
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. 646–663

A TOPOLOGICAL VIEW OF UNSUPERVISED LEARNING FROM
NOISY DATA∗
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Abstract. In this paper, we take a topological view of unsupervised learning. From this point
of view, clustering may be interpreted as trying to find the number of connected components of any
underlying geometrically structured probability distribution in a certain sense that we will make
precise. We construct a geometrically structured probability distribution that seems appropriate for
modeling data in very high dimensions. A special case of our construction is the mixture of Gaussians
where there is Gaussian noise concentrated around a finite set of points (the means). More generally
we consider Gaussian noise concentrated around a low dimensional manifold and discuss how to
recover the homology of this underlying geometric core from data that do not lie on it. We show that
if the variance of the Gaussian noise is small in a certain sense, then the homology can be learned
with high confidence by an algorithm that has a weak (linear) dependence on the ambient dimension.
Our algorithm has a natural interpretation as a spectral learning algorithm using a combinatorial
Laplacian of a suitable data-derived simplicial complex.
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1. Introduction. An unusual and arguably ubiquitous characteristic of modern
data analysis is the high dimensionality of the data points. One can think of many
examples from image processing and computer vision, acoustics and signal processing,
bioinformatics, neuroscience, finance, and so on where this is the case. The strong
intuition of researchers has always been that naturally occurring data cannot possibly
“fill up” the high dimensional space uniformly, rather it must concentrate around
lower dimensional structures. A goal of exploratory data analysis or unsupervised
learning is to extract this kind of low dimensional structure with the hope that this
will facilitate further processing or interpretation.

For example, principal components analysis is a widely used methodological tool
to project the high dimensional data linearly into a lower dimensional subspace along
the directions of maximal variation in a certain sense. This serves the role of smooth-
ing the data and reducing its essential dimensions before further processing. Another
canonical unsupervised technique is clustering, which has also received considerable
attention in statistics and computer science. In this paper, we wish to develop the
point of view that clustering is a kind of topological question one is asking about the
data and the probability distribution underlying it: in some sense one is trying to
partition the underlying space into some natural connected components. Following
this line of thinking leads one to ask whether more general topological properties may
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NOISY DATA 647

Fig. 1. A random data set that is consistent with a mixture of Gaussians.

be inferred from data. As we shall see, from this the homology learning question
follows naturally.

As a first example, consider Figure 1, which consists of a cloud of points in
R

2. The viewer immediately sees three clusters of points. This picture motivates a
conceptualization of clustering as data arising from a mixture of distributions, each of
which may be suitably modeled as a Gaussian distribution around its centroid. This
is a fairly classical view of clustering that has received a lot of attention in statistics
over the years and more recently in computer science as well.

In contrast, consider Figure 2. Here one sees three clusters again. But these are
hardly like Gaussian blobs! In fact, one notices immediately that two of the clusters
are like circles while one is like a Gaussian blob. This picture motivates a different
conceptualization of clustering as trying to find the connected components of the
data set at hand—this has led to the recent surge of interest in spectral clustering
and related algorithms (see [10] and the references therein).

Now if one were interested in simply learning the “number of clusters,” a natural
spectral algorithm would proceed by building a suitable nearest neighbor graph with
vertices identified with data points, connecting nearby data points to each other, and
finding the number of connected components in this data-derived graph. But if one
wanted to learn further structure, then one needs to do more. Building on the notion
that the number of connected components is related to the zeroth homology and is
one of the simplest topological invariants of the space, we see that it is natural to ask
if one could learn higher order homologies as well. More generally, one may ask the
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648 P. NIYOGI, S. SMALE, AND S. WEINBERGER

Fig. 2. A random data set in IR2 that is not obviously consistent with a mixture of a small
number of Gaussians. Yet it seems to the viewer that there are clearly three groups of data.

following questions:
1. What are flexible, nonparametric models of probability distributions in high

dimensional spaces?
2. What sorts of structural information about these distributions can be esti-

mated from random data? In particular, can one avoid the curse of dimen-
sionality in the associated inference problems?

In this paper, we explore these two questions in a certain setting. We follow the
intuition that in high dimensional spaces the underlying probability distribution is
far from uniform and must in fact concentrate around lower dimensional structures.
These lower dimensional structures need not be linear, and so as a first step we consider
them to be submanifolds of the ambient space. The data then concentrate around this
submanifold M though it does not lie exactly on it. This allows us to define a fam-
ily of geometrically structured probability distributions in a high dimensional space
where the distribution ρ has support on all of R

