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1 Introduction

We say that an arbitrary manifold (M, ∂ M) is topologically rigid relative to its
ends if it satisfies the following condition: If (N , ∂ N ) is any other manifold with a
compact subset C ⊂ N for which a proper homotopy equivalence h : (N , ∂ N ) →

(M, ∂ M) is a homeomorphism on ∂ N ∪(N\C), then there is a compact subset K ⊂

N and a proper homotopy ht : (N , ∂ N ) → (M, ∂ M) from h to a homeomorphism
such that ht and h agree on ∂ N∪(N\K ) for all t ∈ [0, 1]. We say that a manifold M
without boundary is properly rigid or absolutely topologically rigid if we eliminate
the requirements that h be a homeomorphism on ∂ N ∪ (N\C) and agree with ht

on ∂ N ∪ (N\K ) for all t ∈ [0, 1]. Along the lines of the classical Borel conjecture
that all closed aspherical manifolds are topologically rigid, Farrell and Jones [8]
provide the following important theorem:

THEOREM 1.1 Let m ≥ 5. Suppose that Mm is an aspherical, complete, nonpos-
itively curved Riemannian manifold with Riemann curvature tensor R. If the i th

covariant derivative ∇ i R is bounded for all i (although not necessarily uniformly
in i), then M is topologically rigid relative to its ends.

In particular, if G is a linear Lie group, i.e., a virtually connected Lie group ad-
mitting a faithful representation ρ : G → GLn(R) for some n, then the hypotheses
of the theorem are satisfied by the double coset space #\G/K . Here K is a max-
imal compact subgroup of G and # ⊂ G is a torsion-free discrete subgroup. This
result shows that topological rigidity extends beyond the usual geometric rigidity
theory of Mostow and Margulis, which is ordinarily discussed in the context of
lattices. The most important lattices are probably the arithmetic ones, giving rise
to arithmetic manifolds. These manifolds are double coset spaces #\GR/K , where
G is a semisimple algebraic subgroup of GLn defined over Q, the subgroup K is
maximal compact in the real points GR, and # is a torsion-free arithmetic subgroup
of its rational points GQ.

In this paper, we will be interested in topological rigidity for arithmetic man-
ifolds, not relative to their ends. If #\G/K is noncompact, Borel and Serre [3]
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construct a well-known compactification M of M whose #-cover has boundary
homotopy equivalent to a countably infinite wedge of (r − 1)–spheres, where r
is the rational rank of G. Recall that, if G is a Q-subgroup of SLn(R) and # is
commensurable with GZ, then the rational rank rankQ(#) of G is the dimension
of any maximal Q-split torus of G. In fact, certain curvature and rigidity phenom-
ena occur or fail to occur in arithmetic manifolds in accordance with the size of its
rational rank. Block and Weinberger [4] prove that M = #\G/K admits a metric
of positive scalar curvature if and only if rankQ(#) ≥ 3, although such positively
curved metrics never belong to the same coarse class as the natural metric on M
inherited from the Lie group structure of G (see Chang [5]).

While arithmetic spaces are always topologically rigid in the category of con-
tinuous coarsely Lipschitz maps, i.e., the bounded structure set Sbdd(#\G/K ) van-
ishes [6], the size of their proper structure set is conjecturally determined by its
rational rank. When rankQ(#) ≤ 1, then the above theorem of Farrell and Jones,
together with the results of Gromov on the structure of cusps, implies that #\G/K
is indeed rigid in the category of proper maps (note that rankQ(#) = 0 implies that
#\G/K is compact by well-known theorems of Borel and Harish-Chandra [2]; see
also [7] for a discussion of “characteristic class rigidity” when the rational rank is
1). Block and Weinberger [4] give a plausible argument suggesting that the same
phenomenon occurs when rankQ(#) = 2. In this paper we demonstrate a sort of
converse:

THEOREM 1.2 Let M = #\G/K be a noncompact arithmetic manifold for which
rankQ(#) ≥ 3. Then M has a finite-sheeted cover N whose proper structure set
S p(N ) is nontrivial; i.e., there is a manifold X with a proper homotopy equivalence
g : X → N that is not properly homotopic to a homeomorphism.

