, because
of nonresolvable honology manifolds [1]) those homotopy equivalent to M×D4. The main
goal of this paper is to show the following extension of this to the equivariant setting.

Theorem Let G be a compact Lie group. Let M be a homotopically stratified G-manifold
with condimension ≥ 3 gap. Let ξ be a complex G-vector bundle over M that has the
same isotropy as M everywhere. Then

SG(M, rel ∂) ∼= SG(D(ξ ⊕ ξ), rel ∂).

The same isotropy everywhere condition means that for any open subset U of M , the
collection of isotropy groups for U is the same as the collection of isotropy groups for ξ|U .
The assumption means that the projection induces a one-to-one correspondences between
the isovariant components of ξ and the isovariant components of M .

In fact, one can use topological bundles that have complex structure just over a 1-
skeleton on M . We plan to apply this, rather along the lines of Atiyah-Hirzebruch’s
differentiable Riemann-Roch theorem, in further joint work with Cappell to defining in-
duced maps between structure sets for a wide class of equivariant maps. This should
allow application of the tools of algebraic topology, such as homology theory and assem-
bly maps, which do not generalize gracefully to the current situation where functoriality
is essentially only known with respect to open inclusions.
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This paper is a continuation of our earlier one on abelian group actions [7] and the
reader can refer to the introduction to that paper for some more discussion of the context,
history, and applications of such results, and also for any unexplained notation. In partic-
ular the main result of this paper proves a conjecture of that paper. For product bundles
associated to representations (and some others), this result extends [8], which dealt with
permutation representations of odd order groups, and [7] which dealt with abelian groups,
and [9] which produced periodicity representations for some small positive dimensional
nonabelian groups.

The proof of the main theorem uses the main technical device of that paper: the
products with nonmanifold periodicity spaces. The main difference between this paper
and that is the source of the periodicity space. In [7] we used products of modified pro-
jective spaces of representations of G. As [9] shows, this can occasionally be done in the
nonabelian case, but it rapidly becomes unwieldy. Here we instead, following [2], modify
configuration spaces of representation spheres to obtain the periodicity spaces. The su-
perior flexibility of the configuration space construction over projectivization enables one
to be able to handle nontrivial bundles, i.e. prove analogs of Thom isomorphism rather
than just Bott periodicity. This very quickly leads to our main theorem.

This result was proven during a visit of the second author to University of Chicago;
he would like to thank them for their hospitality. The first author would like to thank
Kevin Whyte for a valuable conversation. Both authors would also like to thank Sylvain
Cappell for useful conversations regarding this work and its continuations.

2 Periodicity Space

Let V = W ⊕ R3 be the direct sum of a unitary complex G-representation W and the
trivial G-representation R3. We also fix two distinct vectors p, q ∈ R3 of unit length.

Denote by S(V ) and D(V ) the induced G-sphere and G-disk. Let

C(V ) =
S(V )× S(V )

(u, v) ∼ (v, u)

be the symmetric double of S(V ). Contained in C(V ) is the diagonal

S∆(V ) = {[v, v] ∈ C(V ) : v ∈ S(V )},

which is G-homeomorphic to S(V ). The G-space C(V ) is stratified with S∆(V ) and
C(V )−S∆(V ) as the lower and upper strata. We use p and q to introduce a special point
in the upper stratum

b = [(0, p), (0, q)] ∈ C(R3)− S∆(R3) ⊂ C(V G)− S∆(V G) ⊂ C(V )− S∆(V ).

The tangent space at the point is

TbC(V ) = T(0,p)S(W ⊕ R
3)× T(0,q)S(W ⊕ R

3) = W ⊕ R
2 ⊕W ⊕R

2. (2.1)

Our intention is to make C(V ) into a periodicity space, with the periodicity representation
given by the tangent space above.
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For a subgroup H of G, we fix a finite generating set. Then [v, w] ∈ C(V )H means
that for each generator h, either

hv = v, hw = w,

or
hv = w, hw = v.

Let h1, . . . , hr be the generators that fix v, and let h′
1, . . . , h

′
s be the remaining generators

that do not fix v but exchange v and w instead. If s = 0, then H fixes v and w, so that
[v, w] ∈ C(V H). If s > 0, then v is fixed by the subgroup K generated by hi, h

′
jh

′
k, h

′
jhih

′
j.