D though it concentrates around a low
dimensional submanifold. This includes as a special case the mixture of Gaussians,
a classical and much studied family of probability distributions. We introduce this
geometrically structured family in the next section. We next consider the task of es-
timating the homology of the underlying manifold from noisy data obtained from the
geometrically structured probability distribution concentrated around this manifold.
Our main result is that a two stage variant of the algorithmic framework proposed in
Niyogi, Smale, and Weinberger [17] is robust to Gaussian noise, provided the noise is
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low. These algorithms may be interpreted as a kind of generalized spectral clustering
using the combinatorial Laplacian of a suitable data-derived simplicial complex. In
particular, the sample complexity of the algorithm depends exponentially on the di-
mension of the manifold but depends very weakly on the ambient dimension in this
setting. In this sense our results are analogous to the findings of [9] and later works
(see [1, 19], among others) which show that polynomial time algorithms for estimating
mixtures of Gaussians may be obtained, provided the variance of the Gaussians in
question is small in relation to the distance between their centers.1 It is impossible to
do justice to the abundant literature on this subject and its complicated history here.
We mention in particular the work of Amenta and Bern [1] on surface recognition
and its subsequent simplifications and extensions to higher dimensions [2, 5, 6, 7];
the development of persistent homology—see the useful survey by Edelsbrunner and
Harer [11] and also [8, 12, 16, 20]; the use of Laplacian methods for learning [3, 4];
and our own work on homotopical inference [17] that this work extends.

2. Problem formulation and results. In this section we describe a geometri-
cally structured model of a probability distribution in a high dimensional space. We
then describe our main result that asserts that it is possible to learn structural aspects
of this probability distribution without encountering the curse of dimensionality.

2.1. Models of probability distribution and noise. The manifold M is
conceptualized as a platonic ideal: the geometric core of a probability distribution
centered on it. Data are drawn from this distribution, and thus we receive a noisy,
point cloud in a high dimensional space. We formalize this as follows.

Let M be a compact, smooth submanifold of RN without boundary. For any
p ∈ M, denote the tangent space at p by Tp and the normal space by Np = T⊥

p .

Since M is a submanifold, we have p ∈ M ⊂ R
N , and Tp and T⊥

p may be identified
with affine subspaces of dimension d and N − d, respectively. With this identification
there are canonical maps (respectively) from the tangent bundle TM and the normal
bundle NM to R

N . Now consider a probability density function P on NM. Then
for any (x, y) ∈ NM (where x ∈ M and y ∈ T⊥

x )

P (x, y) = P (x)P (y|x).

The marginal P (x) is supported intrinsically on the manifold M (the reader can
think of P (x) as being the intrinsic volume associated to the Riemannian structure
on M inherited from Euclidean space), while the conditional P (y|x) is the noise in
the normal direction. This probability distribution can be pushed down to R

N by the
canonical map from NM to R

N . This is the probability distribution defined on R
N

according to which data are assumed to be drawn.
Remark. A competing noise model could be considered where the noise is defined

directly on the Euclidean space and is (something like) the convolution of a measure on
the manifold with a normal distribution. Such measures can be handled by the same
techniques as the ones used here and, indeed, present fewer technical problems. (See
the remark after Theorem 2.) The model we have chosen is reasonable if one imagines
that there is already noise in “the platonic world” where the data are assumed to be
sampled from a geometric structure. Then it seems that noise should be thought of
as lying in a vector bundle over the geometric structure. This is then mapped into

1In the case of mixtures of Gaussians, substantial progress has been made since the algorithmic
insights of [9] so that the requirements on the noise have been weakened.
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a Euclidean space by some function, and that provides the coordinate values of the
data point that we directly apprehend.

One may ask whether the homology of M can be inferred from examples drawn
according to P and what the complexity of this inference problem is. We investigate
this under the strong variance condition. This amounts to two separate assumptions:

1. 0 < a ≤ P (x) ≤ b for all x ∈ M.
2. P (y|x) is normally distributed with mean 0 and covariance matrix σ2I, where

I is the (D − d)× (D − d) identity matrix.

2.1.1. Mixture of Gaussians. The most obvious special case of our framework
is the mixture of Gaussians. Consider a probability distribution P on R

N given by

P (x) =

k∑
i=1

wiN (x;μi,Σi),

whereN (x;μi,Σi) is the density function for the normal distribution with mean μi and

covariance matrix Σi. The weights of the mixture wi > 0 sum to 1, i.e.,
∑k

i=1 wi = 1.
This is a standard workhorse for density modeling and is widely used in a variety of
applications.

This probability distribution may be related to our setting as follows. Con-
sider a (zero-dimensional) manifold consisting simply of k points (identified with
μ1, μ2, . . . , μk in R

N . Thus M = {μ1, μ2, . . . , μk}. Let P be a probability distri-
bution on M given by P (μi) = wi. This manifold consists of k connected components
and the normal fiber Nx for each x ∈ M has codimension D. This Nx is isomorphic
to the Euclidean space R

D where the origin is identified with μi. The probability
distribution P (y|x) (where y ∈ Nx) is modeled as a single Gaussian with mean 0 and
variance Σi.

Thus if one is given a collection x1, . . . , xn of n points sampled from a mixture
of Gaussians, one may conceptualize the data as noisy (Gaussian noise) samples from
an underlying manifold. If one were able to learn the homology of the underlying
manifold from such noisy samples, then one would realize (through the zeroth Betti
number) that the underlying manifold has k connected components, which is equal
to the number of Gaussians and the number of clusters. One would also realize
(through the higher Betti numbers) that each such connected component retracts to
a point. Thus, one would be able to distinguish the case of Figure 2 from Figure 1
automatically.