This result notably shows that Mostow’s rigidity theorem cannot be weakened to
provide a proper version of Borel’s conjecture for manifolds of noncompact type.

The proof of the above theorem combines a number of well-known but deep re-
sults: theorems of Sullivan and Wall from classical surgery theory [15], the Borel-
Serre compactification of arithmetic manifolds [3], Kazhdan’s property T (see
[18]), and a consequence by Lubotzky [11] of Weisfeiler’s strong approximation
for linear groups [17]. In the final section of this paper, we will extend the theorem
to nonarithmetic nonuniform lattices using a geometric generalization of the idea of
Q-rank.

2 Group-Theoretic Background

Weisfeiler’s strong approximation result for general linear groups [17] states
that, if # is a Zariski-dense subgroup in an algebraic group G, then # is virtually
dense in G with respect to the congruence topology; i.e., the closure of # is of finite
index in Ĝ. The congruence topology of SLn(Z), for example, is the topology
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for which the groups #(m) = ker(SLn(Z) → SLn(Zm)) serve as a system of
neighborhoods of the identity and its completion is $p SLn(Ẑp). The theorem
implies, in particular, that a finitely generated linear group is either solvable or
has a finite index subgroup with infinitely many different finite simple quotients.
Lubotzky uses Weisfeiler’s result to prove the following:

THEOREM A ([11]) Let F be a field of characteristic different from 2 or 3, and let
# be a finitely generated infinite subgroup of GLn(F). For all d ∈ Z≥1, there is a
finite-index subgroup of # whose index in # is divisible by d.

Wehrfritz [16] gave a different proof of the above result for d = 2 that is also
valid in characteristics 2 and 3, which is all we need for our main result. It is worth
noting that Theorem A is equivalent to the assertion that, for any prime q, the
q-Sylow subgroup of the profinite completion #̂ of # is infinite. In our discussion
it will be convenient to use the following stronger form of Theorem A:

THEOREM B ([11]) Suppose that # satisfies the hypotheses of Theorem A and is
not solvable-by-finite; i.e., # has no solvable subgroup of finite index. Then for
every prime q, the q-Sylow subgroup of #̂ is infinitely generated.

COROLLARY 2.1 Let # be any linear group. There is then a normal subgroup #′′!

# of finite even index, and hence # contains a subgroup #′ with a homomorphism
onto Z2.

PROOF: Since every subgroup of finite index contains a normal subgroup of
finite index, the first remark follows. Using Cauchy’s theorem, there is a subgroup
of #/#′′ isomorphic to Z2. Let #′ be the inverse image of this subgroup. "

3 Main Theorem

PROPOSITION 3.1 Let G be a semisimple Lie group with rankR(G) ≥ 2 and trivial
center. Let M = #\G/K be an arithmetic manifold with # an irreducible lattice
of G. Then M has a finite cover N for which H1(N ) contains 2-torsion.

For any locally compact group G, recall that G has Kazhdan property T if any
unitary representation π : G → U (H) of G on a Hilbert space H that almost has
invariant vectors actually has nontrivial invariant vectors. Kazhdan proves that if
G is a connected semisimple Lie group with finite center, each of whose factors
has real rank at least 2, then G, as well as any lattice subgroup of G, has Kazhdan
property T (see [18]). This property stands opposite the condition of amenability in
the sense that, if G is amenable, then G has Kazhdan property T if and only if G is
compact. From this result it is easy to show that if φ : G → H is a homomorphism

where G has Kazhdan property T and H is amenable, then φ(G) is compact.

PROOF: The corollary above asserts the existence of a subgroup #′ ≤ # that is
equipped with an epimorphism φ : #′ → Z2. Let H = ker φ so that #′/H ∼= Z2.
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Let J = [#′,#′] be the commutator subgroup of #′. Observe that both H and

J are normal in #′. Now consider the quotient homomorphism ρ : #′ → #′/J .