Moreover, K is a normal subgroup of H of index 2. Thus if let h ∈ H be any element
generating H/K and denote

SH,2(V
K) = {[v, hv] : v ∈ S(V K)}, (2.2)

then we have

C(V )H = C(V H) ∪





⋃

K⊂H,|H/K|=2

SH,2(V
K)



 . (2.3)

By the way K is constructed, the union is in fact a finite one. Moreover, the WH-action
exchanges SH,2(V

K) for various index 2 subgroups K of H , and for K 6= K ′ we have

SH,2(V
K) ∩ SH,2(V

K ′

) = S∆(V H). (2.4)

The space C(V ) is not yet a periodicity space due to the following problems:

1. The singular part S∆(V ) of C(V ) needs to be “killed”;

2. The extra fixed points SH,2(V
K) needs to be “killed”;

3. The top stratum is not equivariantly simply connected: π1(C(V H)− S(V H)) = Z2.

To solve the first and the second problems, we need to find an equivariant “cobound-
ary” for

Ŝ(V ) = S∆(V ) ∪





⋃

K⊂H⊂G,|H/K|=2

SH,2(V
K)



 .

It is easy to see that

Ŝ(V ) = {[v, gv] : v ∈ S(V ), g ∈ G, g2v = v}.

Moreover, we have the intersections among the pieces that make up Ŝ(V ):

S∆(V ) ∩ SH,2(V
K) = S∆(V H),

S∆(V H) ∩ S∆(V H′

) = S∆(V H′′

),

SH,2(V
K) ∩ SH′,2(V

K ′

) =

{

S∆(V H′′

) if H ′′ = K ′′

SH′′,2(V
K ′′

) if H ′′ 6= K ′′
,
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where H ′′ is the subgroup generated by H , H ′, and K ′′ is the subgroup generated by
K, K ′, hh′ (h and h′ generate H/K and H ′/K ′, respectively). The intersections imply
that Ŝ(V ) has a natural G-stratification with two types of closed strata, both labeled by
conjugacy classes of isotropy subgroups. The first type is (0 stands for the lower strata,
[H ] stands for the conjugacy class of H)

Ŝ(V )0,[H] = GS∆(V H),

which gives the usual stratification of the G-sphere S∆(V ) (any G-manifold has such
natural G-stratification). The second type is (1 stands for the upper strata)

Ŝ(V )1,[H] = G



S∆(V H) ∪





⋃

K⊂H,|H/K|=2

SH,2(V
K)







 .

The partial order among the strata is given by the inclusion of subgroups up to conjugation
and the inclusion Ŝ(V )0,[H] ⊂ Ŝ(V )1,[H].

Note that v ↔ [v, v] is a homeomorphism between S∆(V ) and S(V ), and v ↔ [v, hv]
is a homeomorphism between SH,2(V

K) and S(V K)/H (which is really a quotient by
H/K ∼= Z2). Since S∆(V ) and SH,2(V

K) are spheres or quotients of spheres, we may
construct the “coboundary” by extending the spheres to the disks. Specifically, inside the
G-space

D(V )×D(V )

(u, v) ∼ (v, u)
,

we introduce the subsets

D∆(V ) = {[v, v] : v ∈ D(V )},

DH,2(V
K) = {[v, hv] : v ∈ D(V K)},

where h ∈ H is any element generating H/K. The “coboundary” is then the subset

D̂(V ) = D∆(V ) ∪





⋃

K⊂H⊂G,|H/K|=2

DH,2(V
K)



 .

Moreover, similar homeomorphisms give us

D∆(V ) ∼= D(V ) = coneS(V ) ∼= coneS∆(V ),

DH,2(V
K) ∼= D(V K)/H = coneS(V K)/H ∼= coneSH,2(V

K),

which combine to form a homeomorphism of G-stratified spaces

D̂(V ) ∼= coneŜ(V ). (2.5)

Note that all the strata of Ŝ(V ) contain the minimum stratum S(V G), which is a sphere
of dimension ≥ 2 acted trivially by the group. Therefore we may take the cone point in
(2.5) not as a seperate stratum, but instead as an interior point of the closed stratum
D(V G).
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The cone relation (2.5) implies that the strata of D̂(V ) and Ŝ(V ) satisfy

D̂(V )α = Ŝ(V )α × (0, 1], α = (0, [H ]) or (1, [H ]),

with the pair (D(V G), S(V G)) of smallest strata as the only exception. Consequently
(together with dim V G ≥ 3), the pair (D̂(V ), Ŝ(V )) has the isovariant π-π property.