2.2. Main theorem. More generally, in our case, M is a well-conditioned d-
dimensional submanifold of RD. The conditioning of the manifold is characterized
by the quantity τ that is also used in the statements of our theorems in [17]. τ is
defined as the largest number having the property: The open normal bundle about
M of radius r is imbedded in R

N for every r < τ . Its image Tubτ is a tubular
neighborhood of M with its canonical projection map

π0 : Tubτ → M.

τ is the feature size introduced in [1] and that arises in many other investigations.
Note that τ encodes both local curvature considerations as well as global ones: If M
is a union of several components, then τ bounds their separation. For example, if M
is a sphere, then τ is equal to its radius. If M is an annulus, then τ is the separation
of its components or the smaller radius. Our main theorem may be summarized as
follows.
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Theorem 1 (main theorem). Consider a probability distribution P satisfying the
strong variance condition described previously in section 2.1. Let δ > 0 be given; then
as long as the variance σ2 satisfies the bound

(1)
√
8(D − d)σ < c

√
9−√

8

9
τ

for some c < 1, the algorithm described below will compute the homology of M from a
random sample of f(τ, δ, c, d,D, diam(M)) points with probability 1−δ. (The function
f is explicit and the diameter can be replaced with Vol(M) in this estimate.) Further,
if the codimension is high, in particular, if

D − d > A

(
log

(
1

a

)
+Kd log

(
1

τ

))

for suitable constants A,K > 0, the sample complexity is independent of D. Therefore
the only place where the ambient dimension D enters in the computational complexity
of the algorithm is in reading the data points (linear in D).

Some further remarks are worthwhile.
1. It is worth emphasizing that the probability distribution P is supported on

all of RD. Even so, the fact that it concentrates around a low dimensional
structure (M) allows one to beat the curse of dimensionality if d � D and the
noise σ is sufficiently small. A number of previous results (for example, [18,
15, 14, 17]) have shown how learning rates depend only on d if the probability
distribution is supported on a d-manifold. It has been unclear from these prior
works whether such a low dimensional rate would still hold if the distribution
was supported on all of RD but concentrated around M. Our results provide
an answer to this question in the context of learning homology.

2. The condition on the noise σ may be seen as analogous to a similar condition
on the mixture of Gaussians assumed in the breakthrough paper [9]. As
discussed earlier, the mixture of Gaussians corresponds to the special case in
which M is a set of k points (say μ1, . . . , μk ∈ R

D). In that case, τ is simply
given by

τ =
1

2
min
i,j

‖μi − μj‖ .

So the strong variance condition amounts to stipulating that the variance
of the Gaussians is small relative to the distance between their means in a
manner that is similar in spirit to the assumption of [9].

3. One complication that we potentially have to deal with is a feature of our
more general class of probability distributions and does not arise in the case
of a mixture of a finite number of Gaussians. There can be points x ∈ RN , x 	∈
M off the manifold where the density function blows up; i.e., the measure
of a sufficiently small ball around x is very large compared to the measure
of similarly sized balls around points on the manifold. As an example of
such hotspots, consider the simple case of a circle S1 embedded in R

2 in the
standard way. Let P (x) (for x ∈ M) be the uniform density on the circle and
let P (y|x) be N (0, σ2) be the one-dimensional Gaussian along the normal
fibers. Now consider the measure μ induced on R

2 by this geometrically
structured distribution. For a ball of radius ε centered at the origin (where
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1 > ε > 0), it is easy to check the following inequality:

μ (Bε(0)) ≥ 2ε√
2πσ

e−
(1−ε)2

2σ2 ≥ 2ε√
2πσ

e−
1

2σ2 .

On the other hand, the Lebesgue measure (λ) in R
2 assigns volume λ(Bε(0)) =

πε2. Clearly, dμ
dλ blows up at the origin. Thus although the center of the

circle is “infinitely likely,” it needs to be discarded to recover the homology
of the circle. This can only be done by choosing with care the size of the
neighborhoods for cleaning the data.

4. As we will elaborate in a later section, the homology finding algorithm can
itself be implemented as a spectral algorithm on simplicial complexes. In
spectral clustering, one typically constructs a graph from the data and uses
the graph Laplacian to partition the graph and thus the data. In our case,
since we are interested not just in the number of partitions (clusters) but
also the topological nature of these clusters (e.g., circle versus point in the
example figures before), we will need to compute the higher homologies. This
involves the construction of a suitable simplicial complex from the data. The
combinatorial Laplacian on this complex provides the higher homologies. In
this sense, our algorithm may be viewed as a generalized form of spectral
learning.