First assume that G is simple. By the condition on the real rank of G, it follows

that #′ has property T . Since #′/J is amenable, the image ρ(#′) = #′/J must be

compact, and by the discreteness of # the index [#′ : J ] is finite. Therefore let N
be the cover of M with respect to the subgroup #′ ≤ #. Then π1(N ) = #′ and

H1(N ) = #′/J contains 2-torsion.

In the case that G is not simple, we use superrigidity of #′ in place of property

T [13]. Since a positive Betti number of N would give a homomorphism to S1 with

infinite image (by sending the generator of Z to an irrational rotation), according

to superrigidity G would have to have such a homomorphism. Because it does

not, all the lattices that we consider have vanishing b1. Therefore the first integral

homology of N is finite. The remainder of the proof proceeds as in the simple case.

"

COROLLARY 3.2 Let N be given as above. Then the group H 2(N , Z2) is nonzero.

PROOF: By using the above proposition, the homology group H1(N ) contains

2-torsion. We are then able to conclude that Ext(H1(N ), Z2) is nontrivial, since

Ext(Zm, Zn) ∼= Z(m,n) for any m, n ∈ Z≥1. By the universal coefficient theorem,

the map

Ext(H1(N ), Z2) → H 2(N , Z2)

is injective, so H 2(N , Z2) is nontrivial as well. "

THEOREM 3.3 Let M = #\G/K be a noncompact arithmetic manifold whose Q-
rank is at least 3. Then M has a finite-sheeted cover N whose proper structure set
is nontrivial; i.e., the manifold M is virtually properly rigid.

PROOF: Let #′ be a normal subgroup of # of finite even index, and let N be

the cover of M corresponding to #′. Then π1(N ) = #′ and H 2(N , Z2) is nonzero.

As observed by Block and Weinberger [4], this N can be compactified to a π-π
manifold N with boundary since the Q-rank is greater than 2. This result follows

from the identification of the homotopy type of the #-cover of the boundary with

a wedge of (q − 1)–spheres using the Solomon-Tits theorem [3]. According to

Siebenmann’s thesis, any manifold that is properly homotopy equivalent to M will

have the same property. Using the h-cobordism theorem, any such manifold has a

unique compactification so that the extension of the proper homotopy equivalence

to the compactification is a simple homotopy equivalence. We can then identify
the structure set S(N ) with the proper structure set S p(N ). By the π-π theorem
of Wall [15], the structure set S(N ) of N is isomorphic to [N , F/T op]. Since
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F/T op = K (Z2, 2) × K (Z2, 6) × K (Z2, 10) × · · · × Z for some space Z (see
[12]), we then have

S p(N ) = S(N ) = [N , F/T op] = [N , F/T op]

= [N , K (Z2, 2) × K (Z2, 6) × K (Z2, 10) × · · · × Z ]

= [N , K (Z2, 2)] × [N , K (Z2, 6)] × · · · × [N , Z ],

which, by the previous corollary, is nontrivial since [N , K (Z2, 2)] = H 2(N , Z2).
"

THEOREM 3.4 Let M = #\G/K be an arithmetic manifold with # irreducible.
If rankQ # ≥ 3, then M has finite-sheeted covers N whose proper structures are
arbitrarily large.

PROOF: By the proof of Lubotzky’s Theorem B, the profinite completion #̂ of
# contains an infinitely generated elementary abelian 2-group Z∞

2 . If M is a fixed

positive integer, there is then a finite quotient #/I of # containing ZM
2 .

Let #′ be the inverse image of this ZM
2 under the projection map # → #/I .