Now we solve the problem that π1(C(V H)−S(V H)) is nontrivial. Take an embedding

ρ : S1 → C(R3)− S∆(R3)− {b} (2.6)

representing the generator of the fundamental group π1(C(R3) − S∆(R3)) = Z2. Since
the space C(R3) (which is homeomorphic to CP

2) is orientable, the normal bundle of ρ
in C(R3) is trivial. We fix one trivialization of the normal bundle.

The assumption V = W ⊕ R3 allows us to naturally consider S∆(R3) and C(R3) as
subsets of S∆(V ) and C(V ). The assumption also gives a natural trivialization of the
normal bundle of S(R3) in S(V ), with W as the fibre. Since ρ is contained in the top
stratum C(V )− Ŝ(V ), the normal bundle of ρ in C(V ) can be naturally identified

ν =
[0, 1]× R5 × (W ⊕W )

(0, u, w1, w2) ∼ (1, u, w2, w1)
. (2.7)

Using the assumption that W is a complex representation, a path

σt =





cos
πt

2
−eiπt sin

πt

2

sin
πt

2
eiπt cos

πt

2



 : W ⊕W →W ⊕W

may be constructed to connect the transformation (w1, w2) → (w2, w1) to the identity
transformation in the space of equivariant automorphisms of W ⊕W . The path σt can
be interpreted as an explicit trivialization of the normal bundle (2.7), which can be used
to identify a tubular neighborhood of ρ in C(V ) with S1 × D5 × D(W ⊕ W ) ∼= S1 ×
D(R5 ⊕W ⊕W ). An equivariant surgery on C(V ) that replaces S1 ×D(R5 ⊕W ⊕W )
by D2 × S(R5 ⊕W ⊕W ) kills the fundamental groups π1(C(V H) − S∆(V H)) for all H .
We denote the result of the surgery by C1(V ).

Since the surgery is performed inside C(V )− Ŝ(V ), it can also be applied to (the top
stratum of) C(V ) ∪Ŝ(V ) D̂(V ) and gives rise to

P (V ) = C1(V ) ∪Ŝ(V ) D̂(V ).

To use P (V ) as a periodicity space, we need to verify that C1(V )H − Ŝ(V )H = C1(V
H)−

Ŝ(V )H (see (2.3)) is connected and simply connected for any subgroup H . Since the
surgery already makes C1(V

H)− S∆(V H) connected and simply connected, it suffices to
show that

dim(Ŝ(V )H − S∆(V H) + 3 ≤ dim(C(V )H − S∆(V H)).

For the special case that H is trivial, this means

dim{(v, gv) : v ∈ V, g ∈ G, gv 6= v, g2v = v}+ 4 ≤ 2 dim V.

For a general subgroup H , we need to substitute V and G by V H and WH in the
inequality. Since V already contains R3, the inequality is almost true (with +4 replaced
by +3). The classical 4-fold periodicity allows us to add R

4 to V , so that V ⊕R
4 satisfies

the inequality. Therefore as far as proving periodicity theorem is concerned, P (V ) can be
taken as a periodicity space.
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3 Periodicity Bundle

In this section, a fibrewise construction of the periodicity space will be carried out. At-
tention is paid to the fact that the isotropy groups acting on fibres depend on the points
of the base manifold.

Let M be a compact G-manifold. Let η be a complex G-vector bundle over M . Let
ε3 = M×R3 be the three dimensional trivial bundle. Denote ξ = η⊕ε3 and the projection
π : ξ → M . For any subgroup H , ξH is a WH-bundle over MH .

We have the sphere bundle S(ξ), the disk bundle D(ξ), and the fibrewise symmetric
product bundle C(ξ) (which contains the diagonal bundle S∆(ξ) as lower stratum). All
these are G-bundles.