5. Here and below, it is possible to simplify considerably the calculation of ho-
mology by producing a smaller simplicial complex using a subset of the data.
The idea is this: The number of sample points chosen is to guarantee that
the manifold is well covered by balls around these points. However, as in the
coupon collector problem, one randomly tends to oversample certain regions
on the way to coverage. There is no reason to use all of these “extra” sample
points in producing the simplicial complex. Choosing a minimal covering set
from the data does not lower the sample complexity at all, but it makes the
associated simplicial complex simpler, and the boundary maps in the chain
complex into reasonably sparse matrices.

Our main theorem exploits the concentration properties of the Gaussian distribu-
tion in high dimensional spaces. More generally, one can consider probability distri-
butions that can be factored into a part with a geometric core (on the manifold) and
a part in the normal directions (off the manifold) following section 2.1. In this more
general setting, one can prove the following theorem.

Theorem 2. Let M be a compact submanifold of RN with condition number τ ,
and let μ be a probability measure on R

N satisfying the following conditions:
(1) There is an s > 0 and a positive real number α so that μ(Bs(q)) > αμ(Bs(p))

for any q ∈ M and any p.
(2) There is a positive real number β < 1 so that μ(Bs(p)) < αβμ(Bs(q)) if

q ∈ M and d(p,M) > 2s.
(3) In addition, s < τ/5.
(4) There is a C > 0 so that μ(BC(0)) >

1
2 .

Then it is possible to give an algorithm that computes from many μ-random sam-
ples the homology (and homotopy type) of M. The probability of error can be estimated
in terms of (n, τ, s, C, α, β).

Note, of course, that the existence of a C in (4) is automatic. However, it is not
possible to give a bound on it in terms of the other parameters. Essentially, it is
related to the problem of “large diffuse dust clouds”: almost all of the mass of μ can
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be concentrated on points of probability almost 0; as a result, it would be very hard to
find the much stronger “signal” of M. Note, too, that for very reasonable measures,
condition (2) is unlikely to hold for very small values of s because of the “hotspot”
example mentioned above. Part of the proof of the main theorem is checking that in
the situation of Gaussian noise, for any s, controlling the variance suffices to ensure
(2).

The proof of this is rather easier than the proof of the main theorem and follows
the same outline. Essentially, one uses the tension between (1) and (2) to devise a test
to eliminate “less likely balls” to clean the data. One estimates, by the techniques
of [17] and some elementary proof of the law of large numbers, the probability of
including spurious balls (e.g., ones centered outside a 2s neighborhood of M) and
that one has covered M. When one is done, one takes the nerve of covering by balls
of size 4s that were allowed in, and, by the results of [17], we get a computation
of the homotopy type of M. Finally, it is worth noting that while these arguments
allow us to handle a more general setting than our main theorem, unfortunately the
complexity of the algorithm for this more general case depends exponentially on N ,
the ambient dimension.

Remark. It is worth being explicit about the meaning of the statement of what
it means to compute a homotopy type: all that is asserted is that one has produced a
simplicial complex in the correct homotopy type. From this, it is easy to compute the
fundamental group (as a group presentation: although this determines the group up to
isomorphism, it is not possible to determine algorithmically whether or not it is trivial)
and the homology groups. Higher homotopy is determined by such a description,
but there is no straightforward method of computation (even in the weak form of
generators and relations). If one has additional information, e.g., that dimM = 2,
then the homology information determines the diffeomorphism type of the surface,
but as the dimension increases, the difficulty of inferring useful information from such
a description increases quickly.

3. Basic algorithmic framework. The basic algorithmic framework consists
of drawing a number of points according to P , filtering these points according to a
“cleaning procedure,” and then constructing a simplicial complex according to the
constructions outlined in [17]. The detailed steps of this framework are as follows:

1. Draw a set of n points x̄ = {x1, . . . , xn} in i.i.d. fashion from P .
2. Construct the nearest neighbor graph with n vertices (each vertex associated

to a data point) with adjacency matrix

Wij = 1 ⇐⇒ ‖xi − xj‖ < s.

Thus two points xi and xj are connected if Bs/2(xi) and Bs/2(xj) intersect.
3. Let di be the degree of the ith vertex (associated to xi) of the graph. Throw

away all data points whose degree is smaller than some prespecified threshold.
Let the filtered set be z̄ ⊂ x̄.

4. With the points that are left, construct the set

U = ∪x∈z̄Bε(x).

5. Compute the homology of U by constructing the simplicial complex K cor-
responding to the nerve of U according to [17].

In the above framework, there is a one-step cleaning procedure. Many variants
of the above framework may be considered. Conceptually, if we are able to filter
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out points in a neighborhood of the medial axis, retaining sufficient points in the
neighborhood of the manifold, then we should be able to reconstruct the manifold
suitably. In this paper we provide some details as to how this might be done for
reconstructing the homology of the manifold.

3.1. Remarks and elaborations. In step 2 of the above algorithm, a choice
has to be made for s. As we shall see, a suitable choice is s = 4r, where r is a number
satisfying √

8(D − d)σ < r and 9r < (
√
9−

√
8)τ.