If L/I = [#′/I,#′/I ] is the commutator subgroup of #′/I , then the abelian-
ization of #′/I is isomorphic to #′/L , which is a 2-group with the property that
Ext(#′/L , Z2) has at least 2M elements. Let J = [#′,#′] and consider the short ex-
act sequence of abelian groups given by 0 → L/J → #′/J → #′/L → 0. There-
fore we have the exact sequence 0 → Hom(#′/L , Z2) → Hom(#′/J, Z2) →

Hom(L/J, Z2). Since all quotients here are finite abelian (superrigidity implies
that #′/J is finite), we have

|Ext(#′/J, Z2)| = |Hom(#′/J, Z2)| ≥ |Hom(#′/L , Z2)|

= |Ext(#′/L , Z)| ≥ 2M .

If N is the finite cover of M corresponding to the subgroup #′ ≤ # = π1(M), we
can conclude as in the above corollary that H 2(N , Z2) is arbitrarily large. There-
fore the proper structure set S p(N ) is also arbitrarily large. "

Remark 3.5. In fact, if the R-rank is large enough and rankQ(#) > 2, then one
can construct infinite structure sets with nontrivial elements detected by Pontrjagin
classes, e.g., for SLn(Z) for n sufficiently large, using Borel’s calculations [1].
Unlike the elements constructed here, these elements do not die on passage to
further finite-sheeted covers. Note that, for a product of three punctured surfaces,
the proper rigidity conjecture is always false for any cover but is virtually true in
that any counterexample dies on passing to another finite cover.

4 Coarse Volume Growth and Nonarithmetic Lattices

The results in the previous section can be generalized to locally symmetric
spaces M = #\G/K for which we eliminate all irreducibility or arithmeticity
requirements on the subgroup #.
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DEFINITION 4.1 Let M be a metric space and let p ∈ M . For any R > 0 define

cov1(B(p, R)) = inf
k

{
k : B(p, R) ⊂

k⋃

i=1

B(pi , 1) for some p1, . . . , pk ∈ M
}
.

We denote by cvg(M) the coarse volume growth of M , which is the quantity

cvg(M) = lim
R→∞

log cov1(B(p, R))

log R
.

It is clear that the coarse volume growth of M is independent of the base point p.

Remark 4.2. The quantity cov1(B(p, R)) generalizes the notion of the growth rate
of groups, given by the function fG(n) = |B(x, n)|, where B(x, n) denotes the
ball of radius n about a fixed vertex x in the Cayley graph of G with the usual
word length metric. Note, for instance, that cvg(Rn) = n when Rn is endowed
with the usual Euclidean metric and cvg(M) = 0 when M is bounded. If P is
an n-dimensional simplicial complex and M = cP is the open cone on P , then
cvg(M) = n + 1. Coarse volume growth enjoys many properties exhibited by
rational rank. For example, it is additive over products; i.e., if M1 and M2 are
metric spaces, then cvg(M1 × M2) = cvg(M1) + cvg(M2) when M1 × M2 is given
the usual product metric.

Remark 4.3. Technically the notion of rational rank applies only when # is arith-
metic, although as mentioned in [14] one can extend the definition to all lattices us-
ing the Margulis arithmeticity theorem. In particular, if # is a lattice of a semisim-
ple Lie group G, then up to isogeny and modulo the maximal compact factor of G,
we can write G = G1 × · · ·× Gr so that #i = # ∩ Gi is an irreducible lattice in Gi

for all i . One can then define RankQ(#) = RankQ(#1) + · · · + RankQ(#r ), where

RankQ(#i ) =






0 if rankR(Gi ) = 0

1 if rankR(Gi ) = 1

rankQ(#i ) otherwise.

This apparently forced generalization of rational rank is actually consistent with
the coarse volume growth in the context of locally symmetric spaces. Although it
is a more extended concept than is required in this paper, we will continue to use
this latter form of volume growth as a more natural large-scale geometric measure
of general metric spaces.