Similar to the case ξ = M × V , for any K ⊂ H satisfying |H/K| = 2, denote

SH,2(ξ
K|MH ) = {[v, hv] : v ∈ S(ξK |MH)}, h generates H/K. (3.1)

Note that the bundle ξK is restricted to MH because v and hv should lie in the same fibre
of S(ξ). Similar to (2.3), the fixed point

C(ξ)H = C(ξH) ∪





⋃

K⊂H,|H/K|=2

SH,2(ξ
K|MH )



 . (3.2)

The WH-action exchanges SH,2(ξ
K |MH) for various K, and by (2.4),

SH,2(ξ
K|MH ) ∩ SH,2(ξ

K ′

|MH) = S∆(ξH), for K 6= K ′.

To make (3.2) into a periodicity bundle, a “coboundary” for

Ŝ(ξ) = S∆(ξ) ∪





⋃

K⊂H⊂G,|H/K|=2

SH,2(ξ
K|MH )



 (3.3)

= {[v, gv] : v ∈ S(ξ), g ∈ Gπ(v), g
2v = v}

needs to be constructed. The space Ŝ(ξ) is G-stratified with strata

Ŝ(ξ)0,[H] = GS∆(ξH),

Ŝ(ξ)1,[H] = G



S∆(ξH) ∪





⋃

K⊂H,|H/K|=2

SH,2(ξ
K |MH)







 ,

and the projection π̂ : Ŝ(ξ)→ M is a stratified system of G-bundles, with π̂−1(x) = Ŝ(ξx),
where ξx = ηx⊕R3 is a Gx-representation. Similar to (2.5), a fibrewise cone construction

D̂(ξ) = coneM Ŝ(ξ) = Ŝ(ξ)× [0, 1] ∪Ŝ(ξ)×0↗ M

may be carried out, with the cone point not introducing an extra stratum. By the same
reason as before, the pair (D̂(ξ), Ŝ(ξ)) (and the restriction on any G-invariant subset of
M) has the isovariant π-π property.
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Next, the fibrewise fundamental group π1(C(ξH
x ) − S∆(ξH

x )), H ⊂ Gx, needs to be
killed. To do this, the special loop (2.6) may be extended to an embedding

ρM : M × S1 → C(ε3)− S∆(ε3)−M × b→ C(ξ)− S∆(ξ)−M × b (3.4)

The normal bundle of the embedding ρM is similar to (2.7)

νM =
[0, 1]× R5 × (η ⊕ η)

(0, u, w1, w2) ∼ (1, u, w2, w1)
, (3.5)

Then a fibrewise surgery as before produces a periodicity bundle (more precisely, a strat-
ified system of bundles)

πP : P (ξ) = C1(ξ) ∪Ŝ(ξ) D̂(ξ)→M.

The periodicity representation is the fibrewise tangent bundle of the section M × b
in the top stratum C1(ξ)− S∆(ξ). The fibrewise tangent bundle is easily identified with
η ⊕ η ⊕ ε4, so that the corresponding disk bundle

E(ξ) = D(η ⊕ η ⊕ ε4)

is embedded in the top stratum C1(ξ)− S∆(ξ). The triviality of the fundamental groups
π1(C(ξH

x )−S∆(ξH
x )) then implies that the embedding E(ξ)→ C1(ξ)−S∆(ξ) = P (ξ)−D̂(ξ)

induces isomorphisms on the fundamental groups of the isovariant components.

4 Periodicity for Surgery Obstruction

Denote by LG the surgery obstruction space, with the homotopy groups being the surgery
obstruction groups of Browder and Quinn. The periodicity is based on the fact that the
following maps

LG(M)
trf
−→ LG(P (ξ))

incl
−−→ LG(E(ξ)) (4.1)

are homotopy equivalences.
The inclusion in (4.1) is the composition of the following inclusions

LG(E(ξ))
inclα−−→ LG(P (ξ)− D̂(ξ))

inclβ
−−→ LG(P (ξ)). (4.2)

Since the embedding E(ξ) → P (ξ) − D̂(ξ) induces isomorphisms on the fundamental
groups of the isovariant components, inclα is an equivalence. The second inclusion fits
into a fibration

LG(P (ξ)− D̂(ξ))
inclβ
−−→ LG(P (ξ)) −→ LG(D̂(ξ)).

The base is homotopically trivial because the pair (D̂(ξ), Ŝ(ξ)) has the isovariant π-π
property. Thus inclβ is also an equivalence. This completes the proof that the inclusion
in (4.1) is an equivalence.