Such a number always exists by assumption on the noise in 1. In step 3 of the
algorithm, a choice has to be made for the value of the threshold to prune the set of
data. A suitable choice here is

di >
3a

4
(1 − (r/2τ)2)d/2vol(Bd

r ).

In step 5 of the algorithm, one constructs the nerve of U at a scale ε. This ε is
different from s chosen earlier (a value ε = 9r+τ

2 suffices, but details will be specified
in subsequent developments and in the propositions stated later). The nerve of U is a
simplicial complex constructed as follows. The j-skeleton consists of j-simplices where
each j-simplex consists of j+1 distinct points z1, . . . , zj+1 ∈ z̄ such that ∩Bε(zi) 	= φ.
The 1-skeleton of this complex is therefore a graph where the vertices are identified
with the data (after cleaning) and the edges link two points which are 2ε-close.

3.1.1. The combinatorial Laplacian and its kernel. The homology of the
manifold is obtained by computing the Betti numbers of the data-derived simplicial
complex. This, in turn, is obtained from the eigenspaces of the combinatorial Lapla-
cian defined on this complex (see [13]). Thus, there is a natural spectral algorithm
for our problem that is a generalization of spectral clustering used in determining the
number of clusters of a data set. Let us elaborate.

1. One begins by picking an orientation for the complex as follows. Recall
that every j-simplex σ ∈ K is associated with a set of j + 1 points. If
xi0 , xi1 , . . . , xij (where il’s are in increasing order) are the set of points as-
sociated with a particular j-simplex μ, then an orientation for this is picked
by choosing an ordering of the vertices. A possible choice is to simply choose
the ordering given by [i0i1 . . . ij ]. Therefore if μ = [i0i1 . . . ij ] and π is a
permutation of 0, . . . , j, then sign(π)μ = [iπ(0)iπ(1) . . . iπ(j)].
As an example, every 1-simplex is an edge and one picks an orientation by
picking an ordering of the vertices that define the edge.

2. A j-chain is defined as a formal sum

c =
∑
μ

αμμ,

where αμ ∈ R and μ ∈ Kj (the set of j-simplices) is a j-simplex. Let Cj be the
vector space of j-chains. This is a vector space of dimensionality nj = |Kj|.

3. The boundary operators are defined as

∂j : Cj → Cj−1

in the following way. For any μ ∈ Kj (corresponding to the oriented simplex

[xl0 . . . xlj ]), we have ∂j(μ) =
∑j

i=0(−1)iμi, where μi is the oriented j − 1-
simplex corresponding to [xl0xl1 . . . xli−1xli+1 . . . xlj ]. By linearity, for any
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c =
∑

μ αμμ, we have

∂j(c) =
∑
μ

αμ∂j(μ).

The boundary operators are therefore linear operators that can be represented
as nj−1 × nj matrices. The adjoint is therefore defined as

∂∗
j : Cj−1 → Cj

and can be represented as an nj × nj−1 matrix.
4. The combinatorial Laplacian Δj for each j is

Δj = ∂∗
j ∂j + ∂j+1∂

∗
j+1.

Clearly

Δj : Cj → Cj .

5. The Betti numbers b0, b1, . . . are obtained as the null space of Δj .
Remark. It is worth noting that with the definitions above,

Δ0 : C0 → C0

corresponds to the standard graph Laplacian where C0 is the set of functions on the
vertex set of the complex and C1 is the set of edges (1-simplices) of the complex. This
kind of a nearest neighbor graph is often constructed in spectral applications. Indeed,
the dimensionality of the nullspace of Δ0 gives the number of connected components
of the graph (b0) which in turn is related to the number of connected components of
the underlying manifold. The number of connected components is usually interpreted
as the number of clusters in the spectral clustering tradition (see, for example, Ding
and Zha [10] and the references therein).

4. Analysis of the cleaning procedure. We prove the following A−B lemma
that is important in analyses of the cleaning procedure generally. Imagine we have
two sets A,B ⊂ R

D such that

inf
x∈A,y∈B

‖x− y‖ = η > 0.

The larger η is, the easier it should be to separate samples of A from samples from B.
Let there be a probability measure μ on R

D according to which points x1, . . . , xn ∈ R
D

are drawn. We define (for s > 0, in particular s � η/2)

αs = inf
p∈A

μ(Bs(p))

and

βs = sup
p∈B

μ(Bs(p)).

Then the following is true.
Lemma 3. Let αs ≥ α > β ≥ βs and set h = α−β

2 . Then if the number of points
n is greater than 4η log(η), where

η = max

((
1 +

2

h2
log

(
2

δ

))
, 4

)
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

656 P. NIYOGI, S. SMALE, AND S. WEINBERGER

then, with probability > 1− δ, both (i) and (ii) below are true:
(i) for all xi ∈ A, di

n−1 > α+β
2 ;

(ii) for all xj ∈ B,
dj

n−1 < α+β
2 ,

where di =
∑

i�=j 1[xj∈Bs(xi)].
Proof. Given the random variables x1, . . . , xn, we define an event Ai as follows.