Remark 4.4. Certainly coarse volume growth is a coarse invariant. By Ji and
MacPherson [10], if M is an arithmetic manifold, then M is coarsely equivalent
to the metric cone over the Tits complex '(#\G/K ) of dimension rankQ(#) − 1.
We therefore have the following:
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PROPOSITION 4.5 If the manifold M = #\G/K is arithmetic, then the coarse
volume growth of M is the dimension of the tangent cone of M, i.e., cvg(M) =

rankQ(#). In general, it agrees with the extension mentioned in Remark 4.3.

PROPOSITION 4.6 Let G be a semisimple Lie group, and let the locally symmetric
manifold M = #\G/K be endowed with the natural metric inherited from G. Here
# is a lattice of G that is not necessarily irreducible or arithmetic. If the coarse
volume growth of M is at least 3, then M is a π-π manifold.

PROOF: As mentioned above, if # is irreducible, it follows from [3] and the
structure of cusps [9] that the universal cover ∂̃(M) of the boundary of M is then
homotopy equivalent to a wedge of spheres of dimension cvg(M)−1. The general
case is proved by observing that, if cvg(#\G/K ) = q and cvg(#′\G ′/K ′) = r ,
then homotopically we have

∂̃(#\G/K × #′\G ′/K ′) = ∂̃(#\G/K ) ∗ ∂̃(#′\G ′/K ′)

=
∨

Sq−1 ∗
∨

Sr−1 =
∨

Sq+r−1.
"

THEOREM 4.7 Let G be a semisimple Lie group, and let # be a lattice of G (with no
assumptions on arithmeticity or irreducibility). If M = #\G/K and cvg(M) ≥ 3,
then there is a finite-sheeted cover N of M that is not properly rigid.

PROOF: Given the condition on the coarse volume growth and the proposi-
tion above, we know that M can be compactified to a π-π manifold, so that
[M, F/T op] = S p(M). If # is irreducible, then M is arithmetic by Margulis, and
the proof can be completed as before. If # is reducible, then write M = M ′ × M ′′,
where M ′ = #′\G ′/K ′ and M ′′ = #′′\G ′′/K ′′. Note that it is sufficient to
prove that H 2(N , Z2) 0= 0 for some cover N of M . Let N ′ and N ′′ be finite-
sheeted covers of M ′ and M ′′ equipped with surjections φ1 : π1(N ′) → Z2 and
φ2 : π1(N ′′) → Z2.

Case 1. Suppose that both φ1 and φ2 can be chosen so that they factor through
Z. Then Z is a summand of both H1(N ′) and H1(N ′′), so that Z2 is a summand of
both H 1(N ′, Z2) and H 1(N ′′, Z2). If N = N ′ × N ′′, then H 2(N , Z2) is nonzero.

Case 2. Suppose that there is no surjection φ1 : π1(N ′) → Z2 that factors
through Z. Let J be the commutator subgroup of π1(N ′). If H1(N ′) has no 2-
torsion, then H1(N ′) = π1(N ′)/J must be infinite since

[π1(N ′) : J ] = [π1(N ′) : ker φ][ker φ : J ] = 2 [ker φ : J ].

Hence π1(N ′)/J ∼= Z ⊕ R for some abelian group R. Therefore the composite
π1(N ′) → π1(N ′)/J → Z ⊕ R → Z is a surjection, yielding a contradiction.
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If N = N ′ × M ′′, then H1(N ) = H0(N ′) ⊗ H1(M ′′) ⊕ H1(N ′) ⊗ H0(M ′′) =
H1(M ′′) ⊕ H1(N ′) has 2-torsion, and so H 2(N , Z2) is nonzero by the universal
coefficient theorem. "

Remark 4.8. We (and Jonathan Block) note that the existence of uniformly positive
scalar curvature metrics on #\G/K when # is irreducible and of rankQ(#) ≥ 3
established in [4] can be proved for any locally symmetric space M with cvg(M) ≥
3 by the above method; moreover, if cvg(M) ≤ 2, then M has no complete metric
of positive scalar curvature.

We would like to thank Jonathan Block and Alex Lubotzky for very useful
conversations.
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