To prove the transfer in (4.1) is an equivalence, consider a maximal isotropy subgroup
H of M . There is a commutative diagram

LG(M −GMH) −−−→ LG(M) −−−→ LWH(MH)

τ





y
trf





y trf′





y

LG(P (ξ)−GP (ξ)H) −−−→ LG(P (ξ)) −−−→ LWH(P (ξ)H)

(4.3)
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in which the rows are fibrations and the transfer map trf1 is taken with respect to the
WH-bundle P (ξ)H = C1(ξ)

H ∪ D̂(ξ)H → MH . We will prove the transfer map in the
middle to be an equivalence by showing that the maps τ and trf′ are equivalences.

The transfer trf′ may be compared with a related non-equivariant transfer. Since H
is a maximal isotropy subgroup, WH acts freely on the equivariant WH-bundle ξH →
MH . Then we have the disk bundle D(ξH/WH), the sphere bundle S(ξH/WH), and the
symmetric product C(ξH/WH) of the sphere bundle. Moreover, a surgery can be applied
to C(ξH/WH) to get C1(ξ

H/WH) and a stratified bundle

P (ξH/WH) = C1(ξ
H/WH) ∪S∆(ξH/WH) D(ξH/WH)→ MH/WH.

Then there is a transfer map

trf′′ : L(MH/WH)→ L(P (ξH/WH)) (4.4)

associated to the bundle. Moreover, there is an inclusion

incl′′ : L(C1(ξ
H/WH)− S∆(ξH/WH))→ L(P (ξH/WH)), (4.5)

which is again an equivalence because (D(ξH/WH), S∆(ξH/WH)) has the isovariant π-π
property. Since the dimension of the fibre of C(ξH/WH) is 2(dim ξH − 1), there is also
the projection

proj : L(C1(ξ
H/WH)− S∆(ξH/WH))→ L+2(dim ξH−1)(M

H/WH),

which is also an equivalence because the projection induces an isomorphism on fundamen-
tal groups. Moreover, since ξH = ηH ⊕ ε3 and η is a complex vector bundle, dim ξH − 1
is an even number, and we have the classical periodicity isomorphism

per : L+2(dim ξH−1)(M
H/WH) ∼= L(MH/WH).

Combining the four maps associated to the bundle P (ξH/WH) together, we get

per ◦ proj ◦ incl′′−1 ◦ trf′′ : L(MH/WH)→ L+2 dim ξH−2(M
H/WH). (4.6)

Since the complex vector bundle ξH/WH is always orientable and even dimensional, the
proof of Theorem 4.3 in [2] basically says that the composition (4.6) is an equivalence.
Since the periodicity, the projection, and the inclusion are all equivalences, the transfer
(4.4) is also an equivalence.

Next the two transfers trf′ and trf′′ are compared. By (3.2) and (3.3),

C1(ξ)
H = C1(ξ

H) ∪ SH ,

Ŝ(ξ)H = S∆(ξH) ∪ SH ,

P (ξ)H =
(

C1(ξ
H) ∪ SH

)

∪(S∆(ξH)∪SH)

(

D∆(ξH) ∪DH

)

,

where

SH =
⋃

K⊂H,|H/K|=2

SH,2(ξ
K|MH ),

DH =
⋃

K⊂H,|H/K|=2

DH,2(ξ
K|MH ).
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Moreover, by the way P (ξH/WH) is constructed,

C1(ξ
H/WH) = C1(ξ

H)/WH,

S∆(ξH/WH) = S∆(ξH)/WH,

P (ξH/WH) =
(

C1(ξ
H) ∪S∆(ξH) D∆(ξH)

)

/WH.

Thus the only difference between P (ξH/WH) and the quotient P (ξ)H/WH is the extra
strata DH/WH and SH/WH . Forgetting the extra strata gives a commutative diagram

LWH(MH)
trf′
−−−→ LWH(P (ξ)H)

incl′
←−−− LWH(C1(ξ)

H − Ŝ(ξ)H)
∥

∥

∥

forget





y

∥

∥

∥

L(MH/WH)
trf′′
−−−→ L(P (ξH/WH))

incl′′
←−−− L(C1(ξ

H/WH)− S∆(ξH/WH))

It has been argued before that incl′′ in (4.5) is an equivalence. By the similar π-π reason,
the inclusion incl′ is also an equivalence. Consequently, the transfer trf′ is an equivalence.