Consider the random variables yi,j = 1[xj∈Bs(xi)]. Then for each j 	= i, the yi,j ’s are
0− 1-valued and i.i.d. with mean μ(Bs(xi)). Define the event Ai to be

Ai :

∣∣∣∣∣∣
1

n− 1

∑
j �=i

yi,j − μ(Bs(xi))

∣∣∣∣∣∣ > h.

By a simple application of Chernoff’s inequality, we have

P (Ai) < 2e−
h2(n−1)

2 .

By the union bound,

P (∪iAi) <
n∑

i=1

P (Ai) = 2ne−
h2(n−1)

2 .

Therefore, if

2ne−
h2(n−1)

2 < δ

with probability greater than 1− δ, for all i simultaneously,∣∣∣∣ di
n− 1

− μ(Bs(xi))

∣∣∣∣ ≤ h.

Therefore, if xi ∈ A, we have

di
n− 1

≥ μ(Bs(xi))− h ≥ α− h,

and if xi ∈ B, we have

di
n− 1

≤ μ(Bs(xi)) + h ≤ β + h.

Putting in the value of h, the result follows. Now it only remains to check the bound
on n. We see that as long as

n− 1 >
2

h2
(log(n) + log(2/δ)) ,

it follows that

n >

(
1 +

2

h2
log(2/δ)

)
+

2

h2
log(n).

For δ < 1
2 , we have that (1 + 2

h2 log(2/δ)) > 2
h2 , so that it is enough to find an n

satisfying

n > x+ x log(n),

where x = (1 + 2
h2 log(2/δ)). The bound for n now follows from a straightforward

calculation.
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5. Analysis of Gaussian noise off the manifold. We apply the “A − B”
lemma to the case of manifold (condition number τ) and the probability measure μ
obtained by pushing down P as described earlier. We choose a number r that satisfies√

8(D − d)σ < r and 9r < (
√
9−√

8)τ.

Our data are to be cleaned by considering balls of radius s = 4r centered at each of
the points, building the associated graph and throwing away points associated to low
degree vertices. In order to proceed, we choose (where R = 9r)

A = Tubr(M) and B = R
D\TubR(M).

With these choices, we now lowerbound αs and upperbound βs. We will need the
following standard concentration lemma for Gaussian probability distributions, which
can be proved by the introduction of spherical coordinates.

Lemma 4. Let X be a normally distributed random variable with mean 0 and
identity covariance matrix I in k-dimensions. If γk is the measure (on R) associated
with X, then

γk

{
x ∈ R

k such that ‖x‖2 ≥ k + δ
}
= P

(
‖X‖2 ≥ k + δ

)
≤
(

k

k + δ

)−k/2

e−δ/2.

For our purposes, a more convenient form can be derived as follows.
Lemma 5. Let X be a normally distributed random variable with mean 0 and

covariance matrix σ2I in k-dimensions. If νk is the measure (on R
k) associated with

X, then for any T > σ2k, we have

νk

{
x ∈ R

k such that ‖x‖2 ≥ T
}
≤ (eze−z)k/2,

where z = T
σ2k .

Proof. Define the random variable Y = X/σ. Clearly, Y is normally distributed
with mean 0 and covariance matrix I. Therefore

γk

{
y ∈ R

k such that ‖y‖2 ≥ k + δ
}
= νk

{
x ∈ R

k such that ‖x‖2 ≥ σ2(k + δ)
}
.

Put T = σ2k + σ2δ. We then have

νk

{
x ∈ R

k such that ‖x‖2 ≥ σ2(k + δ)
}
≤
(

k

k + δ

)−k/2

e−δ/2

=

(
σ2k

T

)−k/2

e−1/2( T
σ2 −k) =

(
eT

σ2k
e−T/(σ2k)

)k/2

.

5.1. Lower bounding αs. Consider some x ∈ A and μ(Bs(x)) for such an x.
Let p = π0(x) ∈ M. Then since ‖x− p‖ < r, we clearly have

μ(Bs(x)) ≥ μ(B2r(p)).

In turn, we have

μ(B2r(p)) ≥
∫
x∈M∩Br(p)

P (x)

∫
BD−d

r ∈T⊥
x

P (y|x).
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For any x ∈ M, the probability distribution P (y|x) is normally distributed and we
are in a position to apply a concentration equality for Gaussians. We see that

∫
BD−d

r ∈T⊥
x

P (y|x) = 1− γ,

where

γ = P
(‖y‖ > r2

) ≤ ( er2

(D − d)σ2

)(D−d)/2

e−
r2

2σ2 .

Therefore, we have

μ(B2r(p)) ≥ (1− γ)

∫
x∈M∩Br(p)

P (x) ≥ a(1− γ)vol(Br(p) ∩M).

Since the curvature of M is bounded by the τ constraint (see Lemma 5.3 on p. 430
of [17]), we have that

vol(Br(p) ∩M) ≥ (1− (r/2τ)2)d/2vol(Bd
r ),

where θ = arcsin
(

r
2τ

)
.

Thus we have

αs > a(1− γ)(1− (r/2τ)2)d/2vol(Bd
r ).

It is worth noting that as D − d (the codimension) gets large, or as σ gets small, the
quantity γ decreases eventually to zero.

5.2. Upperbounding βs. Consider some z ∈ B = R
D\TubR(M). Noting that

s = 4r and R = 9r, we see

μ(Bs(z)) ≤ μ
(
R

D\TubR−s(M)
)
= μ

(
R

D\Tub5r(M)
)
.

Now

μ
(
R

D\Tub5r(M)
)
=

∫
x∈M

P (x)

∫
y �∈B5r∩T⊥

x

P (y|x).

By the concentration of inequality of Gaussians, we have

∫
y �∈B5r∩T⊥

x

P (y|x) ≤
(

25er2

(D − d)σ2

D−d
2

)
e−

25r2

2σ2 .

Therefore, it follows that

βs ≤
(

25er2

(D − d)σ2

D−d
2

)
e−

25r2

2σ2 .
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5.3. A density lemma. In this section, we provide a bound on how many points
we need to draw in order to obtain an suitably dense set of points in a neighborhood of
M. Begin by letting p1, p2, . . . , pl be a set of points in M such that M ⊂ ∪l

i=1Br(pi).
In [17], an upper bound was derived on the size of the cover l as

l ≤ vol(M)

cosd(θ)vol(Bd
r )

,

where θ = arcsin( r
2τ ).

Now we note that

μ(Br(pi)) ≥
∫
x∈M∩Br/2(pi)

P (x)

∫
BD−d

r/2
∩T⊥

x

P (y|x).

For each x, following the usual arguments, we have∫
BD−d

r/2
∩T⊥

x

P (y|x) = 1− γ,

where by the Gaussian concentration inequality, we have

γ = P

(
‖y‖2 >

r2

4

)
≤
(

er2

4(D − d)σ2

)(D−d)/2

e−
r2

8σ2 .

We can now state the following lemma, which guarantees that if we draw enough
points, we will get a suitably dense set of points in a neighborhood of M.

Lemma 6. Let Ai = Br(pi) such that ∪l
i=1Ai form a suitable minimal cover of

M. Let μ(Ai) ≥ t. Let x̄ = {x1, . . . , xn} be a collection of n data points drawn in
i.i.d. fashion according to μ.

Then, if n > 1
t (log(l) + log(2/δ)), with probability greater than 1 − δ/2, each Ai

has at least one data point in it, i.e., for all i, Ai ∩ x̄ 	= φ.

5.4. Putting it all together. We begin by using the following simple lemma.
Lemma 7. The function f(x) = (xe−x)n is a decreasing function of x for x > 1.

Thus, we have that

∀x ≥ 2, f(x) <

(
2

e

)n

<

√
2

e
.

Further, for all x > x∗ > 1,

f(x) ≤
( x∗
ex∗−1

)n
.

Proof. This is simply proved by noting that f ′(x) < 0 for all x > 1.
We now see that if the codimension D−d is sufficiently high, then β < α/2. This

is stated as follows.
Lemma 8. Letting

D − d ≥ 1

196

(
log

(
4

a

)
+ d log

(
1

cos(θ)

)
+ log

(
1

vol(Bd
r )

))
,

we have that βs ≤ β < α/2 ≤ αs

2 .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

660 P. NIYOGI, S. SMALE, AND S. WEINBERGER

Proof. First consider αs. By the previous argument in section 5.1, we see that

αs > α = a(1− γ) cosd(θ)vol(Bd
r ),

where γ < (eze−z)
D−d

2 with z = r2

(D−d)σ2 . Since by our main assumption we have

that r >
√
8σ

√
D − d, we see that z > 8. By Lemma 7, we have that γ <

√
2/e and

so (1 − γ) > 1 −√2/e. In fact, since z > 8 in this case, it turns out that γ < 1
2 so

that

α >
a

2
cosd(θ)vol(Bd

r ).

Now consider βs. By the argument in section 5.2, we have that

βs ≤ β = (eze−z)
D−d

2 ,

where z = 25r2

(D−d)σ2 . Again, by our main assumption, we see that z ≥ 400 so that

β ≤ (e · 400 · e−400)(D−d)/2.

Therefore, for β to be less than α/2, it is sufficient for

(e · 400 · e−400)(D−d)/2 ≤ a

4
cosd(θ)vol(Bd

r ).

Taking logs, we get that it is sufficient for

(D − d)/2 log(e399/400) ≥ log

(
4

a

)
+ d log

(
1

cos(θ)

)
+ log

(
1

vol(Bd
r )

)
.

Noting that e399/400 > e392, we see it is sufficient for

D − d >
1

196

(
log

(
4

a

)
+ d log

(
1

cos(θ)

)
+ log

(
1

vol(Bd
r )

))
.