Now consider the induced map τ in (4.3). The map fits into a commutative diagram

LG(M −GMH) LG(M −GMH)

trf





y

τ





y

LG(P (ξ|M−GMH))
incl
−−−→ LG(P (ξ)−GP (ξ)H)

incl1

x




incl5

x





LG(P (ξ|M−GMH)− D̂(ξ|M−GMH))
incl
−−−→ LG(P (ξ)− D̂(ξ)−GP (ξ)H)

incl2

x




incl4

x





LG(E(ξ|M−GMH))
incl3−−−→ LG(E(ξ)−GE(ξ)H)

(4.7)

Since M −GMH has fewer isotropy subgroups than M , it can be assumed, by induction,
that the transfer on the top left is already an equivalence. Then τ can be proved to be
an equivalence if the indexed inclusions incl1, . . . , incl5 can be shown to be equivalences.

The composition of incl1 and incl2 is the same as the composition in (4.2), except M
is replaced by M−GMH . Moreover, because GE(ξ)H = E(ξ)∩GP (ξ)H, the composition
of incl4 and incl5 is the same as (4.2), except the isovariant components of (the maximal
isotropy subgroup) H and its conjugates are deleted. The modifications do not affect the
arguments for the inclusions in (4.2) to be equivalences. Therefore by the same arguments,
the inclusion maps incl4, incl5 are equivalences.

Finally, consider the spaces E(ξ|M−GMH) and E(ξ)−GE(ξ)H on the two sides of incl3.
Denote ζ = η ⊕ η ⊕ ε4. Then

E(ξ|M−GMH) = D(ζ |M−GMH),

E(ξ)−GE(ξ)H = D(ζ)−GD(ζ)H

= D(ζ |M−GMH) ∪G×H (D(ζ |MH)−D(ζH)).

For any proper subgroup K of H , the following is a one-to-one correspondence:
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• the K-isovariant components of M and of M −GMH , via inclusion.

The same isotropy everywhere assumption implies the following are one-to-one correspon-
dences:

• the K-isovariant components of D(ζ) and of M , via projection;

• the K-isovariant components of D(ζ |M−GMH) and of M −GMH , via projection.

Combining the three one-to-one correspondences together, we conclude that inclusion
gives a one-to-one correspondence between the K-isovariant components of D(ζ) and
of D(ζ |M−GMH). Then by the codimension ≥ 3 gap condition, the corresponding K-
isovariant components of D(ζ) and of D(ζ |M−GMH) have the same fundamental groups
(same as the fundamental groups of the corresponding isovariant components of M and
M − GMH). Since K-isovariant components of D(ζ) are the same as the K-isovariant
components of D(ζ) − GD(ζ)H, we conclude that incl3 induces isomorphisms on the
fundamental groups of corresponding isovariant components. Consequently, incl3 induces
an equivalence on the surgery obstruction.

5 Periodicity for K-theory

The discussion of the third section of [9] is still valid here. There are two periodicity
problems concerning the K-theory. The first is the stablization of the surgery obstruc-
tion. The second is the destablization of the structure set. By mostly formal arguments,
both problems can be settled by considering the special case G acts freely on M and by
considering the diagram

K≤1
G (C1(ξ))

incl
←− K≤1

G (C1(ξ)− Ŝ(ξ))
trf ↑ ↖ φ incl ↓

K≤1
G (M)

trf
−→ K≤1

G (P (ξ))

(5.1)

in which C1(ξ) is no longer considered as stratified, but only as a G-bundle over M with
polyhedron C1(V ) as the fibre. The map φ is the restriction to the closed stratum C1(ξ)
followed by forgeting the stratification in C1(ξ). The geometrical meanings of the maps in
(5.1) imply that the two triangles (and hence the whole diagram) are commutative. Since
incl induces isomorphisms on the fundamental groups of isovariant components, it is an
equivalence on the K-theory. As argued in [9], what needs to be done is to show that trf
is an equivalence after localizing at 2. In fact, we are going to see that the transfer is the
multiplication by 3.

Since G acts freely, trf is the same as the transfer K≤1(C1(ξ)/G) → K≤1(M/G) for
the nonequivariant bundle C1(ξ)/G → M/G, which was studied in [4]. Fix a base point
of C1(ξ)/G and use its projection b = Gx (x ∈M) as the base point of M/G. Denote by
V = ξx the fibre of ξ over x. Then C1(V ) is the fibre of the bundle C1(ξ)/G→ M/G, and
the universal cover C̃1(ξ) of the total space C1(ξ)/G is given by the following pullbacks

C̃1(ξ) −−−→ C1(ξ) −−−→ C1(ξ)/G




y





y





y

M̃ −−−→ M −−−→ M/G

, (5.2)

10



where M̃ is the universal cover of M . Since C1(V ) is connected and simply connected,
π1(C1(ξ)/G) may be identified with π1(M/G) via the projection. Then by fixing a base
point b̃ ∈ M̃ above b, the fibre of M̃ → M/G is exactly π1(M/G)b̃. From the pullback
(5.2), the fibre C̃1(V ) of the bundle C̃1(ξ)→ M/G is then exactly π1(M/G)b̃× C1(V ) as
a π1(M/G)-space. The monodromy of the π1(M/G)-equivariant bundle M̃ →M/G then
gives rise to a homomorphism

π1(M/G)→ [C̃1(V ), C̃1(V )]π1(M/G), (5.3)

where [F̃ , F̃ ]π is the equivalent homotopy classes of self-homotopy equivalences of a π-
space F̃ . Note that in case F̃ = π× F , with the π-action being left multiplication on the
first and the trivial action on the second, we have a natural map

[F, F ]→ [F̃ , F̃ ]π, φ̃(g, x) = (g, φ(x)). (5.4)

Now we are in exactly the same situation. The pullback (5.2) implies that the homomor-
phism (5.3) is a composition

π1(M/G)→ [C1(V ), C1(V )]→ [C̃1(V ), C̃1(V )]π1(M/G), (5.5)

where the first map is the monodromy of the bundle C1(ξ)/G → M/G, and the second
map is (5.4).

By Theorem 2.1 of the second part of [4], the transfer K≤1(C1(ξ)/G) → K≤1(M/G)
is algebraically determined by the Zπ1(M/G)-Zπ1(M/G)-bimodule structure on the ho-
mologies Hi(C̃1(V )) induced by the homomorphism (5.3). The first Zπ1(M/G) refers
to the group π1(M/G) on the right (appearing as a subscript) of (5.3). The second
Zπ1(M/G) refers to the group π1(M/G) on the left of (5.3). Since both π1(M/G) in (5.3)
were considered as acting on the left of C̃1(V ), the action of the group π1(M/G) on the
left of (5.3) needs to be modified by the inverse in the bimodule structure.

In our case, the factorization (5.5) implies that

Hi(C̃1(V )) = Zπ1(M/G)⊗Hi(C1(V )).

Moreover, the bimodule structure is the following: The first Zπ1(M/G) acts by left mul-
tiplication on the first factor only. The second Zπ1(M/G) acts on the second factor only,
and is induced by the monodromy of the bundle C1(ξ)/G→ M/G.

Since Hi(C1(V )) is a finitely generated abelian group, Hi(C̃1(V )) has finitely generated
projective resolutions as (the first and the left) Zπ1(M/G)-module. Thus according to
Theorem 2.1 of the second part of [4], the transfer is determined by the element

∑

(−1)i[Hi(C̃1(V ))] = [Zπ1(M/G)]⊗
∑

(−1)i[Hi(C1(V ))] (5.6)

in a certain Grothendieck group K0(Zπ1(M/G)− Zπ1(M/G)).
Let 2k− 2 be the real dimension of the complex bundle η. Then ξ is a real orientable

bundle of real dimension 2k + 1. Based on the computation in [2], it is easy to see that

Hi(C1(V )) =











HiS
2k i = 0, 2k

0 i = 1

H̃i−2k−1(RP 2k−1) other i

=











Z i = 0, 2k, 4k

Z2 i = 3, 5, ..., 2k − 1

0 other i
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as abelian groups. Since ξ is orientable, the monodromy preserves the orientation of
the fibre. Then by tracing the computation in [2], we find the action of Zπ1(M/G) on
Hi(C1(V )) to be trivial. Thus the element (5.6) is the same as the element [Zπ1(M/G)]⊗
[Z3] = 3[Zπ1(M/G)] in the Grothendieck group K0(Zπ1(M/G)−Zπ1(M/G)). This implies
that trf is multiplication by 3.
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