The result follows.
We are now in a position to prove a central proposition.
Proposition 9. Let μ be a probability measure on R

D satisfying the strong
variance condition described in section 1. Let x̄ = {x1, . . . , xn} be n data points
drawn in i.i.d. fashion according to μ. Let x̄′ ⊂ x̄ be the data points left after cleaning
by the procedure described previously.

Then if n > max(A,B), with probability greater than 1−δ, x̄′ is a set of points that
(i) is in the R-tubular neighborhood of M, i.e., x̄′ ⊂ TubR(M), and (ii) is R-dense
in M, i.e., M ⊂ ∪x∈x̄′BR(x). Here

A = 4y log(y), where y = max(4, x);x = 1 +
32

a2(1− (r/2τ)2)dvol2(Bd
r )

log

(
4

δ

)
,

and

B =
1

(1−
√

2
e )(1 − (r/4τ)2)d/2vol(Bd

r/2)

(
log

(
2vol(M)

δ(1− (r/2τ)2)d/2vol(Bd
r )

))
.
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Proof. We show (in Part 1 below) that if n > A, with probability greater than
1− δ/2, x̄′ is such that (i) all the points in x̄ that are in Tubr(M) are retained in x̄′,
and (ii) no points of x̄ that are in Ext(TubR(M)) are retained in x̄′. We will prove
this by an application of the “A−B” lemma and a calculation of the precise bounds.

We then show (Part 2) that if n > B, with probability greater than 1 − δ/2, x̄
is such that M ⊂ ∪x∈x̄∪Tubr(M)B2r(x). We will prove this by an application of the
density lemma and a calculation of the precise bounds. Taken together, Parts 1 and
2 show that if n > max(A,B), with probability greater than 1− δ, the following facts
are true: (i) x̄′ ⊂ TubR(M), (ii) M ⊂ ∪x∈x̄′B2r(x) ⊂ ∪x∈x̄′BR(x). The proposition
follows immediately.

Part 1. By Lemma 8, we see that β < α/2. Therefore, h = α − β > α/2. By
applying the “A−B” lemma, and choosing A = Tubr(M) and B = Ext(TubR(M)),
we see that if n > 4y log(y), where y = max(4, x) and

x =

(
1 +

8

α2
log

(
4

δ

))
,

the cleaning procedure will retain all points in x̄ ∩ Tubr(M) while eliminating all
points in x̄ ∩ Ext(TubR(M)). By the calculations in section 5.1 and the proof of
Lemma 8, we see that

α >
a

2
(1− (r/2τ)2)d/2vol(Bd

r ).

Putting this in proves Part 1.
Part 2. Here we apply Lemma 6. Let us bound t and l of that lemma appropri-

ately. Note that by the arguments presented in section 5.1, we have

μ(Ai) ≥ a(1− γ)(1− (r/4τ)2)d/2vol(Bd
r/2),

where γ ≤ (eze−z)(D−d)/2 such that z = r2

4(D−d)σ2 ≥ 2. Then by Lemma 7 we have

that

μ(Ai) ≥
(
1−

√
2

e

)
(1 − (r/4τ)2)d/2vol(Bd

r/2).

Similarly, for l, we have that l ≤ Vol(M)

(1−(r/4τ)2)d/2vol(Bd
r/2

)
. Therefore

log(l) ≤ log(vol(M)) + d log

(
1

(1− (r/2τ)2)1/2

)
+ log

(
1

vol(Bd
r )

)
.

Putting these together proves Part 2.
Thus we see that the procedure yields a set of points x̄ that are R-dense in M

and entirely contained in an R-tube around M. At this point, we can invoke the
following proposition proved in [17].

Proposition 10. Let S be a set of points in the tubular neighborhood of radius
R around M. Let U be given by

U = ∪x∈SBε(x).

If S is R-dense in M, then M is a deformation retract of U for all R < (
√
9−√

8)τ

and ε ∈ ( (R+τ)−√
R2+τ2−6τR
2 , (R+τ)+

√
R2+τ2−6τR
2

)
.
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Now we can prove our main theorem by combining Propositions 9 and 10.
Theorem 11. Let x̄ = {x1, . . . , xn} be a collection of n i.i.d. points drawn at

random from μ satisfying the strong variance condition described earlier. Then, as
long as n > max(A,B) with probability greater than 1 − δ, the algorithm described
earlier returns the homology of M.

6. Conclusions. In this paper, we have taken a topological view of unsupervised
learning from data in a high dimensional space. Our approach is conditioned on
the belief that in high dimensions, “natural” probability distributions are far from
uniform and concentrate around lower dimensional structures. To model this intuition
we consider a probability distribution that concentrates around a low dimensional
submanifold of the ambient space with noise in the normal directions. With random
data drawn from such a probability distribution, we show that if the noise is sufficiently
small, it is possible to recover the homology of the manifold by a spectral algorithm
that depends very weakly on the ambient dimension. This result is a step towards
a larger understanding of when we might expect to make effective inferences in high
dimensional spaces without running into the curse of dimensionality.
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